酶在环境保护方面的应用
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
酶在生物催化中的作用和应用酶是一种特殊的蛋白质分子,具有催化生物反应的能力。
在生物体内,酶是调节代谢网络的关键因素之一,起着极为重要的作用。
除了在生物内部发挥作用外,酶还在口服药剂、食品加工、医学诊断、生态环境治理、能源生产等领域中广泛应用。
本文将详细探讨酶在生物催化中的作用和应用。
一、酶在生物催化中的作用生物催化是指利用微生物、酶等生物催化剂催化反应的过程。
酶在生物催化中因其催化效率高、选择性强,并能在温和条件下催化反应,因此成为生物催化中重要的催化剂。
酶催化反应的基本原理是将亲和性底物与酶结合形成底物-酶复合体,然后以底物-酶复合体作为反应物,催化化学反应,形成产物-酶复合体,最后将产物从酶分离出来,使酶回归到无底物-酶状态。
酶在生物催化中的作用主要表现在以下三个方面。
1、提高反应速率传统催化剂如金属催化剂等催化活性低、选择性差、催化剂使用后极难回收等不足,但酶可以在细胞内快速催化一系列反应,同时还具有高效催化、高度选择性、温和化条件、催化后再利用、无毒副作用等特点,因此在生物催化中受到广泛应用。
酶在生物催化中的主要作用是加速底物转化为产物的速率,提高反应速率。
2、增强可控性酶催化剂对底物选择性强,只催化特定底物的反应,可以有效减少副反应的发生,保持反应的可控性,使反应产物的纯度和产率高。
3、提高反应的特异性酶具有高度选择性,可以识别特定底物和触媒转化的特定反应类型,具有极高的催化效率和特异性,可以实现高纯度和高产量产物的定向合成。
二、酶催化技术在各领域的应用1、生物技术领域酶在生物技术中的应用表现在两个方面。
一是用于生物大分子的转化,如蛋白质分析、多肽合成等;二是用于生物小分子的转化,如生物能源生产、药物合成等。
酶催化的优点是选择性强,催化活性高,操作温和等。
2、医学诊断酶在医学诊断领域的应用主要体现在酶促免疫测定法(ELISA)和酶促反应测定法(PCR)等技术中。
ELISA是一种基于酶反应的诊断技术,广泛用于检测人体内某些蛋白的含量。
环境工程中固定化酶与固定化微生物的应用初探环境工程是通过采取适当的技术手段,保护和改善自然环境,维护人类健康和促进可持续发展的工程学科。
在环境工程中,固定化酶和固定化微生物是两种常见的应用技术。
固定化酶是指将酶固定在固体载体上,形成固定化酶颗粒,以实现酶的稳定性和重复使用。
固定化酶具有许多优点,如提高催化活性,提高酶的稳定性和重复使用能力,提高产量和纯度,降低生产成本等。
固定化酶在环境工程中的应用非常广泛。
固定化酶可以用于废水处理。
废水中含有各种有机和无机污染物,这些污染物通过固定化酶可以得到有效降解。
固定化酶可以应用于废水中的有机废物处理,通过酶的作用将废物转化为无害物质,从而达到净化废水的目的。
固定化酶也可以用于废水中的重金属去除,在一定条件下,酶可以选择性地结合和去除废水中的重金属离子。
固定化酶可以用于土壤修复。
土壤污染是一个严重的环境问题,污染的土壤中含有大量的有害物质,会对生态系统和人类健康造成严重影响。
固定化酶可以应用于土壤污染物的修复。
通过固定化酶催化作用,有机和无机污染物可以被有效地降解,从而修复受污染的土壤。
固定化酶还可以应用于空气处理。
空气中存在着各种有害气体和颗粒物,这些污染物对人类健康和环境造成危害。
固定化酶可以用于空气中有害气体的降解。
一些固定化酶可以催化空气中有毒气体的转化为无害物质,从而达到净化空气的目的。
固定化微生物还可以应用于生物膜反应器。
生物膜反应器是一种基于固定化微生物的废水处理技术。
在生物膜反应器中,微生物生长在固体载体的表面,通过微生物的代谢作用,将废水中的有机和无机污染物转化为无害物质。
生物膜反应器具有高效、节能、稳定性好等特点,已广泛应用于废水处理。
酶技术在轻工业中的应用随着生物技术的不断发展,酶技术在各个领域的应用越来越广泛。
其中,轻工业作为国民经济的重要支柱产业,对酶技术的需求也在不断增加。
本文将介绍酶技术在轻工业中的应用现状、前景、具体案例以及优势和不足之处,以期为相关领域的发展提供参考。
酶技术与轻工业概述酶技术简介酶是一种具有生物催化功能的蛋白质,可以在特定条件下加速化学反应的进行。
酶技术就是利用酶的特性,通过合理的工艺流程,将底物转化为产品的方法。
轻工业概述轻工业是指不断向消费领域转移的工业产品的生产和制造,包括日常生活用品、文化用品、耐用消费品等。
轻工业的发展对于国家经济的增长和社会进步具有重要意义。
酶技术在轻工业中的应用领域纺织工业在纺织工业中,酶技术可用于纺织物的生物整理,提高织物的柔软度和抗皱性。
同时,也可用于染料和印染废水的处理,降低环境污染。
造纸工业在造纸工业中,酶技术可用于改进纸张的质量和生产效率。
例如,利用木聚糖酶处理纸浆,可以提高纸张的强度和防水性。
食品工业在食品工业中,酶技术可用于生产功能性食品、饮料和调味品等。
例如,利用酶技术生产的高果糖浆,具有更高的甜度和更低的热量。
酶技术在轻工业应用中的具体案例纺织工业:利用蛋白酶对纺织物进行生物整理,可以显著提高织物的亲肤性和抗皱性,同时降低对环境的污染。
造纸工业:木聚糖酶在造纸工业中的应用可以提高纸张的强度和防水性,从而提高纸张的质量和生产效率。
食品工业:利用酶技术生产的高果糖浆具有更高的甜度和更低的热量,可以作为功能性食品和饮料的甜味剂。
酶技术在轻工业中的优势和不足之处(1)高效性:酶具有极高的催化效率,可以在常温常压下进行催化反应,节约能源。
(2)专一性:酶只能催化一种或一类底物进行反应,这种专一性使得酶在生产过程中具有更强的针对性,提高产品质量和效率。
(3)环保性:酶促反应不产生污染环境的副产物,有助于实现绿色生产。
不足之处(1)稳定性:酶的活性受环境影响较大,如温度、pH值和金属离子等,这降低了其在工业生产中的稳定性。
酶在环境保护方面的应用
微生物酶在环境保护方面有很多应用,其中主要有以下几个方面:
1)污染的去除和处理:微生物酶可以有效地降解有机污染物,如石油类、涂料残留物、PAHs和PCBs等有机污染物;
2)痕量有机污染物的检测:微生物酶可以用来检测痕量有机污染物,如有害重金属、有机化合物及其他类型污染物。
3)水体净化:微生物酶可以用来净化受污染的水体,特别是有机物和重金属离子的净化,可以提高水质和减少水污染。
4)气体净化:微生物酶也可以用于气体净化,如氨气净化以及其他有毒有机物的净化,从而降低环境污染和污染物对生物的影响。
酶在环境保护方面的应用摘要在社会高速发展的过程中,对自然资源的开发利用大大加强,随之带来了严重的环境污染。
在治理环境污染的过程中酶发挥了重要作用。
本文介绍了酶的产生过程,酶在环境保护中对废水净化,石油与废油净化,白色污染治理等发面起到的重大作用。
关键词酶;环境保护;应用现如今,世界经济高速发展,随之带来的是严重的环境破坏,所以人类赖以生存的环境质量已经成为世界瞩目的重大问题。
随着科学技术的发展,人类对自然资源的开发范围越来越广,环境问题也就越来越严重,对人类的生存带来了不小的威胁。
为了改善现在的坏境问题,人类开始利用生物技术与环境工程技术相结合,为环境治理提供了高效的技术手段。
20世纪以来,在化学和生物学的交叉地带想成了生物技术,现今生物技术成为了环境保护的重要手段。
作为生物工程的重要组成部分,酶和酶工程手袋生物和化学学者的重视,现代研究表明,酶与酶技术对环境保护有着重大影响。
1 酶与酶工程的基本技术1.1 酶的产生酶的来源有植物,动物和微生物。
由于技术不够先进,早先的酶多从动植物中提取。
但大多数酶由微生物产生,因微生物种类繁多,几乎所有的酶都可以在微生物中找到。
由于现在生物技术的快速发展,微生物变得容易培养,并且繁殖快产量高,所以可以在短期内大量培养,高效产酶,这样连续发酵可以产出经济有效的酶制剂,对于迫切需要治理的环境问题起到较大改善作用。
1.2 酶的固定化技术酶的固定化技术是通过物理或化学的方法将酶连接在一定的固相载体上成为固定化酶,从而发挥催化的作用。
固定化酶具有酶的较高品质。
固定化酶储存稳定性高、分离和回收容易、可循环使用、工艺简便、成本较低。
固定化酶在生物、化学、生物工程、生命科学等领域研究越来越多,应用的范围也越来越广泛。
并且固定化酶在对环境治理中起到了非常重要的作用,有效的改善了生态环境,符合可持续发展的战略要求。
2 酶在环境保护方面的应用2.1 对废水净化的作用在20世纪70年代,固定化酶已被用于空气和水的净化。
酶工程在环境保护中的应用摘要:酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控,针对化境中的空气污染和水污染有高度专一性,可在最短的时间内有效除去污染物,而且无二次污染,为解决环境污染问题提供了有效措施。
关键词:生物酶;污水处理;甲醛污染;环境污染问题直接关系到人的生命与健康,是城镇公共安全体系中最重要的核心安全问题。
近几年来,全国多个城市发生了突发性环境污染事故,尤其是水污染和居民住宅甲醛超标,对城市环境及人民生命安全造成威胁,社会影响极为严重。
但目前国内现有的常规处理工艺无法应对突发性环境污染造成的超标污染物,深度处理工艺也仅能对部分超标污染物。
突发环境污染时如何保障城市环境及人民生命安全,如何采用有效的应急处置技术,在最短时间有效去除污染物,已成为当前所面临的新课题。
环境工程技术与生物技术的结合,为污染治理提供了新的技术手段,环境生物技术已成为解决环境污染的发展方向。
利用生物酶催化技术进行环境污染应急处置,即通过有效的生物降解功能来对目前一些污染治理技术所不能达到的污染源进行处理,可在最短的时间内有效去除污染物,保障环境及人民生命安全。
1 生物酶催化处理污水技术1.1生物酶催化处理污水技术的机理将生物酶催化技术应用于环境中污染物的去除,不同于普通微生物的系列生物酶技术,是将多种生物酶进行复合,通过生物酶打开污染物中更复杂的化学链,酶分子可以使反应物分子中化学键拉长、扭曲和变形,使他们更容易被水解,因而加速有机物的分解,将其迅速降解为小分子,从高分子有机物降解为低分子有机物或CO2、H2O等无机物,降低 CODCr值,从而达到去除污染物的目的,并可大大降低污水处理费用。
与其他微生物处理相比,生物酶催化处理法具有催化效能高、反应条件温和、对废水质量及设备情况要求较低,反应速度快,对温度、浓度和有毒物质适应范围广,可以重复使用等优点。
1.2 生物酶催化处理污水技术的优点(1)催化效率高生物酶一般能加速反应速度109~1010倍。
酶工程的应用及其发展趋势
酶工程是利用生物技术方法对酶进行改造和优化,以满足工业生产的需求。
它在各个领域都有广泛的应用,包括医药、食品、化学等。
以下是几个酶工程的应用及其发展趋势:
1. 医药领域:酶被广泛应用于药物合成和制药过程中。
例如,通过酶工程可以改进药物合成的效率和产量,减少副产物的生成,提高纯度和质量。
此外,酶还可以用于制造生物药物,包括蛋白质药物、抗体药物等。
未来的发展趋势是开发更多的酶药物,并提高制药过程的效率和环保性。
2. 食品工业:酶在食品工业中有广泛的应用,包括面包、啤酒、酸奶等食品的制作过程中。
通过酶工程可以改善食品的质地、口感和保鲜性。
此外,酶还可以用于食品添加剂的开发,用于改善食品的营养价值和功能性。
未来的发展趋势是开发更多的专用酶用于食品加工,提高食品的品质和安全性。
3. 环境保护:酶工程在环境保护领域有重要的应用。
例如,酶可以用于处理工业废水和污染物,降解有机废弃物和重金属污染物。
此外,酶还可以用于制备生物柴油和生物降解塑料等可再生能源和环保材料。
未来的发展趋势是开发更多具有高效降解性和低成本的酶用于环境治理和再生资源的利用。
4. 新型酶的发现和优化:酶工程的发展趋势是发现和利用新型酶及其应用。
随着生物技术的不断发展,越来越多的新酶被发现和鉴定,可以应用于各种工业过
程。
此外,通过基因工程和代谢工程的方法,可以对酶进行定向进化和改造,提高其催化活性、稳定性和特异性。
未来的发展趋势是开发更多的新型酶和创新技术,提高工业生产的效率和可持续性。
酶在生物医学中的应用酶是一种能够催化化学反应,加速生物体代谢的生物催化剂,它在生物医学领域中具有重要的应用价值。
本文将探讨酶在生物医学中的应用,包括其在医疗、生命科学和环境保护领域的应用。
一、酶在医疗领域的应用酶在医疗领域中的应用非常广泛。
在临床检测中,酶可以用于检测各种疾病的标志物,例如血糖酸激酶可以用于检测糖尿病,肝脏酶可以用于检测肝脏疾病。
此外,酶还可以用于制药工艺中的药物合成和纯化。
例如,青霉素合成的过程中需要用到酶催化反应,酶稳定性和高催化效率使得它在药物合成中得到广泛应用。
二、酶在生命科学领域的应用在生命科学领域中,酶的应用主要体现在分子生物学、基因工程和蛋白质工程等方面。
在分子生物学中,酶可以用于DNA重组和测序等技术中。
例如,限制性内切酶可以用于切割DNA分子,DNA聚合酶可以用于扩增DNA分子,并且聚合酶链反应(PCR)还可以用于DNA的快速扩增。
在基因工程领域中,酶可以用于构建基因表达系统以及基因克隆。
例如,质粒DNA构建中常用的限制性内切酶可以用于切割DNA分子,以便于进行基因表达和转染,通过酶切解决DNA片段的缺口或者黏合,最终实现基因水平的操作。
在蛋白质工程领域中,酶可以被用来改变蛋白质的结构和功能。
例如,蛋白质合成的过程中,特定的酶可以被用来抽取蛋白质的特定区域或是降解特定部分,从而得到定制化的蛋白质。
三、酶在环境保护领域的应用在环境保护领域中,酶的应用主要是利用酶的稳定性和催化效率,将废水处理成为可回收利用的水资源。
酶可以被使用在制浆造纸、纺织、印染、食品加工和医药制品等行业的废水处理中。
酶对环境的破坏性比化学物质要少,同时处理效率高、成本低,因此它是一种比较理想的环保技术手段。
但是,由于酶在生态系统中的作用机制还存在待扩充和深入研究,因此需要在应用中谨慎考虑。
综上所述,酶在生物医学领域中的应用可谓丰富多样,从医疗、生命科学到环保技术,都能够看到它的身影。
然而,酶应用的研究和实践仍然需要在科技创新和加强交流等方面取得更多的突破和进步,以满足人们对医疗、生命科学和环保技术的不断需求。
酶学在生物工程中的应用及未来发展趋势酶学是研究生物催化作用的学科,也是应用生物学、化学、工程学等多学科交叉的领域。
随着生物技术的迅猛发展,酶学在生物工程中的应用愈加广泛。
本文将从酶学在生物工程中的应用入手,探究其未来发展趋势。
一、酶学在生物工程中的应用1、酶技术在制药行业的应用酶技术在制药行业中的应用是最早被开发的领域之一。
酶制剂具有高效、高选择性、温和反应条件等特点,特别适合于药物制剂中残留的不纯质的分解。
例如,血凝酶、等电点酶、腺苷酸酰化酶等制剂可以被用作药物的激动剂、辅助剂、载体和生物材料。
2、酶技术在食品工业的应用酶技术在食品工业中的应用主要包括面包发酵、酸奶制造、乳酸发酵、酒类酿造等。
这些技术的发展进一步提高了食品质量和安全性,并提高生产效率,减少了生产成本。
3、酶技术在环境保护中的应用酶技术在环境保护中的应用主要是利用酶的分解作用来净化污染物。
例如,一些细胞壁附着酶和氧化酶可以用于水体和空气的净化过程中,以降低对环境造成的污染。
二、酶学未来的发展趋势1、酶基因工程技术的应用随着生物技术的不断发展,酶基因工程技术的应用将愈加广泛。
这将有效地促进酶活性和稳定性的提高,从而提高酶学在工业领域的应用水平。
2、酶生物传感技术的发展随着现代生物技术的不断进步,酶生物传感技术正在迅速发展。
这种技术能够将酶与传感器结合起来,实现对生物的快速检测和诊断,以及对生物分子信号的高灵敏度和特异性检测。
3、酶与纳米技术的结合纳米技术是当今科学研究的热门领域之一。
作为一种新的能量和技术形式,纳米技术具有小尺寸、高能效、高精度等特点。
酶与纳米技术的结合,将会使酶学在工业、生物学和医学等领域的应用更为广泛和深入。
总之,随着生物技术的不断发展和酶技术的不断深入,酶学在生物工程中的应用将会越来越广泛和深入。
未来,随着酶基因工程、酶生物传感技术和酶与纳米技术的结合,酶学将会在医疗、食品、化学和环境领域中发挥更大的作用。
酶在环境保护方面的应用酶在环境保护方面的应用引言:近年来,环境保护成为全球关注的焦点之一。
随着工业化和城市化的快速发展,环境污染问题日益严重。
为了解决这一问题,科学家们开始转向生物技术领域寻求解决方案。
酶作为一种生物催化剂,具有高选择性、高效率和环境友好等优势,被广泛应用于环境保护领域。
本文将探讨酶在环境污染治理、废水处理和生物能源开发等方面的应用,以及其中面临的挑战和未来发展方向。
一、酶在环境污染治理中的应用1. 酶在有机污染物降解中的应用有机污染物(如石油、有机溶剂等)的排放对环境和健康造成严重影响。
而酶在有机污染物降解过程中发挥着关键作用。
例如,过氧化物酶和芳香族醇脱氢酶在石油降解中起到催化氧化作用,将有机污染物转化为无害的产物。
此外,酶还可用于土壤修复,通过提高土壤有机质分解速度和降解有毒物质,达到净化土壤的目的。
2. 酶在重金属污染修复中的应用重金属污染是另一个严重的环境问题。
传统的重金属污染修复方法如化学沉淀、电吸附等存在着高成本、效果不佳等缺点。
而酶催化降解重金属离子的方法更加有效且环保。
例如,酶可以将重金属离子转化为难溶性的盐或沉淀,从而实现重金属污染的修复。
此外,酶还可以与吸附剂结合使用,提高重金属离子的吸附效率和再生能力。
二、酶在废水处理中的应用1. 酶在废水中有机物降解中的应用废水中的有机物质是造成水体污染的主要来源。
传统的废水处理方法如生物处理、活性炭吸附等效果有限。
而酶在废水处理中具有高效降解有机物质的能力。
例如,脱氢酶和酯酶等可以加速有机物质的降解并转化为无害产物。
2. 酶在废水中重金属去除中的应用废水中的重金属离子对环境和人体健康都具有潜在的危害。
酶催化重金属离子的去除是一种高效、环保的方法。
例如,酶可以与重金属离子形成络合物,从而实现废水中重金属离子的去除。
此外,酶还可以与其他净化材料结合使用,提高去除效率并降低处理成本。
三、酶在生物能源开发中的应用随着全球能源需求的增加和化石燃料资源的减少,开发可再生能源成为一项紧迫任务。
酶工程学中的酶改性技术及应用酶工程学是一门旨在运用生物化学、分子生物学和工程学的原理和方法来改良和应用酶的学科。
酶改性技术是酶工程学的重要分支之一。
酶改性技术是指对天然酶的结构或功能进行改变,使其更适合于特定的反应环境和反应条件,从而提高反应效率和产率的过程。
酶改性技术在现代工业中的应用非常广泛,被广泛应用于生物制药、食品加工、环境保护、纤维素转化等领域。
本文将从酶改性技术的基本原理、方法和应用方面进行介绍。
一、酶改性技术的基本原理酶就像生物体内的“工人”,它们能够催化化学反应发生,并增强反应中间体与底物(或反应物)之间的相互作用力,从而加速反应进程。
然而,天然酶在使用过程中存在很多限制,如其对温度、 pH 值、金属离子等因素的敏感性和不稳定性。
因此,改变酶的结构或功能是提高其稳定性和活性的关键。
酶改性技术就是通过改变酶的结构和性质,提高酶的稳定性、耐久性和反应效率的方法。
二、酶改性技术的方法酶改性技术的主要方法包括物理改性、化学改性和分子生物学改性。
(一)物理改性物理改性是指通过物理化学手段改变酶的结构和性质,以提高其催化性能和稳定性。
包括酶固定化、超声波处理、辐射处理、干燥和冷冻干燥等方法。
酶固定化是将酶与载体材料结合,形成一种稳定的复合体,使酶能够在反应体系中重复使用,提高反应效率和稳定性。
超声波处理是一种能够改变酶分子结构和剪切酶分子链的方法,可以增强酶的催化效率和稳定性。
辐射处理虽然有一定危险性,但是可以改变酶分子的物理化学性质,提高酶的催化活性和稳定性。
干燥和冷冻干燥则是通过去除水分来延长酶的保存期和增强其稳定性。
(二)化学改性化学改性是指利用化学药剂对酶进行改变酶的结构或性质,来提高酶的催化性能和稳定性。
化学改性包括磷酸化、表面修饰、共价修饰、亲和力滤除和免疫染色等方法。
其中,磷酸化是利用磷酸基与酶分子中的氨基酸残基结合而改变酶分子结构的方法;表面修饰利用化学修饰剂改变酶表面的化学性质,从而实现提高酶的稳定性和催化活性的效果;共价修饰则是利用化学交联剂交联进行酶分子交联,从而提高酶的稳定性和催化活性。
现代酶工程技术的应用与发展现代酶工程技术是利用基因工程与生物工程的手段,对酶进行改造和优化,以提高其催化性能和稳定性。
这项技术已经在许多领域得到广泛应用,并且正在不断发展和创新。
以下是现代酶工程技术的一些应用与发展:1. 医药工业:酶工程技术可应用于制药过程中的催化反应,包括合成活性药物、生产抗生素和蛋白质药物,以及制备药物中间体等。
通过改造酶的催化活性和特异性,可以提高药物合成的效率和纯度,并减少副产物的生成。
2. 食品工业:酶工程技术可应用于食品加工中的酶解、发酵和调味等过程,例如制作酶解食品、面团添加剂和酿造食品等。
通过改造酶的催化性能和稳定性,可以提高食品加工的效率和质量,并增加产品的附加值。
3. 生物能源产业:酶工程技术可应用于生物质转化和生物燃料生产过程,例如提取可再生能源、生物乙醇和生物柴油等。
通过改造酶的底物特异性和反应温度范围,可以提高生物能源转化的效率和可持续性。
4. 环境保护:酶工程技术可应用于水处理、废弃物处理和土壤修复等环境工程领域。
通过改造酶的催化剂和降解特性,可以减少有机污染物和重金属离子等环境污染物的排放,从而实现环境保护和可持续发展。
目前,现代酶工程技术正朝着以下方向发展:1. 高效催化剂的设计和优化:通过分子模拟和结构改造等手段,探索更高效的酶催化反应机制,并优化酶的结构和活性位点,以提高催化效率和底物转化率。
2. 多功能酶的构建和应用:通过基因融合和蛋白工程等手段,将不同酶的催化活性和特异性整合到一起,构建具有多功能性的酶,并应用于复杂反应体系和细胞环境中。
3. 精准调控酶的表达和分泌:通过基因调控和信号传导等机制,实现对酶的高效表达和分泌,以提高酶的产量和纯度,并降低生产成本。
4. 纳米酶的设计和制备:通过纳米材料与酶的相互作用,实现酶的定向固定和增强其在特定反应中的稳定性和活性,以扩展酶工程技术在纳米材料制备和催化领域的应用。
总的来说,现代酶工程技术的应用和发展,有助于提高化学合成、生物转化和环境保护等行业中酶的效率和可持续性,为人类的生产和生活带来更多价值和福祉。
酶在环境保护方面的应用
摘要:随着科学技术的迅速发展,人类赖以生存的环境质量,是目前举世瞩目的重大问题。
对日益严峻的全球化环境污染问题,酶在环保方面的应用日益受到关注,呈现出良好的发展前景。
为环境保护污染治理提供了新的技术手段。
本文介绍了酶工程基本技术,包括酶制剂的生产、酶的分离纯化,酶的固定化技术、酶的改造和修饰等,综述了酶在环境保护方面,包括水净化、石油和工业废油的处理、白色污染的治理和环境监测等方面的研究和应用现状。
关键词:酶工程;环境保护;环境监测;废水处理;可生物降解材料开发;石油和工业废油
众所周知,酶作为一种高效生物催化剂,能在十分温和的条件下起高数率的催化作用, 并且具有高度的区域选择性和立体专一性。
因此, 它有着化学催化剂所无可比組的优越性, 已经广泛应用在食品工业、药物工业和洗議剂工业。
近年来环境污染越来越严重,酶的作用也从工业生产转移至环境治理中来。
人类的生产和生活与自然环境密切相关,随着科学技术的不断发展,地球环境由于受到各方面因素的影响,正在不断恶化,人类开发利用自然资源的能力和范围不断扩大,随之而来的环境污染问题也越来越严重,已经成为举世瞩目的重大问题。
环境污染已成为制约人类社会发展的重要因素,我国每年排放大量废水(416亿t)、废气和烟尘(2000万t)以及固体废弃物(i000亿t),污染达到相当严重的地步。
因此环境保护问题越来越受到人们的重视。
20世纪以来,在化学和生物学之间的交叉地带形成的生物技术占据了重要的地位,在工业、农业、医药、食品等方面得到了广泛的应用,并对解决当代资源、能源、环保等多方面问题起着举足轻重的作用。
而作为生物工程的重要组成部分,酶和酶工程受到生物化学工作者的重视,几种新兴的技术产业已成为优先发展的高科技领域。
酶在环境保护方面的应用
1.酶在环境监测方面的应用
环境监测是了解环境情况、掌握环境质量变化,进行环境保护的一个重要环节。
酶在环境监测方面的应用越来越广泛,已经在农药污染的监测、重金属污染的监测、微生物污染的监测等方面取得重要成果。
(1)利用胆碱酯酶检测有机磷农药污染
最近几十年来,为了防治农作物的病虫害,大量使用各种农药。
农药的大量使用,对农作物产量的提高起了一定的作用,然而由于农药,特别是有机磷农药的滥用,造成了严重的环境污染,破坏了生态环境。
为了监测农药的污染,人们研究了多种方法,其中采用胆碱酯酶监测有机磷农药的污染就是一种具有良好前景的检测方法。
胆碱酯酶可以催化胆碱酯水解生成胆碱和有机酸:有机磷农药是胆碱酯酶的一种抑制剂,可以通过检测胆碱酯酶的活性变化,来判定是否受到有机磷农药的污染。
20世纪50年代,就有人通过检测鱼脑中乙酰胆碱酯酶活力受抑制的程度,来检测水中存在的极低浓度的有机磷农药。
现在可以通过固定胆碱酯酶的受抑制情况,检测空气或水中微量的酶抑制剂(有机磷等),灵敏度可达0.1mg/L。
(2)利用乳酸脱氢酶的同工酶监测重金属污染
乳酸脱氢酶有5种同工酶。
它们具有不同的结构和特性。
通过检测家鱼血清乳酸同工酶
(SLDH)的活性变化,可以检测水中重金属污染的情况及其危害程度。
镉和铅的存在可以使SLDH4活性升高;汞污染使SLDH1活性升高;铜的存在则引起SLDH4的活性降低。
(3)通过β–葡聚糖苷酸酶监测大肠杆菌污染
将4–甲基香豆素基–β–葡聚糖苷酸掺入选择性培养基,样品中如果有大肠杆菌存在,大肠杆菌中的β–葡聚糖苷酸酶就会将其水解,生成甲基香豆素。
甲基香豆素在紫外光的照射下发出荧光。
由此可以检测水或者食品中是否有大肠杆菌污染。
(4)利用亚硝酸还原酶检测水中亚硝酸盐浓度
亚硝酸还原酶是催化亚硝酸还原生成一氧化氮的氧化还原酶。
利用固定化亚硝酸还原酶,制成电极,可以检测水中亚硝酸盐的浓度。
2.酶在废水处理方面的应用
废水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。
微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。
当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。
有的废水中含有淀粉、蛋白质、脂肪等各种有机物质,可以在有氧和无氧的条件下用微生物处理,也可以通过固定化淀粉酶、蛋白酶、脂肪酶等进行处理。
冶金工业产生的含酚废水,可以采用固定化酚氧化酶进行处理。
含有硝酸盐、亚硝酸盐的地下水或废水,可以采用固定化硝酸还原酶,亚硝酸还原酶、和一氧化氮还原酶进行处理。
总之酶在污水处理中具有以下的优点:a、能处理难以生物降解的化合物;b、高浓度或低浓度废水都适用;c、操作时的PH值、温度和盐度的范围均为很广;d、不会因为生物质的聚集而减慢处理速度,处理过程的过程控制简单易行等。
运用固定化酶和固定化细胞可以高效处理废水,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。
3.酶在可生物降解材料开发方面的应用
随着城市化和工业化的不断发展,高分子材料已经成为与钢铁、水泥和木材等并重的四大支柱材料之一,虽然许多新材料的生产改善了人类的物质生活,但是与此同时也带来了大量的污染废弃物,加速了环境的恶化。
因此可生物降解材料越来越引起人们的关注,并且对人类的生存、健康与发展将起重要作用。
近些年来,可生物降解高分子材料的研发已成为高分子领域的热点之一,它具有质量轻、化学稳定性好、价格低廉以及可生物降解等优点。
因此应用领域也比较广泛,例如建材业、农业和医学领域等等。
真正的生物降解高分子是在有水存在的环境下,能被酶或微生物促进水解降解、高分子主链断裂、分子量逐渐变小以至最终成为单体或代谢成CO2和H2O。
当前生物材料研究中的一个重要趋势是发展可降解聚合物新的应用。
其最广泛的应用是作为药物控制体系的载体材料和体内短期植入物。
当用生物降解高分子作为载体的长效药物植入体内,在药物释放完之后也不需要再经手术将其取出,这可以减少用药者的痛苦和麻烦。
因此生物降解高分子是抗癌、青光眼、心脏病、高血压、止痛、避孕等长期服用药物的理想载体。
目前传统开发可生物降解高分子材料的方法有天然高分子改造法、化学合成法、微生物发酵法等;传统的方法虽然各有特点,但是他们的缺点也是显而易见的。
酶法合成可生物降解高分子兼有化学法和微生物法的优点,它以酶代替化学催化剂,高效率、高选择地催化某一化学反应,催化条件温和,克服了微生物法代谢产物复杂、产物难分离的缺点。
用酶法合成可生物降解高分子材料,实际上得益于非水酶学的发展。
酶在有机介质中表
现出与其在水溶液中不同的性质,并拥有催化一些特殊反应的能力,从而显现出许多水相中所没有的特点。
4.酶在石油和工业废油处理方面的应用
每年由于各种原因排人海中的石油达200万t,如不及时处理,不仅会造成鱼类的大量死亡,而且石油中的有害物质也会通过食物链进人人体。
人们用含有酶及其它成分的复合制剂处理海中的石油,可以将石油降解成适合微生物的营养成分,为浮在油表面的细菌提供优良的养料,使得分解石油的细菌迅速繁殖,以达到快速降解石油的目的。
脂酶生物技术应用于被污染环境的修复以及废物处理是一个新兴的领域。
石油开采和炼制过程中产生的油泄漏、脂加工过程中产生的含脂废物以及饮食业产生的废物,都可以用不同来源的脂酶进行有效的处理。
酶法生产生物柴油日益受到人们的青睐,可利用餐饮业废油脂和工业废油脂为原料,变废为宝的同时降低了生物柴油的生产成本。
生物柴油,即长链脂肪酸单酯,是一种以动植物油脂为原料生产的可再生的绿色能源。
它不但可以作为化石柴油的替代燃料,而且具有化石柴油无可比拟的优良特性。
随着石油资源的日益枯竭以及人们环保意识的不断增强。
近年来生物柴油的生产已引起世界各国的广泛关注,并成为新能源开发的一个热点。
目前生物柴油的工业生产均采用化学法,这种方法存在醇必须大大过量、能耗高、产物难于回收和废碱液污染环境等缺点,并且对原料要求高,导致生产成本过高(原料成本占总成本的75%左右)。
能否利用廉价的原料生产生物柴油是生物柴油能否得到广泛应用的关键。
酶法生产生物柴油具有反应条件温和、醇用量小、产物易分离及无污染物排放等优点,尤其是对原料要求低,可利用餐饮业废油脂和工业废油脂等原料,故可望降低生物柴油的生产成本。
因此,酶法生产生物柴油日益受到人们的青睐。