金属断口机理及其分析
- 格式:doc
- 大小:3.43 MB
- 文档页数:35
金属材料断口分析的步骤与方法金属材料断口分析是一项综合性很强的技术分析工作,通常需要采用多种仪器联合测试检验的结果,从宏观到微观,从定性到定量进行研究分析。
因此,需要严格的科学态度和有步骤的操作。
断口分析的步骤包括:选择、鉴定、保存和清洗试样;宏观检验和分析断裂表面、二次裂纹以及其他表面现象;微观检验和分析;金相剖面的检验和分析以及化学分析;断口定量分析,如断裂力学方法;模拟试验等。
在进行断裂构件的处理和断口的保存时,需要采取措施把断口保存好并尽快制定分析计划。
对于不同情况下的断口,应采用不同的方法进行处理。
例如,对于大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗;对于带有油污的断口,应先用有机溶剂溶去油污,最后用无水乙醇清洗吹干;在腐蚀环境下发生断裂的断口,则需要进行产物分析。
通常可以采用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后再去掉产物观察断口形貌。
总之,断口分析是一项重要的金属材料分析技术,需要严格的科学态度和有步骤的操作。
去除腐蚀产物的方法之一是干剥法。
使用醋酸纤维纸(AC纸)进行清理是最有效的方法之一,特别是在断口表面已经受到腐蚀的情况下。
将一条厚度约为1mm的AC纸放入丙酮中泡软,然后放在断口表面上。
在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上。
干燥后,使用小镊子将干复型从断口上揭下来。
如果断口非常污染,可以重复操作,直到获得一个洁净无污染的复型为止。
这种方法的一个优点是,它可以将从断口上除去的碎屑保存下来,以供以后鉴定使用。
此外,还可以使用复型法来长期保存断口。
断口表面不能使用酸溶液清洗,因为这会影响断口分析的准确性。
对于在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。
如果一般有机溶液、超声波洗涤和复型都不能洁净断口表面,可以采用化学清洗。
金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。
穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。
沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。
下面分别加以讨论。
1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。
宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。
众所周知,这种断口称为杯锥状断口。
断口表面粗糙不平,无金属光泽,故又称为纤维状断口。
微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。
每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。
第二相质点的尺寸远小于韧窝的尺寸。
韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。
由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。
在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。
图3-41是微孔穿过第二相质点的示意图。
若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。
2)在韧窝的底部没有第二相质点存在的情况。
韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。
这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。
因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。
当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。
韧窝的形状与应力状态有较大关系。
精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。
正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形〔变形量大于解理断裂、小于延性断裂〕是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流把戏:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体构造。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口外表,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料外表、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理〔及准解理〕、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕切断:断面取向与最大切应力相一致,与最大应力成45º交角〔平面应力条件下的撕裂〕根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型〔正向滑开型〕、侧向滑开型〔撒开型〕裂纹尺寸与断裂强度的关系Kic:材料的断裂韧性,反映材料抗脆性断裂的物理常量〔不同于应力强度因子,与K准则相似〕:断裂应力〔剩余强度〕 a :裂纹深度〔长度〕Y:形状系数〔与试样几何形状、载荷条件、裂纹位置有关〕脆性材料K准则:KI是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量;KIC是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法〔脆断判别主裂纹〕,分差法〔脆断判别主裂纹〕,变形法〔韧断判别主裂纹〕,氧化法〔环境断裂判别主裂纹〕,贝纹线法〔适用于疲劳断裂判别主裂纹〕。
解理裂理断口的异同提要:本文将介绍材料科学领域中常用的解理裂纹断口观察方法,并对不同类型的断口进行对比和分析,以便更好地了解材料的性能和特性。
引言:解理裂纹断口观察是材料科学中常用的分析方法,通过观察和比较不同材料的断口形貌,可以了解材料的结晶性质、应力状态、破坏方式等重要信息。
本文将对金属材料和非金属材料的断口进行对比和分析,探讨它们的异同点。
一、金属材料的断口分析金属材料的解理裂纹断口通常呈现出以下特点:1.平整面:金属材料的解理裂纹断口多呈现出平整的特点。
这是因为金属具有均匀的晶格结构,断裂时发生在晶界处或晶粒内的断口层上,形成平整的断裂面。
2.特征条纹:在金属的断口上,常常可以观察到明显的特征条纹。
这些条纹是由金属内部的晶粒边界和分布不均匀的夹杂物所形成的。
通过这些特征条纹的分析,可以推测出金属的晶粒生长和凝固过程。
3.断口韧突:金属的断口通常会形成一些韧突状的特征,这是由金属在受力过程中形成的。
韧突的形状和大小可以反映金属的塑性变形能力,对材料的韧性和延展性性能有重要的指示作用。
二、非金属材料的断口分析非金属材料的断口与金属材料有一些明显的不同之处:1.不规则断裂面:与金属材料不同,非金属材料通常呈现出不规则的断裂面。
这是因为非金属材料的晶体结构不均匀,断裂面上会形成不同深浅和方向不同的缺陷和裂纹。
2.显著的分层:非金属材料的断裂面常常呈现出分层的特点。
这是由于非金属材料的层状结构或纤维状结构,在断裂时易于沿着层状结构或纤维的方向发生断裂,形成分层的断口。
3.静电击穿:一些非金属材料,在断裂时会发生静电击穿的现象。
这是由于非金属材料本身具有较高的电阻性能,在断裂时会积累电荷,形成静电击穿的现象。
三、解理裂纹断口的应用解理裂纹断口的观察和分析在材料科学中有广泛的应用:1.材料评价:通过观察不同材料的断口特征,可以评价材料的韧性、脆性、疲劳性等机械性能。
这对材料的选择和设计具有重要意义。
2.破坏分析:解理裂纹断口的观察可以帮助研究人员分析材料的破坏机理和原因。
铝合金解理断口铝合金是一种常见的金属材料,具有较高的强度和良好的耐腐蚀性能。
在工程应用中,铝合金常被用作结构材料,用于制造飞机、汽车、船舶等各种工业产品。
在铝合金的加工和使用过程中,经常会出现断裂现象,即铝合金的断口。
本文将以铝合金解理断口为题,探讨铝合金断口的特点、成因和分析方法。
一、铝合金断口的特点铝合金的断口通常呈现出以下几种特点:1. 断口形状多样:铝合金的断口形状可以是平整的、粗糙的、呈现韧突的或者呈现韧性断裂的样貌。
2. 断口颜色明显:铝合金的断口颜色通常呈现出银白色或者灰黑色,有时也会有一些氧化物的颜色。
3. 断口表面有特征:铝合金的断口表面上常常可以观察到沿晶断裂、穿晶断裂或者韧突的特征。
4. 断口有裂纹:铝合金的断口上通常可以观察到裂纹的存在,有时甚至可以发现一些疲劳裂纹或者应力腐蚀裂纹。
二、铝合金断裂的成因铝合金的断裂通常有以下几个成因:1. 力学性质:铝合金的断裂与其力学性质有关,包括材料的强度、韧性、硬度等特性。
2. 加工工艺:铝合金在加工过程中可能会出现过度加工、变形不均匀、应力集中等问题,导致断裂。
3. 缺陷存在:铝合金中可能存在一些微观或者宏观的缺陷,如夹杂物、气孔、夹层等,这些缺陷会成为断裂的起始点。
4. 应力作用:外界应力的作用也是导致铝合金断裂的原因之一,如拉伸、压缩、弯曲等应力。
三、铝合金断口的分析方法对于铝合金的断口,可以通过以下几种方法进行分析:1. 断口形貌观察:通过显微镜观察铝合金的断口形貌,分析断口的特征,判断断裂类型和断裂机理。
2. 化学分析:通过对铝合金断口的化学成分进行分析,了解铝合金中的杂质含量以及可能存在的元素偏析情况。
3. 组织分析:通过金相显微镜观察铝合金的组织结构,分析晶粒大小、相分布、孪生等组织特征。
4. 断口硬度测试:通过硬度测试仪对铝合金的断口硬度进行测试,判断断裂的韧性和强度。
在进行铝合金断口分析时,需要综合运用以上多种方法,全面了解断口的特点和成因,从而准确判断断裂的原因,为改善铝合金的性能和提高产品质量提供依据。
材料的力学性能-断裂与断口分析材料的断裂断裂是工程材料的主要失效形式之一。
工程结构或机件的断裂会造成重大的经济损失,甚至人员伤亡。
如何提高材料的断裂抗力,防止断裂事故发生,一直是人们普遍关注的课题。
任何断裂过程都是由裂纹形成和扩展两个过程组成的,而裂纹形成则是塑性变形的结果。
对断裂的研究,主要关注的是断裂过程的机理及其影响因素,其目的在于根据对断裂过程的认识制定合理的措施,实现有效的断裂控制。
✓材料在塑性变形过程中,会产生微孔损伤。
✓产生的微孔会发展,即损伤形成累积,导致材料中微裂纹的形成与加大,即连续性的不断丧失。
✓损伤达到临界状态时,裂纹失稳扩展,实现最终的断裂。
按断裂前有无宏观塑性变形,工程上将断裂分为韧性断裂和脆性断裂两大类。
断裂前表现有宏观塑性变形者称为韧性断裂。
断裂前发生的宏观塑性变形,必然导致结构或零件的形状、尺寸及相对位置改变,工作出现异常,即表现有断裂的预兆,可能被及时发现,一般不会造成严重的后果。
脆性断裂断裂前,没有宏观塑性变形的断裂方式。
脆性断裂特别受到人们关注的原因:脆性断裂往往是突然的,因此很容易造成严重后果。
脆性断裂断裂前不发生宏观塑性变形的脆性断裂,意味着断裂应力低于材料屈服强度。
对脆性断裂的广义理解,包括低应力脆断、环境脆断和疲劳断裂等。
脆性断裂一般所谓脆性断裂仅指低应力脆断,即在弹性应力范围内一次加载引起的脆断。
主要包括:与材料冶金质量有关的低温脆性、回火脆性和蓝脆等;与结构特点有关的如缺口敏感性;与加载速率有关的动载脆性等。
材料的断裂比较合理的分类方法是按照断裂机理对断裂进行分类。
微孔聚集型断裂、解理断裂、准解理断裂和沿晶断裂。
有助于→揭示断裂过程的本质→理解断裂过程的影响因素→寻找提高断裂抗力的方法。
材料的断裂将环境介质作用下的断裂和循环载荷作用下的疲劳断裂按其断裂过程特点单独讨论。
金属材料的断裂-静拉伸断口材料在静拉伸时的断口可呈现3种情况:(a)(b):平断口;(c)(d):杯锥状断口;(e)尖刃断口平断口:材料塑性很低、或者只有少量的均匀变形,断口齐平,垂直于最大拉应力方向。
经典金属疲劳裂纹扩展至断裂机理讲解(专业级)经典金属疲劳裂纹扩展至断裂机理讲解(专业级)通常,疲劳裂纹扩展可以分为三个阶段:第I阶段(裂纹萌生,shot cracks),第II阶段(裂纹扩展,long cracks),第III阶段(瞬时断裂,final fracture)Fig. 1— Stages I and II of fatigue crack propagation.第I阶段:一旦裂纹萌生以后,就会沿着最大剪切应力平面(约45o)扩展,如图1所示。
这一阶段被认为是第I阶段或者短裂纹萌生和扩展阶段。
裂纹一直扩展直到遇到障碍物,如晶界、夹杂物或珠光体区。
它无法容纳初始裂纹的扩展方向。
因此,晶粒细化是可以提升材料疲劳强度的利用了引入大量微观障碍物的原理。
晶界,在裂纹扩展的第I阶段需要克服晶粒的阻碍并越过晶界。
表面机械处理,例如喷丸和表面滚压也会引入一些微观的障碍物,因为它们使晶界被压扁了。
Fig. 2 — Fatigue striations in (a) interstitial free steel and (b)aluminum alloy AA2024-T42. Figure (c) shows the fatigue fracture surface of a cast aluminum alloy, where a fatigue crack was nucleated from a casting defect, presenting solidification dendrites on the surface; fatigue striations are indicated by the arrow, on the top right side.第II阶段:由于裂纹扩展,实际载荷的上升,应力强度因子K不断增加,在裂纹尖端附近的不同平面上开始发生滑移,于是就进入了第II阶段。
解理断口断裂机理断口断裂是指材料在外力作用下发生断裂现象,是材料工程领域中的重要研究内容之一。
了解断口断裂机理对于材料的设计、改性和应用具有重要意义。
本文将就断口断裂的机理进行探讨。
断口断裂机理主要涉及材料的微观结构、晶体结构和断裂过程。
材料的微观结构决定了断口的形貌和断裂过程中的能量转移方式。
晶体结构对断口的形成和传播也有重要影响。
材料的断裂过程可以分为以下几个阶段:应力集中阶段、裂纹产生阶段、裂纹扩展阶段和断裂传播阶段。
在应力集中阶段,材料受到外力作用,应力集中在缺陷或应力集中区域,导致局部应力超过材料的破坏强度。
裂纹产生阶段是指在应力集中区域出现微裂纹,破坏材料的完整性。
裂纹扩展阶段是指微裂纹在材料中扩展,导致断裂扩展。
断裂传播阶段是指裂纹在材料中传播,直至材料完全断裂。
断裂过程中的能量转移方式有两种:韧性断裂和脆性断裂。
韧性断裂是指材料在断裂前能够吸收大量的能量,具有较高的断裂韧性。
韧性断裂主要发生在金属材料中,因为金属具有较高的延展性和塑性。
脆性断裂是指材料在断裂前不能吸收太多的能量,具有较低的断裂韧性。
脆性断裂主要发生在陶瓷、玻璃等材料中,因为这些材料的原子结构较为紧密,难以发生塑性变形。
断口的形貌可以反映出断裂过程中的能量转移方式和断裂的机理。
常见的断口形貌有韧性断口、脆性断口和疲劳断口。
韧性断口的形貌呈现出拉伸韧性,并且断口表面光滑。
脆性断口的形貌呈现出脆性特征,并且断口表面呈现出河谷状。
疲劳断口的形貌呈现出疲劳裂纹扩展的特征,并且断口表面光滑。
断裂过程中的裂纹扩展是决定材料断裂韧性的关键因素之一。
裂纹扩展的方式可以分为两种:微观裂纹扩展和宏观裂纹扩展。
微观裂纹扩展是指裂纹从晶体的晶界或晶内扩展。
宏观裂纹扩展是指裂纹从材料的表面或缺陷处扩展。
裂纹扩展的过程中,裂纹尖端的应力场集中,导致材料的应力超过破坏强度,从而使裂纹继续扩展。
断口断裂机理的研究对于材料工程具有重要意义。
通过了解断裂机理,可以改善材料的断裂韧性,提高材料的强度和耐久性。
金属压缩断裂的原因有多种,其中最主要的是材料内在缺陷。
晶体的构成以及制造、加工过程中的热、化学、机械等因素都可能导致材料中存在缺陷,这些缺陷可能是微观的气泡或夹杂物,也可能是宏观的裂隙、孔洞、腐蚀等。
这些缺陷会弱化金属的结构,使其在承受外力时容易发生断裂。
此外,金属的断裂还可能与外部因素有关,如过载、温度过高、腐蚀介质等。
为了防止金属压缩断裂,我们需要采取一系列措施。
首先,应确保金属材料的质量和制造工艺符合标准要求,以消除材料内在缺陷。
其次,应合理设计金属结构,避免出现过载和应力集中的情况。
此外,还应注意控制外部环境因素,如温度、湿度、腐蚀介质等。
在使用过程中,应定期进行维护和检查,及时发现并处理问题。
总之,金属压缩断裂的原因是多方面的,需要综合考虑材料、工艺、外部环境等因素,并采取相应的措施进行预防和控制。
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:1.特点:材料断裂前发生明显的塑性变形,也可以说塑性变形是韧断的前奏,而韧断是大量塑性变形的结果。
2. 过程:显微空洞形成,扩展,连接,断裂。
3.类型:韧窝-微孔聚集型断裂、滑移分离断裂。
韧窝断口的宏观和微观形貌特征: 1宏观形貌特征(1)纤维区:a.表面颜色灰暗,无金属光泽b.粗糙不平c.无数纤维状小峰组成,小峰的小斜面和拉伸轴线大约成45度角 (2)放射区(3)剪切唇:和拉伸轴线大约成45度角注意:塑性较高材料的冲击断口一般具有两个纤维区2微观形貌特征:大小不等的圆形或椭圆形的凹坑(即韧窝)。
韧窝内一般可看到夹杂物或者第二相粒子。
注意:并非每个韧窝都包含一个夹杂物或粒子 韧窝的形状等轴韧窝(拉伸正应力,圆形微坑,均匀分布于断口表面)剪切韧窝(剪切应力,抛物线形状,通常出现的位置:拉伸、冲击断口的剪切唇部位) 撕裂韧窝(撕裂应力,抛物线形状) 卵形韧窝(卵形)剪切韧窝与撕裂韧窝微观形状无区别,怎么区分?对材料断口的两个表面进行作对比研究:韧窝凸向一致为撕裂韧窝;反之为剪切韧窝 韧窝裂纹的萌生与扩展(以拉伸正应力为例) 1.韧窝裂纹的萌生应力超过材料的屈服强度→发生塑性变形→变形部位产生三向应力状态→在沉淀相、夹杂IC c K a K =⋅=I πσ物与金属界面处分离产生微孔,或夹杂物本身破碎形成裂纹,或滑移位错塞积产生孔洞 2.韧窝裂纹的扩展(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
第四章解理断口宏观和微观形貌特征:1.宏观形貌特征:放射状条纹,人字纹,小刻面(发亮的小晶面)2.微观形貌特征:河流花样、舌状花样、扇形花样、鱼骨状花样、瓦纳线、解理台阶 解理台阶的形成:(1)解理裂纹与螺位错交截形成台阶 (2)二次解理或撕裂相互连接形成台阶 解理台阶的性质:1. 台阶扩展过程中会发生合并或消失(台阶高度减小)2. 相同方向的台阶合并后高度增加3. 相反方向的台阶合并后高度减少或消失4. 台阶高度与柏氏矢量大小、位错密度之间有一定关系 河流花样:1.形成机理:河流花样实际上是解理台阶的一种标志。
当裂纹扩展时,同号台阶汇合成较大的台阶,而较大的台阶又汇合成更大的台阶,其结果就形成河流花样。
2.起源:(1)晶界、亚晶界、孪晶界(2)夹杂物或析出相(3)晶粒内部(解理面与螺形位错交截的地方)。
3.影响因素:(1)小角度晶界:倾斜晶界(影响不大,延伸至相邻晶界)扭转晶界(在亚晶界处产生新的裂纹,河流激增)(2)大角度晶界(河流不能通过,在晶界处产生新的裂纹,向外扩展,形成扇形。
) 解理断裂的萌生和扩展 1.裂纹萌生机制:(1)位错塞积极制位错运动→运动受阻(晶界、孪晶界、第二相夹杂物)→位错堆积→(理论断裂强度)→产生微裂纹(2)位错反应机制:位错运动→位错相遇→产生新位错(不动位错)→阻碍随后的位错运动→位错堆积→产生微裂纹(3)滑移解理机制位错运动→排列成小角度晶界→部分晶界被阻碍→产生拉应力→微裂纹 2.裂纹的扩展:根据格里菲斯表达式来解释CE c πγσ2=解理断裂的影响因素1.试验温度T↓,裂纹尖端塑性变形区↓→裂纹扩展阻力↓→解理断裂发生的容易程度上升;2.应变速率↑→解理断裂发生的容易程度↑;3.hcp、bcc类型金属、合金易发生解理断裂,fcc类型金属、合金不易发生解理断裂(滑移系);4.晶粒尺寸↑发生解理断裂的可能性↑;5.显微组织不同,解理断裂路径不同。
断口形貌不同;6.第二相粒子越粗大越容易发生解理断裂。
准解理断裂宏观特征:宏观断口较平整,少或无宏观塑性变形,结晶状小刻面,亮但不发光,较明显的放射状花样第五章疲劳断裂:1.定义:由于交变应力或循环载荷作用下的脆断。
2.分类:(1)按负载和环境条件分类:高周疲劳,低周疲劳,接触疲劳,热疲劳,腐蚀疲劳。
(2)依载荷类型特点分类:弯曲疲劳,轴向疲劳,扭转疲劳。
疲劳断裂的一般特征:(1)断裂应力比静载下的抗拉强度,屈服强度低,断裂前无明显塑性变形,是低应力脆断破坏现象。
(2)疲劳断裂是损伤积累过程的结果,是与时间相关的破坏方式。
它包括裂纹萌生、扩展和失稳断裂三个阶段。
(3)工程构件对疲劳抗力比对静载荷要敏感得多。
(4)微观上一般是穿晶断裂,也属一种脆性穿晶。
疲劳裂纹的萌生和扩展:1.萌生:表面(次表面,内部)2.扩展:第一阶段裂纹起源于材料表面,向内部扩展,扩展速度慢。
第二阶段断面与拉伸轴垂直,凹凸不平。
扩展途径为穿晶,扩展速度快。
(显微特征:疲劳辉纹)疲劳断口形貌特征:1疲劳源:光滑、细洁扇形小区域。
位于材料表面、次表面或者内部。
2裂纹扩展区形状:一条条同心的圆弧颜色:因为氧化或者腐蚀,成黑色或褐色变化规律:年轮间距小,表示裂纹扩展慢,材料韧性好3瞬断区形貌:具有断口三要素(放射区、剪切唇)的特征对于塑性材料,断口为纤维状,暗灰色对于脆性材料,断口为结晶状瞬断区面积越大,越靠近中心部位,工件过载程度越大;反之越小。
疲劳辉纹与疲劳条纹(贝纹线)的区别:贝纹线:宏观特征因交变应力幅度变化或载荷停歇造成的。
辉纹:微观特征,是一次交变应力循环裂纹尖端钝化形成的。
辉纹四要素:1.辉纹相互平行且垂直于裂纹局部扩展方向。
2.辉纹间距随应力强度因子振幅而变化。
3.辉纹个数等于负载循环次数4.通常断面上的一组辉纹是连续的,相邻断面上的辉纹不连续。
疲劳辉纹:1.形成机理:裂纹扩展的连续模型和不连续模型。
2.类型:韧性辉纹,脆性辉纹3.产生的必要条件:(1)张开型平面应变,即正断时才出现(2)延性材料比较容易出现(3)真空中不出现辉纹影响疲劳断口形貌的因素:1载荷类型与应力大小2材质3晶界4夹杂物或第二相5环境介质。
腐蚀疲劳:1定义:材料在循环应力和腐蚀介质共同作用下产生的断裂。
2裂源:材料的腐蚀坑或表面缺陷部位。
3特征:(1)多起源于腐蚀坑处或表面缺陷部位,为多源疲劳(2)断口上具有较模糊的疲劳辉纹(3)断口上具有沿晶断裂形貌,也可能有穿晶断口形貌(4)断口中二次裂纹较多第七章环境应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断引起表面膜局部断裂的原因:环境因素,冶金因素,力学因素,机械破损。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
(蠕变断裂为沿晶断裂)第六章环境断裂:金属材料在腐蚀介质和温度环境等条件影响下产生的沿晶或穿晶低应力脆断现象应力腐蚀断裂断裂过程:裂纹的形成、裂纹的扩展氧化膜破坏-腐蚀坑形成-应力腐蚀裂纹萌生和亚临界扩展-机械失稳破坏引起表面氧化膜局部破裂的因素:环境因素、冶金因素、力学因素、机械破损SCC断口形貌特征:1.宏观:(1)呈现脆性特征(2)多源,裂纹形成区成暗色或灰黑色(3)最终断裂区具有金属光泽,常有放射性花样或人字纹。
2.微观:沿晶断口,晶面有撕裂脊等SCC影响因素和预防措施:1.影响因素:应力、环境介质、成分、热处理工艺2.预防措施:降低应力、表面处理、改变腐蚀介质、选材、电化学保护氢脆的分类及其宏微观形貌特征:分为内部氢脆和环境氢脆内部氢脆形貌特征:1宏观:白点(发裂白点、鱼眼型白点)2微观:穿晶解理断口或准解理断口环境氢脆形貌特征:1宏观:与脆性断口相似2微观:沿晶断口和准解理断口SCC与氢脆的关系1联系:通常共同存在,形貌也相似2区别:(1)电化学反应:SCC为阳极溶解控制过程,氢脆为阴极反应控制过程(2)裂源:SCC从表面开始,裂纹分叉;氢脆从次表面或内部开始,裂纹基本不分叉影响氢脆外部因素:温度、氢浓度、置放时间蠕变可由蠕变曲线描述,一般分为三个阶段:1初始蠕变阶段(蠕变速率随时间不断降低)2稳态蠕变阶段(蠕变速率保持不变)3加速蠕变阶段(蠕变速率随时间加快直至断裂)材料蠕变变形机理主要有位错滑移、原子扩散、晶界滑动按照断裂时塑性变形量大小的顺序,可将蠕变断裂分为如下三个类型:沿晶蠕变断裂(高温、低应力)、穿晶蠕变断裂(高应力)、延缩性断裂(高温)沿晶断裂:类型:韧性沿晶断裂、脆性沿晶断裂产生的原因:1脆性沉淀相沿晶界析出2晶界弱化3环境4热应力5晶体粗大断口宏观形貌特征:结晶状、冰糖快状、灰色石状第七章断裂形式:1按裂纹产生部位:表面开裂、内部开裂2按塑性加工方式:轧制开裂、挤压开裂、锻造开裂断裂原因:1塑性变形不均匀2铸锭质量差3加工工艺不合理失效分析的一般程序:外部观察—试验检查—综合分析1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。