红外光谱分析(1)
- 格式:ppt
- 大小:2.89 MB
- 文档页数:91
相关峰是指一组相互依存,相互佐证的吸收峰。
一个基团有数种振动形式,每种红外活性的振动都通常相应给出一个吸收峰。
如芳环化合物相关峰有五种振动形式:、泛频区、、和,可作为佐证苯环存在的依据。
第二节有机药物的典型红外吸收光谱一、脂肪烃类化合物(一)烷烃类化合物烷烃类化合物用于结构鉴定的吸收峰主要有碳—氢伸缩振动()和面内弯曲振动()吸收峰。
1.:在3000 cm-1~ 2845 cm-1范围内出现强的多重峰。
—CH3:2 970 cm-1~2 940 cm-1(s),2 875 cm-1~2 865 cm-1 (m)。
甲氧基中的甲基,由于氧原子的影响,一般在2 830 cm-1附近出现尖锐而中等强度的吸收峰。
—CH2—:2 932 cm-1~2 920 cm-1 (s),2 855 cm-1~2 850 cm-1 (s),环烷烃、与卤素等相连接的—CH2 向高频区移动。
—CH—:在2 890 cm-1附近,但通常被—CH3和—CH2—的伸缩振动所掩盖。
2.:面内弯曲振动出现在1 490 cm-1~1 350 cm-1。
—CH3:~ 1 450 cm-1 (m),~ 1 380 cm-1 (s),峰的出现是化合物中存在甲基的证明。
当化合物中存在有—CH(CH3)2或—C(CH3)3时,由于振动偶合,1380 cm-1峰发生分裂,出现双峰。
—CH2—:~ 1 465 cm-1 (m)。
3.:在有—(CH2)n—直链结构的化合物中,—CH2—的面内摇摆()在810 cm-1~720 cm-1内变化,n越大,越小,当n>4时,—CH2—的在720 cm-1。
(二)烯烃类化合物烯烃类化合物用于结构鉴定的吸收峰主要有碳—氢伸缩振动()、碳—碳伸缩振动()和碳—氢面外弯曲振动()吸收峰。
1.:出现在3 100 cm-1~3 010 cm-1范围内,强度都很弱。
2.:非共轭发生在1 680 cm-1~1 620 cm-1,强度较弱;共轭向低频方向移动,发生在1 600 cm-1附近,强度增大。
一、实验目的1. 了解红外光谱的基本原理和实验方法。
2. 掌握红外光谱仪的操作技能。
3. 通过红外光谱分析,鉴定样品的化学成分。
二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。
当分子吸收红外光时,分子中的化学键发生振动和转动,从而产生特征的红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于化学、化工、生物、医药等领域。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备仪、样品瓶、玻璃棒、酒精、丙酮等。
2. 试剂:待测样品、KBr、压片机、滤纸等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,用玻璃棒搅拌均匀,然后将粉末与KBr按一定比例混合,压制成薄片。
将薄片放置在样品室中。
2. 红外光谱扫描:打开红外光谱仪,预热仪器至规定温度。
将样品薄片放入样品室,进行红外光谱扫描。
扫描范围为4000~400cm-1,分辨率为4cm-1。
3. 数据处理:将扫描得到的数据输入计算机,进行数据处理和峰位定位。
4. 结果分析:根据红外光谱的特征峰,对照标准光谱图,对样品进行定性分析。
五、实验结果与分析1. 样品A:在红外光谱图中,出现以下特征峰:(1)3340cm-1:O-H伸缩振动峰,表明样品中含有羟基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1450cm-1:C-H弯曲振动峰,表明样品中含有烷烃基。
综合以上特征峰,样品A为醇类化合物。
2. 样品B:在红外光谱图中,出现以下特征峰:(1)3420cm-1:N-H伸缩振动峰,表明样品中含有氨基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1050cm-1:C-O伸缩振动峰,表明样品中含有醚键。
综合以上特征峰,样品B为酰胺类化合物。
六、实验讨论1. 实验过程中,样品制备是关键步骤,需确保样品均匀、无气泡。
红外光谱分析实验报告摘要:本实验旨在通过对苯甲酸与红外光谱仪进行红外光谱分析,探究它在红外光谱图上的不同吸收峰和峰位,从而得到苯甲酸的结构信息。
实验结果表明,苯甲酸在红外光谱图上有多个不同的吸收峰,每个峰对应不同的化学键振动,从而可以推测出苯甲酸的结构。
1.引言红外光谱分析是一种常用的分析方法,通过测量分子在红外光谱范围内的吸收光谱,可以得到分子的结构信息。
红外光谱通常分为三个区域:波长大于4000 cm-1的区域为近红外区,波长在4000-400 cm-1之间的区域为中红外区,波长小于400 cm-1的区域为远红外区。
每个区域内的吸收峰和峰位都对应不同的化学键振动,通过分析吸收峰的位置和强度,可以推测出分子的结构。
2.实验方法2.1实验仪器本实验使用的是红外光谱仪,包括光源、样品室、分光仪和检测器等部分。
2.2实验样品本实验使用的样品为苯甲酸,是一种有机化合物,化学式为C7H6O22.3实验步骤(1)将样品固态苯甲酸粉末放入红外吸收基片中。
(2)将基片放入红外吸收仪的样品室中。
(3)调节仪器到合适的波长范围,并选择合适的分辨率。
(4)开始记录红外光谱。
3.实验结果与分析通过实验记录的红外光谱图,我们可以看到苯甲酸在红外光谱上有多个吸收峰。
3.1振动峰的解释根据已知的红外光谱对照表,我们可以将各个峰位与不同化学键的振动相对应。
(1)在3100-2850 cm-1的范围内,我们观察到了一个强吸收峰,对应C-H的伸缩振动。
(2)在1700-1580 cm-1的范围内,我们观察到了一个强吸收峰,对应羧基的伸缩振动。
(4)在740-690 cm-1的范围内,我们观察到了一个强吸收峰,对应苯环上的C-H的弯曲振动。
3.2结构推测根据各个化学键的振动峰对应,在苯甲酸的红外光谱图上,我们可以推测出该化合物的结构。
苯甲酸的结构中含有C-H键、C-C键和C=O键。
根据实验结果,我们可以观察到C-H和C=O的伸缩振动峰位,以及苯环上的C-H的变形和弯曲振动峰位。
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱分析报告引言红外光谱分析是一种常用的无损检测技术,通过对物质吸收、发射、散射红外辐射的特性进行测量,可以得到样品的红外光谱图谱,从而了解样品的组成、结构、功能等信息。
本报告将以步骤思路,介绍红外光谱分析的基本原理、仪器设备、样品制备和数据处理方法。
步骤 1:基本原理红外光谱分析是基于物质分子的振动和转动特性进行的。
物质分子在吸收红外辐射时,分子中的化学键会发生振动、伸缩或弯曲,产生不同频率的红外吸收峰。
根据这些吸收峰的位置和强度,可以推断出物质的结构和成分。
步骤 2:仪器设备进行红外光谱分析需要使用红外光谱仪。
红外光谱仪由光源、样品室、光谱仪和检测器等组成。
光源发出红外光,经过样品室后被光谱仪分解成不同波长的光,并通过检测器进行信号转换和记录。
步骤 3:样品制备在进行红外光谱分析之前,需要对样品进行适当的制备。
通常情况下,样品需要制备成薄片或粉末状,并将其置于样品室中进行测量。
对于液体样品,可以直接将其滴在红外透明的盘片上进行测量。
步骤 4:数据处理红外光谱仪会输出一张红外光谱图谱,其中横轴表示波数(或波长),纵轴表示吸光度。
通过对红外光谱图谱的解读和分析,可以获得样品的结构和成分信息。
数据处理的方法包括:1.峰位解析:根据吸收峰的位置,判断样品中存在的官能团或化学键。
2.峰强度分析:根据吸收峰的强度,推断样品中不同官能团或化学键的含量。
3.峰形分析:观察吸收峰的形状,判断样品的结构和分子对称性。
步骤 5:应用领域红外光谱分析在许多领域有着广泛的应用。
以下是一些常见的应用领域:1.化学品鉴定:通过对未知化合物的红外光谱分析,可以确定其分子结构和成分,帮助进行化学品鉴定。
2.药物研究:红外光谱分析可以用于药物的质量控制、相似性比较和稳定性研究。
3.环境监测:红外光谱分析可以用于检测和监测环境中有害物质的存在和浓度。
4.食品安全:红外光谱分析可以用于食品中添加物的检测和鉴定,帮助维护食品的安全性。
红外光谱分析实验报告红外光谱分析实验报告引言:红外光谱分析是一种非常重要的分析技术,它通过测量物质在红外光波段的吸收和散射特性,来研究物质的结构和成分。
本实验旨在通过红外光谱仪对不同化合物进行测试,探索其红外光谱图谱,进而了解物质的结构和功能。
实验方法:1. 实验仪器与试剂本实验使用的是一台红外光谱仪,试剂包括苯酚、甲醇、丙酮等有机化合物。
2. 实验步骤(1)将待测样品制备成适当的固体或液体样品。
(2)将样品放置在红外光谱仪的样品槽中。
(3)选择适当的波长范围和扫描速度,开始测量。
(4)记录红外光谱图谱,并进行分析和解读。
实验结果与分析:1. 苯酚的红外光谱分析苯酚是一种常见的有机化合物,它的红外光谱图谱显示了许多特征峰。
在波数范围为4000-400 cm^-1之间,我们可以观察到苯酚的O-H伸缩振动峰,峰位在3400 cm^-1左右。
此外,还可以观察到苯环的C-H伸缩振动峰,峰位在3000-3100 cm^-1之间。
2. 甲醇的红外光谱分析甲醇是一种常用的溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到甲醇的O-H伸缩振动峰,峰位在3600-3650 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
3. 丙酮的红外光谱分析丙酮是一种常用的有机溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到丙酮的C=O伸缩振动峰,峰位在1700-1750 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
结论:通过本实验的红外光谱分析,我们可以观察到不同化合物的红外光谱图谱,并解读出它们的结构和功能。
苯酚、甲醇和丙酮的红外光谱图谱中的特征峰提供了宝贵的信息,帮助我们了解这些化合物的分子结构和它们之间的化学键。
红外光谱分析技术在化学、药学、材料科学等领域具有广泛的应用前景,对于研究和开发新材料、新药物等具有重要意义。
红外光谱的定量分析红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。
红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。
原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。
Beer定律可写成:A=abc式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。
系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。
且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。
因此在测定或描述吸收系数时,一定要注意它的波数位置。
当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。
吸收系数是物质具有的特定数值,文献中的数值理应可以通用。
但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。
在定量分析中须注意下面两点:1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。
2)吸光度的另一可贵性使它具有加和性。
若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和;2.定量分析方法的介绍红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。
此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。