活性污泥工艺中剩余污泥量计算
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
污泥量计算(1)污泥量计算1初次沉淀污泥量和二次沉淀污泥量的计算公式:V=100C0ηQ/1000(100-p)ρ式中:V——初次沉淀污泥量,m3/d;Q——污水流量,m3/d;η——去除率,%;(二次沉淀池η以80%计)C0——进水悬浮物浓度,mg/L;P——污泥含水率,%;ρ——沉淀污泥密度,以1000kg/m3计。
2剩余活性污泥量的计算公式:Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d;ΔX——挥发性剩余污泥量(干重),kg/d;f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此;Xr——回流污泥浓度,g/L。
3消化污泥量的计算公式:见公式(8-3)。
(2)污水处理厂干固体物质平衡:污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。
污水处理厂固体物质平衡的典型计算,可根据图8-1进行。
设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。
各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。
因此其平衡式为:进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10)XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11)式中:X1——进入浓缩池的固体物量;ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量;XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。
进入消化池的悬浮物量:X2= X1 r1 (8-12)浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13)消化池悬浮物减量:G= X2rg= X1 r1rg (8-14)进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15)消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16)脱水泥饼固体物量:X4= X3 r3机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17)回流至沉砂池前的上清液中所含悬浮物总量:XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg)(X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)污泥含水率(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。
剩余污泥计算公式及取值剩余污泥计算是指在污水处理过程中,经过沉淀池、厌氧池或活性污泥池处理后产生的剩余污泥的数量的计算。
剩余污泥的计算公式及取值可以根据不同的处理工艺和系统来确定,在以下部分中将对常用的计算公式及取值方法进行介绍。
1.剩余污泥产率计算公式及取值方法:剩余污泥产率是指单位进水量产生的剩余污泥的重量或体积,通常以kg MLSS/kg BOD5或kg MLSS/m3 BOD5来表示。
其中,MLSS指的是活性污泥的混凝土悬浮物浓度,BOD5指的是进水的五日生化需氧量浓度。
a.常规活性污泥工艺:剩余污泥产率=混凝土悬浮物浓度/五日生化需氧量浓度通常,混凝土悬浮物浓度可以通过实时监测系统或定期取样测试来确定,五日生化需氧量浓度可以通过进水水质测试来确定。
b.空气提供式悬浮式生物膜(MBBR)工艺:剩余污泥产率=悬浮床悬浮物浓度/五日生化需氧量浓度悬浮床悬浮物浓度可以通过实时监测系统或定期取样测试来确定,五日生化需氧量浓度可以通过进水水质测试来确定。
2.污泥产量计算公式及取值方法:污泥产量是指在特定时间内系统中产生的污泥的重量或体积,通常以kg或m3为单位。
a.常规活性污泥工艺:污泥产量=混凝土悬浮物浓度×污水流量×时间其中,混凝土悬浮物浓度可以通过实时监测系统或定期取样测试来确定,污水流量可以通过流量计来测量,时间可以根据需要设定。
b.空气提供式悬浮式生物膜(MBBR)工艺:污泥产量=悬浮床悬浮物浓度×污水流量×时间悬浮床悬浮物浓度可以通过实时监测系统或定期取样测试来确定,污水流量可以通过流量计来测量,时间可以根据需要设定。
3.污泥干固物含量计算公式及取值方法:污泥干固物含量是指污泥中固体物质的含量,通常以百分比表示。
污泥干固物含量=(干泥重量/总污泥体积)×100%其中,干泥重量可以通过干燥法或烘箱法来确定,总污泥体积可以通过实际测量或计算来确定。
《排水工程》第69讲:6种情况下的污泥产量计算展开全文【《排水工程》第69讲】重要指数:★★★★上一节主要讲解第17章污泥处理部分内容,主要包括污泥处理的目的、污水厂污泥分类及其特性,本节主要讲解污泥的产量与计量部分内容。
对于污泥的产量,有两种常用的方法,其一是估算法,其二是精确计算法。
对于估算法,《排水工程》上有相应的介绍,首先是P3每万m3污水精处理后的污泥产生量一般为5~8t(按含水率80%计算);其次是P426城镇污水处理厂的污泥量占处理水量的0.3%~0.5%(以含水率97%计算)。
对于精确计算法,分为以下6中情况:01 预处理工艺的污泥产量预处理工艺的污泥产量,包括初沉池、水解池、AB法A段和化学强化一级处理工艺等。
①不接收剩余活性污泥时:▲公式17-10·△X1——预处理污泥产生量,kg/d;·SSi、SSo——分别为进出水悬浮物浓度,kg/m3;·Q——设计日平均污水流量,m3/d;·a——系数,无量纲。
初沉池a=0.8~1.0,排泥间隔较长时,取下限;AB法A段a=1.0~1.2,水解工艺a=0.5~0.8,化学强化一级处理和深度处理工艺根据投药量,a=1.5~2.0。
②初沉池不接收剩余活性污泥,间歇排放:▲公式17-16·Q1——初沉池每日排泥量,m3/d;·n——每日排泥次数,n=24/T,T为排泥周期;·S——初沉池截面积,m2;·hf,i——集泥池中初沉污泥排泥前泥位,m;·ha,i——集泥池中初沉污泥排泥后泥位,m;·Qi——初沉池排泥期间,集泥池(浓缩池)提升泵流量,m3/h;·ti——初沉池排泥时间,h。
02 带预处理系统的活性污泥法及其变形工艺剩余污泥产生量带预处理系统的活性污泥法及其变形工艺剩余污泥产生量,按如下公式计算:▲公式17-11·△X2——剩余活性污泥量,kg/d;·f——MLVSS/MLSS之比值。
活性污泥法的基本原理一.基本概念和工艺流程(一)基本概念1.活性污泥法:以活性污泥为主体的污水生物处理。
2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体(二)工艺原理1.曝气池:作用:降解有机物(BOD5)2.二沉池:作用:泥水分离。
3.曝气装置:作用于①充氧化②搅拌混合4.回流装置:作用:接种污泥5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气也内的微生物量平衡。
混合液:污水回流污泥和空气相互混合而形成的液体。
二.活性污泥形态和活性污泥微生物(一)形态:1、外观形态:颜色黄褐色,絮绒状2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。
③含水率>99%,C<1%固体物质。
④比重1.002-1.006,比水略大,可以泥水分离。
3.组成:有机物:{具有代谢功能,活性的微生物群体Ma{微生物内源代谢,自身氧化残留物Me{源污水挟入的难生物降解惰性有机物Mi无机物:全部有原污水挟入Mii(二)活性污泥微生物及其在活性污泥反应中作用1.细菌:占大多数,生殖速率高,世代时间性20-30分钟;2.真菌:丝状菌→污泥膨胀。
3.原生动物鞭毛虫,肉足虫和纤毛虫。
作用:捕食游离细菌,使水进一步净化。
活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。
☆原生动物作为活性污泥处理系统的指示性生物。
4.后生动物:(主要指轮虫)在活性污泥处理系统中很少出现。
作用:吞食原生动物,使水进一步净化。
存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。
(三)活性污泥微生物的增殖和活性污泥增长四个阶段:1.适应期(延迟期,调整期)特点:细菌总量不变,但有质的变化2.对数增殖期增殖旺盛期或等速增殖期)细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。
3.减速增殖期(稳定期或平衡期)细菌总数达最大,增殖速率等于衰亡速率。
污泥量计算污泥量计算(1)污泥量计算1初次沉淀污泥量和二次沉淀污泥量的计算公式:V=100C0ηQ/1000(100-p)ρ式中:V——初次沉淀污泥量,m3/d;Q——污水流量,m3/d;η——去除率,%;(二次沉淀池η以80%计)消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16)脱水泥饼固体物量:X4= X3 r3机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17)回流至沉砂池前的上清液中所含悬浮物总量:XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg)(X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)污泥含水率污泥含水率(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。
1污泥中水的存在形式有:空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离;毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离;颗粒表面吸附水和内部结合水,约10%。
表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。
通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。
2污泥体积、重量及所含固体物浓度之间的关系:R d——可消化程度,%,取周平均值;(4)湿污泥比重与干污泥比重:湿污泥重量等于污泥所含水分重量与干固体重量之和。
湿污泥比重等于湿污泥重量与同体积的水重量之比值。
1、普通活性污泥法处理系统废水量为11400m3/d,BOD5=180mg/L,曝气池容积V为3400m3,出水SS=20mg/L(出水所含的未沉淀的MLSS称为SS),曝气池内维持MLSS浓度为2500mg/L,剩余污泥排放量为155m3/d,其中含MLSS为8000mg/L。
求:曝气时间、BOD5容积负荷、F/M、污泥龄。
2、某造纸厂采用活性污泥法处理废水。
废水量24000m3/d,曝气池容积V为8000m3。
经初次沉淀,BOD5=300mg/L,曝气池对BOD5的去除率为90%,曝气池混合液悬浮固体浓度为4000mg/L,其中挥发性悬浮固体占75%。
(Y=0.76kgMLVSS/kgBOD5、Kd=0.016d-1、a=0.38kgO2/kgBOD5、b=0.092kgO2/kgMLVSS.d)求:F/M、q、Nv、每日剩余污泥量、每日需氧量和污泥龄。
3、某城市日排放量30000m3,进入生物池的BOD5=169mg/L,二级处理要求处理水BOD5为25mg/L,拟采用活性污泥处理系统。
(NS=0.3kgBOD5/kgMLSS.d,SVI=120ml/g,R=50%,r=1.2,f=0.75, Y=0.5kgMLVSS/kgBOD5、Kd=0.07d-1、a=0.5kgO2/kgBOD5,b=0.15kgO2/kgMLVSS.d)(1)计算确定曝气池体积;(2)计算剩余污泥量;(3)计算需氧量。
4、原始数据:Q=10000m3/d,BOD5=200mg/L,MLSS=3000mg/L,f=0.8,Y=0.5kgMLVSS/kgBOD5,K2=0.1L/mg.d,Kd=0.1d-1,SVI=96,处理出水为6mg/L。
采用完全混合活性污泥系统,要求确定(反应动力学参数都以MLVSS出现)(1)所需曝气池体积;(2)计算运行时的污泥龄;(3)确定合适的回流比。
5、:某废水量为21600m3/d,经一次沉淀后废水BOD5为250mg/L,要求出水BOD5在20mg/L 以下,水温20℃,试设计完全混合活性污泥系统。
污水厂剩余污泥的排放量的计算剩余污泥的排放是活性污泥工艺控制中很重要的一项操作,通常有MLSS、F/M、SRT、SV等方法控制排泥量。
1、污泥浓度(MLSS)法用MLSS控制排泥是指在维持曝气池混合液污泥浓度恒定的情况下,确定排泥量。
首先根据实际工艺状况确定一个合适的MLSS浓度值。
常规活性污泥工艺的MLSS一般在1500~3000mg/L之间。
当实际MLSS比要控制的MLSS值高时,应通过排除剩余污泥降低MLSS值。
排泥量可用下式计算:式中:V W——此时应排污泥量;MLSS——实测值,mg/L;MLSSo——根据实际工艺确定的浓度值,mg/L;V——曝气池容积,m3(立方米,下同);R S S——回流污泥浓度,mg/L。
【例题】某厂根据经验将污泥浓度MLSS控制在2000mg/L。
曝气池容积为5000m3。
某日实测曝气池污泥浓度MLSS为3000mg/L,回流污泥浓度RSS为4000mg/L,试计算此时应排放的污泥量。
解:将上述数据代入公式上例仅是说明计算过程,实际上不可能一次排放1250m3污泥。
一般来说,活性污泥工艺是一个渐进的过程,在控制总排泥量的前提下,应连续多排几次。
用MLSS法控制排泥量尽量连续排放,或平均排放,该法适合进水水质变化不大的情况。
2、食微比(F/M)法F/M中的F是进水中的有机污染物负荷,无法人为控制进水中有机污染物负荷波动,而只能控制M,即曝气池中的微生物量。
如果不改变曝气池投运数量,则问题就变成控制曝气池中的污泥浓度,但这种方法不是单纯将污泥浓度保持恒定,而是通过改变污泥浓度,使F/M基本保持恒定。
排泥量可由下式计算:式中:V W——要排放的剩余污泥体积,m3;MLVSS——曝气池内的污泥浓度,mg/L;Va——曝气池容积,m3;BOD i——进曝气池污水的BOD5,mg/L;Q——进水污水量,m3/d;F/M——要控制的有机负荷,kgBOD/(kgMLVSS·d);R S S——回流污泥浓度,mg/L。
4.5。
3 反应池运行周期各工序计算 (1)曝气时间(T A )0A s 24S 24400T =3L mX 0.244000⨯==⨯⨯(h) (2)沉淀时间(T S ) 初期沉降速度4 1.264 1.26max 4.610 4.6104000 1.33A V C --=⨯⨯=⨯⨯=(m 3/h )则max 11() 3.50.54 1.031.33S H m T V ε+⨯+===(h ) (3)排出时间(T D )本设计拟定排除多余的活性污泥、撇水时间为0.5h,则沉淀与排出时间合计为1.5h 。
(4)进水时间(T F ) 本设计拟定缺氧进水1.5h[23]。
则一个周期所需要的时间为:T c = T A + T S + T D + T F =3 + 1.5 + 1。
5 = 6(h )4.5。
4 反应池池体平面尺寸计算周期数242446n Tc ===池个数641.5F T N T ===反应池有效池容4250062544m V Q n N =⨯=⨯=⨯⨯(m 3) 由进水时间和进水量的变动理论,求得一个循环周期的最大流量变动比max1.5Q r Q ==平均超过一个周期,进水量△Q 与V 的对比为△Q/v 1 1.510.1254r m --=== 考虑流量比,反应池的修正容量为V’=V(1+△Q/v)625(10.125)703.125=⨯+=(m 3)取反应池水深为3.5m ,则所需水面积'703.125200.8953.5V A H ===(m 2)取200(m 2) 取反应器长L=20(m ),则宽为b=10 (m) SBR 反应池设计运行水位如图3所示。
排水结束时水位h 2=H/(1+△Q/v)1133.5 2.310.1254m m -⨯=⨯⨯=+(m ) 基准水位h 3=H/(1+△Q/v)13.5 3.110.125=⨯=+(m )高峰水位4h =3.5(m )警报溢流水位540.5 3.50.54h h =+=+=(m )污泥界面120.5 2.30.5 1.8h h =-=-=(m )4。
关于活性污泥工艺中剩余污泥量计算的讨论
我国大部分城市(镇)污水处理厂采用的是传统活性污泥法或其变型工艺,其生物系统产生的剩余污泥量往往存在着设计值与实际值相差较为悬殊的现象,这在不设初沉池系统的活性污泥工艺,如A/O法、A2/O法、AB法、氧化沟、SBR中更为普遍。
究其根源,或是污泥产率系数的设计取值与实际运行有差距,或是没有考虑进水中不可降解及惰性悬浮固体对剩余污泥量的影响。
本文就上述两个问题进行讨论。
1剩余污泥量计算方法
在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。
它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。
因此,剩余干污泥量可以用式(1)计算: ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1)
式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d;
Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数;
Kd———污泥自身氧化率,d-1;
θc———污泥龄(生物固体平均停留时间),d;
Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs);
Q———污水流量,m3/d;
BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3;
fP———不可生物降解和惰性部分占SSi的百分数;
SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。
德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。
此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。
综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作:
YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2)
FT=1 702(T-15)(3)
式中fb———微生物内源呼吸形成的不可降解部分,取值0 1;
FT———温度修正系数。
比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。
由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式:
ΔX=YobsQ(BODi-BODo)f(4)
式中f=MLVSSMLSS;其他符号意义同前。
式(4)与式(1)是一致的,均需确定Yobs。
2Yobs的确定表观产率
Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6 .6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0 .4~0.8。
如处理系统无初次沉淀池,Y值必须通过试验确定。
”同款还规定了Kd20℃的常数值0.04~0 .075d-1。
从中可以看出,Y值变化幅度达100%,Kd的变化幅度达87 5%。
对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。
表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。
对于运行中的污水处理厂,可通过长期运行工况参数,如θc,F(污泥负荷,kgBOD/(kgMLVSS·d))求得Yobs实际值,或回归出适用于该厂的Y,Kd值。
Yobs用θc,F表示为:Yobs=1θcF(5)据实际运行参数并利用式(5)计算得出的北京市方庄污水处理厂(传统活性污泥工艺)和酒仙桥污水处理厂(氧化沟工艺)的污泥净产率系数,见表
2。
从表2可见,对于传统活性污泥工艺,文献推荐值与实际测定值非常接近;但对于氧化沟,二者有明显差距,其它不设初沉池的活性污泥工艺亦存在着类似的问题。
事实上,由于各个污水处理厂的运行条件千差万别,必然会造成Yobs(或Y,Kd)不完全相同,有时差别还很大。
3fP和f的取值
由式(1)可知,为正确估计和计算活性污泥工艺中的剩余污泥量,合理确定不可降解及惰性部分占总进水SS的比例是关键。
大量的实践表明,进入曝气池的悬浮颗粒物质除部分有机物质发生水解而液化外,仍有40%~60%将以剩余污泥的形式排出系统[8]。
对一般城市污水而言,由这部分物质所引起的剩余污泥量在排出的总剩余污泥量中占相当的比例,是不能忽略的。
进水SS中不可降解及惰性(无机)部分所占的比例,在德国ATV标准中取0.6。
根据我国污水处理厂的经验,此值略高,因此我国大部分设计中取值0 5。
根据酒仙桥厂运行参数计算得的fP值为0 42(见表3)。
若系统存在初沉池,经过初次沉淀后的出水,fP值会有所降低,通常为0 3左右(见表4)。
曝气池的混合液中,挥发性悬浮固体(MLVSS)与总悬浮固体(MLSS)的比值f,受系统运行条件的影响明显。
对有初沉池的系统,此值通常保持在0 7~0 8之间;若不设初沉池,f值降低,变化的范围也更大,一般为0.5~0 .8,有时甚至低至0.4。
一般说来,氧化沟可保持较高的f值,如酒仙桥厂的f值为0.63。
SBR则通常稳定在0.5左右[10]。
4Yobs存在较大差异的原因
从本质上讲,在一个保持动态稳定的活性污泥系统中,污泥龄θc(通过排泥控制)决定了可能存在的优势菌群;而有机物的多寡,营养的平衡(在MLVSS一定时,受进水水质影响)则决定了微生物总体的生长水平。
f值作为表征活性污泥系统实际运行状态的参数,既与θc,MLVSS密切关联,又受到进水水质的影响,可以用来解释Yobs的变化。
由于前述式(1)与式(4)是等同的,忽略SSo,BODo(符号意义同前),则有:Yobs+fPSSiBODi=Yobsf,从而可建立起Yobs与fP,SSiBODi以及f之间的关联:
Yobs=fP×SSiBODi×f1-f(6)
式(6)中,fP与SSiBODi体现了进水水质差异对污泥产率的影响,有无初沉池是关键因素,f则与运行工况紧
密联系。
根据表4所列城市污水的代表性fP和SSiBODi值,通过式(6)绘制Yobs~f的关系曲线,见图1。
从图1可以看出,对无初沉池的活性污泥系统,f的微小变化,会带来Yobs的较大改变,特别是当f>0 6时。
排泥是污水处理厂的关键操作,因对污泥排放量的控制不同,加之进水水质的变化,使得f值可能在0 4~0 7甚至更大的范围内变动,相应的污泥产率系数Yobs可能低至0 .3,也可能超过1 .0,可见排泥过程对污泥产率的影响极大。
对同一污水处理厂,其运行条件是复杂多变的,而设计只是满足了某种特定状况,必然造成实际污泥产率与设计存在较大差距;对不同污水处理厂,即使它们的工艺设计完全相同,由于实际运行控制参数及来水水质不同,因此Yobs也会有不同。
就一般城市污水而言,进水SS与BOD浓度大致相同,若不设初沉池,通常要求f值控制在0 6以下(f>0 6以后Yobs变化显著,不利系统运行),此时Yobs介于0 3~0 6之间,这也是大多数污水处理厂污泥产率系数的设计取值范围。
5结语
(1)在活性污泥工艺设计中,正确估算剩余污泥量非常重要,为此需解决两方面的问题:一是确定污泥产率系数Yobs;另一是确定进水SS中不可降解及惰性悬浮固体的比例。
(2)对传统活性污泥法,可根据已有规范及资料给定的Y,Kd值,计算Yobs;对不设初沉池的活性污泥变型工艺,Yobs会随MLVSS/MLSS比值显著变化,变化范围为0 3~1 0。
可见,根据来水水质情况,通过调整排泥,可明显影响污泥产率。
(3)若城市污水处理厂不设初沉池,在设计时,Yobs取值介于0 3~0 6之间,且需控制MLVSS/MLSS比值在0
6以下。
(4)对于城市污水,原水SS中不可降解及惰性悬浮固体的比例,在设计中可取50%,经初沉池后,通常降至30%左右。