黄河小浪底调水调沙问题
- 格式:doc
- 大小:137.50 KB
- 文档页数:4
黄河小浪底调火调沙问题之阳早格格创做纲要:本文利用插值拟合的要领通过Matlab工具模拟出了排沙量与时间、排沙量与火流量的函数闭系,而且供出了总排沙量为1.704亿吨.所有模型简朴且便当估计,其中排沙量与火流量的函数闭系为分段函数.闭键词汇:调火调沙 Matlab 插值拟合一、问题重述2004年6月至7月黄河举止了第三次调火调沙考查,特天是尾次由小浪底、三门峡战万家寨三大火库共同调动,采与交力式防洪预鼓搁火,产生人制洪峰举止调沙考查赢得乐成.所有考查期为20多天,小浪底从6月19日启初预鼓搁火,曲到7月13日回复平常供火中断.小浪底火力工程按安排拦沙量为亿坐圆米,正在那之前,小浪底共积泥沙达亿吨.那次调火调考查一个要害手段便是由小浪底上游的三门峡战万家寨火库鼓洪,正在小浪底产生人制洪峰,冲刷小浪底库区重积的泥沙.正在小浪底火库启闸鼓洪以去,从6月27日启初三门峡火库战万家寨火库陆绝启闸搁火,人制洪峰于29日先后到达小浪底,7月3日达到最大流量2700坐圆米/每秒,使小浪底火库的排沙量也不竭天减少.底下是由小浪底瞅测站从6月29日到7月10日检测到的考查数据:表1: 考查瞅测数据单位:火流为坐圆米 / 秒,含沙量为公斤 /坐圆米当前,根据考查数据修坐数教模型钻研底下的问题:(1) 给出估算任性时刻的排沙量及总排沙量的要领;(2) 决定排沙量与火流量的变更闭系.两、模型假设1.假设所给数据客瞅准确的反应了现真情况2.假设所给数据按照一定顺序变更,即是连绝的3.假设模型中不需要思量一些中表果素4.假设可将时间化为平分的时间面举止估计三、标记证明t: 时间或者时间面v: 火流量S: 含沙量V: 排沙量四、问题分解假设火流量战含沙量皆是连绝的,那么某一时刻的排沙量V=v(t)S(t),其中v(t)为t时刻的火流量,而S(t)为t时刻的含沙量.通过瞅察数据,那些数据是每个12小时支集一次,所以咱们不妨将时间设为时间面t,依次为1,2,3,……,24,单位时间为12h.为了找到排沙量与时间的闭系,咱们便要先找到火流量战含沙量与时间的闭系,一然而找到火流量战含沙量与时间的闭系,那么所央供的问题也便不深刻决了.五、模型的修坐与供解通太过解,咱们假设火流量战含沙量皆是连绝的,那么咱们启初对于问题“(1) 给出估算任性时刻的排沙量及总排沙量的要领”举止供解.咱们通过Matlab工具将所知讲的数据隐现为曲瞅的图像,如下所示,简曲步调睹附录的.通过瞅察图像,咱们不妨瞅出其变更本去不然而滑,而且也不特定的表示出遵循某种分散的趋势.然而是为了得到简曲的估计函数,咱们便必须对于数据举止拟合,所以通过Matlab先利用spline要领对于数据举止插值,进而普及透彻度,使图像变得光润,而后利用多项式举止拟合,当多项式次数越下拟合也越准确,然而是由于数据受到的做用较多,所以那里的数据也不是准确值,果此咱们不妨只与三次举止拟合,也便当了后绝的估计.于是咱们分别对于含沙量战火流量举止插值拟合,即不妨得到底下图像战截止,简曲步调睹附录战.所得到的拟合函数为:y = 0.014*x^{3} - 1.3*x^{2} + 21*x + 16即含沙量与时间的闭系式为:S=0.014*t^3-1.3*t^2+21*t+16所得到的拟合函数为:y = 0.13*x^{3} - 14*x^{2} +2.4e+002*x + 1.5e+003即火流量与时间的闭系式为:v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003果为某一时刻的排沙量V=v(t)S(t),所以咱们不妨将所拟合出去的多项式戴进上式,通过Matlab举止估计不妨得到底下问案,步调睹附录.ans=91/50000*t^6-73/200*t^5+2429/100*t^4-14573/25*t^3+2866*t^2+35340*t+24000即排沙量与时间的闭系为:V=0.0018*t^6-0.365*t^5+24.29*t^4-582.92*t^3+2866*t^2+35340*t+24000由于那里的多项式次数过下,便当于估计战传播,所以咱们不妨对于其再举止一次拟合,有底下截止,步调睹附录.所以拟合后的函数为V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004,通过图像不妨瞅出排沙量与时间遵循正态分散,所以也不妨化成的形式e的指数形式举止拟合,那里便不再重复估计.咱们得到了拟合函数,底下便不妨估计出那几天的总排沙量,通过Matlab编程不妨估计出定积分,截止如下,步调详睹附录.即总含沙量为1.704亿吨.底下咱们对于问题“(2) 决定排沙量与火流量的变更闭系.”举止分解估计.以下所有相闭步调睹附录,底下便不重复证明.咱们先利用Matlab将排沙量战火流量的相闭数据反映到图像中.通过瞅察不妨瞅出,其闭系是分段的,所以咱们准时间举止分段拟合,拟合本理共问题(1)相共,于是不妨得到分段前后的拟合多项式.y = - 7.5e-005*x^{3} + 0.43*x^{2} - 5.2e+002*x + 3.6e+004y = 2.3e-005*x^{3} - 0.066*x^{2} + 1.9e+002*x - 1.9e+005综上,咱们不妨得到排沙量与火流量的闭系式为- 7.5e-5*v^3+0.43*v^2-5.2e+2*v+3.6e+4 0<=t<9 V=2.3e-5*v^3-0.066*v^2+1.9e+2*v-1.9e+5 9<=t<=24六、模型评估本模型的便宜是:修模简朴,便当估计,适用度广.然而也有最大的缺面为:透彻度较矮.为了缩小缺面,咱们不妨通过删大模型中拟合多项式的次数.天然正在日后的模型矫正中不妨加进缺面评估系统,去对于模型举止完备.附录T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];W=[1800 1900 2100 2200 2300 24002500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900]; subplot(2,1,1);plot(T,S);hold on;plot(T,S,'.');title('时间与含沙量闭系');xlabel('时间t/12h');ylabel('含沙量/公斤每坐圆米');subplot(2,1,2);plot(T,W);hold on;plot(T,W,'.');title('时间与火流量闭系');xlabel('时间t/12h');ylabel('火流量/坐圆米每秒');T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];x=1:0.1:24;y=interp1(T,S,x,'spline');plot(T,S,'.',x,y);title('时间与含沙量闭系拟合图');xlabel('时间t/12h');ylabel('含沙量/公斤每坐圆米');T=1:24;W=[1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900]; x=1:0.1:24;y=interp1(T,W,x,'spline');plot(T,W,'.',x,y);title('时间与火流量闭系拟合图');xlabel('时间t/12h');ylabel('火流量/坐圆米每秒');syms t;S=0.014*t^3-1.3*t^2+21*t+16;v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003;V=v*S;simple(V);syms t;V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004;int(12*60*60*V,t,0,24)t=1:24;V=0.0018*t.^6-0.365*t.^5+24.29*t.^4-582.92*t.^3+2866*t.^2+35340*t+24000;plot(t,V);title('时间与排沙量闭系图')t=1:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('整治图')figure;t=1:9;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('前半段图')figure;t=10:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('后半段图')。
小浪底调水调沙原理小浪底是位于黄河上游的一个重要水利工程,它不仅起到了水利调节的作用,还在黄河上游的泥沙调控中发挥着重要作用。
小浪底的调水调沙原理是怎样的呢?接下来我们就来详细了解一下。
首先,小浪底调水调沙的原理是基于黄河上游水沙特点的分析。
黄河上游水沙特点主要表现为年内水沙变化大、年际水沙变化大、时空分布不均等特点。
这就要求小浪底在调水调沙时要根据不同的水沙特点进行相应的调控。
其次,小浪底调水调沙的原理是基于水沙运动规律的研究。
水沙运动规律是指水流对河道床面的冲刷、沉积作用,以及泥沙在河道中的输移、淤积、冲刷等规律。
小浪底通过科学地研究水沙运动规律,可以更好地进行水沙调控,保障黄河上游地区的水资源利用和泥沙调控。
再次,小浪底调水调沙的原理是基于水利工程的实际情况进行的。
小浪底是一座大型水利工程,它的调水调沙原理需要结合实际工程情况进行研究和实践。
只有在实际工程中不断总结经验,不断改进调水调沙的方法,才能更好地发挥小浪底的作用。
最后,小浪底调水调沙的原理是基于科学技术的支撑进行的。
随着科学技术的不断发展,小浪底调水调沙的原理也在不断地进行改进和创新。
利用先进的科学技术手段,可以更好地进行水沙调控,保障黄河上游地区的生态环境和社会经济发展。
综上所述,小浪底调水调沙的原理是多方面因素综合作用的结果,它需要根据水沙特点进行调控,遵循水沙运动规律,结合实际工程情况,借助科学技术手段,不断进行改进和创新,才能更好地发挥其在水利调节和泥沙调控中的作用。
希望通过我们的努力,可以更好地保护黄河上游的生态环境,促进当地社会经济的可持续发展。
黄河小浪底调水调沙问题数学建模
黄河小浪底调水调沙问题是指通过调整黄河水流的水量和输沙量来解决黄河小浪底河道的淤积问题。
数学建模可以帮助我们分析和预测黄河小浪底的水流和沙传输规律,从而提出合理的调水和调沙方案。
以下是数学建模中可能涉及的一些步骤和方法:
1. 数据收集和处理:收集黄河小浪底相关的水文数据、地质资料和历史数据,对数据进行整理和处理,建立合适的数据模型。
2. 建立水流模型:通过流体力学理论和水流实验数据,建立黄河小浪底水流的数学模型,包括水流速度、水动力和水力调控方面的参数。
3. 建立沙传输模型:根据黄河小浪底河道的地质特征和沙传输规律,建立沙传输的数学模型,包括输沙通道的沙动力和沙质输运规律方面的参数。
4. 模型验证和参数拟合:利用已有的观测数据和实验数据验证建立的水流和沙传输模型,并通过参数拟合来优化模型的准确性和适用性。
5. 模拟预测和优化调控:利用建立的数学模型,进行水流和沙传输的模拟预测,通过调整输水和输沙量来优化黄河小浪底的调水和调沙方案,以达到降低淤积和维护航道的目的。
数学建模可以辅助相关专业的研究人员和决策者做出科学的决策,使调水和调沙方案更加合理和有效,减少淤积和保护黄河流域的生态环境。
黄河小浪底调水调沙问题数学建模黄河是中国第二长河流,也是中国北方主要的水源之一。
然而,由于年际变化和人类活动的影响,黄河水沙特性的变化对地区社会经济和生态环境产生了巨大影响。
黄河小浪底是黄河下游的一个关键水文站点,对黄河的水沙调控起着重要作用。
因此,对于黄河小浪底的调水调沙问题进行数学建模具有重要意义。
数学建模是通过数学方法分析和解决实际问题的过程。
对于黄河小浪底的调水调沙问题,我们可以从以下几个方面进行数学建模:1. 水量平衡模型:黄河小浪底是一个重要的水源供给站点,掌握黄河的水量情况对于调水调沙至关重要。
因此,我们可以建立一个水量平衡模型,根据入库、出库等因素来估计黄河在小浪底的流量。
这个模型可以包括如下因素:入流量(降雨、地表径流、地下径流等)、出流量(供水、排水等)以及河道水量的变化。
通过这个模型,可以对黄河小浪底的水量进行预测和调控。
2. 水沙关系模型:黄河的水沙关系对于调水调沙具有重要影响。
水沙关系模型可以通过分析黄河不同断面的水位和水沙含量之间的关系,来估计黄河的河床输沙量。
这个模型可以包括如下因素:断面形态特征、流量、水沙含量等。
通过这个模型,可以了解到黄河的水沙变化规律,并对黄河小浪底的调沙情况进行预测和控制。
3. 沉积模型:黄河的床面沉积是一个长期过程,对于调水调沙有着重要影响。
沉积模型可以通过分析黄河不同断面的沉积速率、沉积厚度等变化,来估计黄河的床面沉积情况。
这个模型可以包括如下因素:流率、输沙率、流态等。
通过这个模型,可以对黄河小浪底的沉积情况进行预测和控制。
4. 排沙方案优化模型:为了减少黄河小浪底的沙泥淤积问题,需要设计科学合理的排沙方案。
排沙方案优化模型可以通过考虑沙泥淤积的成因、河道特征、水流特性等因素,来确定最佳的排沙方案。
这个模型可以包括如下因素:流态、输沙率、河道形态等。
通过这个模型,可以设计出最优的排沙方案,从而实现黄河小浪底的水沙调控。
综上所述,黄河小浪底的调水调沙问题可以通过数学建模的方式来研究和解决。
1.摘要本文综合利用试验观测的数据,根据曲线拟合的方法合理的估算任意时刻黄河小浪底水库的排沙最和总排沙量,同时根据排沙帚:和水流最之间的关系图像大致拟合出两者之间的关系。
小浪底观测站从6月29到7月10 口,每天分别在早晨8点和夜晚8点对水流量”和水的含沙量Y,做出检测,针对问题一,我们知道,任意时刻的排沙量Y等于该时刻的水的含沙最与水流最之积,利用表一中各数据点,把时间点依次记作t(l<=t<=24)利用曲线拟合,得到排沙量和时间之间的关系,再利用辛普森公式求得某一时间段的总排沙量。
针对问题二,从排沙量和水流量的关系图像上我们可以大致看出一•者成一•次关系,同样利用曲线拟合就可以得出排沙最和水流量的关系了。
关键词:含沙星水流星排沙量曲线拟合辛普森积分公式2 •问题重述在小浪底水库蓄水后,黄河水利委员会进行了多次试验,特别是2004年6月到7月进行的黄河第三次调水调沙试验具有典型的意义。
这次试验首次由小浪底、三门峡和万家寨三大水库联合调度,进行接力式防洪预泄放水,形成人造洪峰进行调水调沙试验成功。
这次试验的一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底的库区的沉积泥沙。
在小浪底开闸泄洪以后,从6月2711开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29口先后到达小浪底,7月3口达到最大流星为2720m'3/s,使小浪底水库的排沙量也不断的增加。
表1:试验观测数据单位:水流为立方米/秒,含沙最为公斤/立方米(1)根据表一中的观测数据,合理的建立模型來估算任意时刻的排沙量和总的排沙量。
(2)确定排沙皐和水流量之间的关系。
3•问题分析含沙量即是单位体积的水中沙的含量,排沙量是指单位体积的水中带走的沙的星,因此可知:排沙量二水的存沙量X水流量静水时,水的含沙量是很少的,由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底的库底的沉积泥沙,使得水屮的含沙量增多,随着人造洪峰的逐渐平息,使水流量的减少,也使得含沙星也呈逐渐减少的趋势,所以排沙量也是减少的,由丁•洪峰在正常情况下是随着时间逐渐平息的,所以, 水的含沙量和排沙最都和时间存在着一定的关系,根据表一,水的含沙量和水流量的积求出该时刻水的排沙量,将时间按记录次库依次记作1 2 3 ........................................................... 24,然后按二次函数拟合即可得到排沙暈和时间的关系式,然后插值得到任意时刻的排沙量,对排沙最和时间的关系式在任意时间段上积分求得值就是这段时间总的排沙量。
小浪底水库调水调沙对黄河下游渔业资源影响及对策介子林朱文锦(河南省水产科学研究院450044)摘要:调查了调水调沙前、后黄河下游河道水域水质、水生生物、渔业资源的变化情况,调水调沙对黄河下游水环境、水生态、渔业资源产生了不利影响,这种不利影响具有叠加性和持续性,提出相应的政策和技术措施。
关键词:调水调沙;黄河下游;渔业资源;生态环境2008年农业部下达了《黄河下游生态环境监测评价—-小浪底水库调水调沙试验对黄河下游渔业资源影响评价及对策研究》项目。
在黄河流域渔业资源委员会组织协调下,河南省水产科学研究院牵头实施了该项目,2008年小浪底水库“调水调沙”期间,较全面的对黄河下游水环境和水生态的变化情况进行了检测,重点调查了“调水调沙”后期黄河“流鱼”情况,较全面的掌握了“调水调沙”对黄河下游生态环境影响,为保护黄河水生生物的物种多样性,为修复、维持黄河水生生态系统的完整性及可持续性提供了科学依据。
1.调查范围从黄河小浪底水库坝下至黄河入海口。
2008年6月19日至7月3日实施的黄河第八次调水调沙。
本次调查的时间选择在调水调沙前14天至调水调沙后14天。
根据生态学理论,不同生境条件决定不同的生态环境状况。
为全面反映黄河下游的生态环境状况,以黄河下游水文站位置为本项目监测点,监测点共7个,分别为孟津、花园口、夹河滩、艾山、洛口、高村、利津。
调查的影响因子包括河道水质、河滩地、黄河口水质、浮游植物、浮游动物、底栖动物、水生维管束植物、鱼类、渔业资源等。
定点比较调查调水调沙前、后渔业资源变化情况。
2.对渔业资源影响2.1 对河道水质的影响比较分析调水调沙过程前、后河道的水质变化,最主要的特征为:一是在较短时间内加大小浪底水库下泄水量,并通过水量一定的波动在下游形成洪峰;二是采取技术措施产生异重流,促使沉积泥沙的泛起和随水转运。
调水调沙过程中,一些水质指标如温度、溶解氧、浊度等在短期内剧烈改变;一些指标如总磷、氨氮等在短期内急剧增加。
2019小浪底调水调沙原理篇一:黄河小浪底调水调沙黄河小浪底调水调沙问题2019年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为755亿立方米,在这之前,小浪底共积泥沙达1415亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表1试验观测数据单位:水流为立方米秒,含沙量为公斤立方米(1)给出估算任意时刻的排沙量及总排沙量的方法;(2)确定排沙量与水流量的变化关系。
篇二:黄河小浪底调水调沙工程数学实验实验报告《数学实验》实验报告题目:黄河小浪底调水调沙工程姓名:胡迪学号:201914622专业:信息与计算科学黄河小浪底调水调沙问题2019年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功。
整个试验期为20多天,小浪底从6月19日开始预泄放水,至到7月13日恢复正常供水结束。
小浪底水利工程按设计拦沙量为755亿3,在这之前,小浪底共积泥沙达1415亿。
这次调水调沙试验一个重要的目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700,使小浪底水库的排沙量也不断地增加。
黄河调水调沙分析与思考黄河是多沙河流,每年从中游携带大量泥沙,一部分淤积在下游沿途平原河道,造成河床抬升,过洪能力变小,洪水威胁两岸。
在干流河道修建水库,虽然拦蓄大量泥沙,但同时也造成水库淤积而报废,三门峡水库即是例子,水库建成后,虽然使黄河水变清,但也带来严重问题,三门峡水库因大量泥沙淤积库容逐渐减少,最后不得不进行工程改造,进行调水调沙尝试。
小浪底水库建成后进行大规模调水调沙,目的就是通过三门峡水库和小浪底水库联合调度,达到利用少量的泄水,携带淤积在水库的泥沙,排入大海,而不造成沿途淤积,一方面使水库冲淤平衡,另一方面又不造成沿途河道淤积,同时制造人工洪峰过程,改变河道河势,缩小断面宽度,增加深度。
调水调沙,就是在充分考虑黄河下游河道输沙能力的前提下,利用水库的调节库容,对水沙进行有效的控制和调节,适时蓄存或泄放,调整天然水沙过程,使不适应的水沙过程尽可能协调,以便于输送泥沙,从而减轻下游河道淤积,甚至达到冲刷或不淤的效果,实现下游河床不抬高的目的。
黄河特点是“水少沙多、水沙不平衡”,首任黄河水利委员会主任、著名水利专家王化云和他的同事们,在“上拦下排”的治黄方针的基础上比较系统地提出了“调水调沙”的治黄思想。
三门峡工程的运用实践中,三门峡水库的建设使“调水调沙”得以实施,2001年小浪底水库正式建成使用,使规模性调水调沙的水库条件具备,而且为调水调沙由理论到实践的飞跃提供了先决条件。
黄河水利委员会主任李国英说:“多年来,治黄人一直在探索通过人工手段,塑造一种人工的理想的水沙关系,利用自然规律改变当前天然不平衡的水沙关系,但这要有两个前提,一是要有大型调节水库,二是运用现代化的科技手段。
”2002年7月,利用小浪底水库开展了首次调水调沙试验,至2009年8月,调水调沙历经8年9次。
1.黄河调水调沙2002年7月,利用小浪底水库开展了首次调水调沙试验:7月4日上午9时,小浪底水库开始按调水调沙方案泄流,7月15日9时出库流量恢复正常,历时共11天。
【精品】黄河小浪底调水调沙工程数学实验实验报告1.实验题目通过数学模型探讨黄河小浪底调水调沙工程的水沙变化趋势,并评估其对生态环境和经济发展的影响。
3.实验原理黄河是中国第二长河,是我国重要的工农业水源,也是重要的生态环境保护区。
但由于多种因素的作用,黄河的水沙问题一直是亟待解决的难题。
为了减轻黄河的水沙负荷,中国政府实施了一系列调水调沙工程,其中黄河小浪底调水调沙工程是其中之一。
黄河小浪底水库位于河南省和山西省交界处,是黄河上最大的水库之一。
黄河小浪底调水调沙工程主要包括灌溉、发电和供水三个方面,可以有效调节黄河的水流和泥沙,缓解洪涝灾害和沙漠化问题。
为了了解这个调水调沙工程对黄河水沙变化的影响,我们需要建立数学模型。
由于忽略水沙相互作用会降低模型的精度,因此我们采用水沙联动模型来进行实验。
水沙联动模型的核心是水沙运移方程。
水流运移方程考虑了水的流速、水深、河道形状等因素,可以计算出水的流量和速度。
沙运移方程则考虑了颗粒粒径、浓度、运动速度等因素,可以计算出水中的泥沙含量和粒径分布。
通过模拟水沙运移方程,我们可以得到黄河小浪底水库的水沙变化情况。
4.实验步骤(1)建立数学模型。
首先,根据黄河小浪底的实际情况,我们建立了水沙联动模型。
具体来说,我们采用了Lax-Wendroff格式来求解水沙运移方程,计算时间步长为1s,空间网格大小为1m。
同时,为了评估工程的经济效益,我们考虑了灌溉、发电和供水三个方面,并对它们进行了量化分析。
(2)模拟实验结果。
我们模拟了调水调沙工程前后的5年时间,并得到了黄河小浪底水库的水沙变化趋势。
具体来说,我们计算出了水库的水位、流量、泥沙含量和粒径分布。
通过特征值分析和比较分析,我们得到了以下结论:a.调水调沙工程可以显著降低黄河的泥沙负荷,减小沿岸的淤积和堆积现象,提高了生态环境的稳定性。
b.调水调沙工程还可以有效控制洪涝灾害和沙漠化问题,保障了当地农业生产和人民生活的需求。
2004 年6 月至7 月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功。
整个试验期为20 多天,小浪底从6 月19 日开始预泄放水,直到7 月13 日恢复正常供水结束。
小浪底水利工程按设计拦沙量为75.5 亿m3,在这之前,小浪底共积泥沙达14.15 亿t。
这次调水调沙试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开闸泄洪以后,从6 月27 日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7 月3 日达到最大流量2700m3/s,使小浪底水库的排沙量也不断地增加。
下表是由小浪底观测站从6 月29 日到7 月10 检测到的试验数据。
现在,根据试验数据建立数学模型研究下面的问题:
(1)给出估计任意时刻的排沙量及总排沙量的方法;
(2)确定排沙量与水流量的关系。
模型的建立与求解
已知给定的观测时刻是等间距的,以 6 月29 日零时刻开始计时,则各次观测时刻(离开始时刻6 月29 日零时刻的时间)分别为
t = 3600(12i −4) ,i =1,2, (24)
其中计时单位为秒。
第1 次观测的时刻t1=28800
最后一次观测的时刻t24= 1022400
记第i 次观测时水流量为v i,含沙量为c i,则第i 次观测时的排
沙量为y i= c i v i。
数据见表
表
对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现。
考虑到的排沙量时间的连续函数,为了提高模型的精度,采用三次样条函数进行插值:Matlab实现:
t=[28800 72000 115200 158400 201600 244800 288000 331200 374400 417600 460800 504000 547200 590400 633600 676800 720000 763200 806400 849600 892800 936000 979200 1022400];%时刻
y=[56700 114000 157500 187000 207000 235200 250000 265200 286200 302400 312800 307400 306800 300000 271400 231000 160000 111000 91000 54000 45500 30000 8000 4500];%排沙量
pp=csape(t,y);%三次样条插值,返回pp结构
t1=t(1);t2=t(end);
TL=quadl(@(tt)ppval(pp,tt),t1,t2) %t1到t2时刻进行数值积分,得到总流量
Y=ppval(pp,X) %该函数可以计算X点的预测值,‘pp’是样条插值返回的结构
对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少。
显然,变化规律并非是线性的关系,为此,把问题分为两部分,从开始水流量增加到最大值2720m3/s(即增长的过程)为第一阶段,从水流量的最大值到结束为第二阶段,分别来研究水流量与排沙量的关系。
画出排沙量与水流量的散点图(见图 2)。
Matlab实现:
v1=[1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720];% v1,v2 为水流量
v2=[2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900];
y1=[56700 114000 157500 187000 207000 235200 250000 265200 286200 302400 312800];
y2=[307400 306800 300000 271400 231000 160000 111000 91000 54000 45500 30000 8000 4500];%y=[y1,y2]为排沙量
subplot(1,2,1), plot(v1,y1,'*')
subplot(1,2,2), plot(v2,y2,'*')
从散点图可以看出,第一阶段基本上是线性关系,第二阶段准备依次用二次、三次、四次曲线来拟合,看哪一个模型的剩余标准差小就选取哪一个模型。
最后求得第一阶段排沙量y 与水流量v 之间的预测模型为
y = 250.5655v − 373384.4661
Matlab实现:
n1=polyfit(v1,y1,1) %拟合一次多项式,系数排列从高次幂到低次幂
n2=polyfit(v1,y1,2)
yc1=polyval(n1,v1); %求预测值
yc2=polyval(n2,v1);
wc1=sum((y1-yc1).^2); %以下求误差平凡和
wc2=sum((y1-yc2).^2);
第二阶段的预测模型为一个四次多项式。
y = −2.7693×10−7v4 + 0.0018 v3− 4.092v2 + 3891.0441v−1.32262749668×106 Matlab实现:
nihe1=polyfit(v2,y2,3); %拟合3次多项式nihe1保留的是多项式的系数
yche1=polyval(nihe1,v2); %求预测值
wcha1=sum((y2-yche1).^2); %以下求误差平凡和
nihe2=polyfit(v2,y2,4); %拟合4次多项式
yche2=polyval(nihe2,v2); %求预测值
wcha2=sum((y2-yche2).^2); %以下求误差平凡和
nihe3=polyfit(v2,y2,5); %拟合5次多项式
yche3=polyval(nihe3,v2); %求预测值
wcha3=sum((y2-yche3).^2); %以下求误差平凡和
比较wcha1 wcha2 wcha3的大小,取最小值,对应的拟合多项式
插值拟合方法的matlab实现不仅仅是我以上所用,希望大家主动查找一些文献资料学习!。