《坐标与图形的变化》第二课时(冀教版).docx
- 格式:docx
- 大小:95.21 KB
- 文档页数:3
19.4.2 坐标与图形的变化—教案一、教学目标1.理解平移、旋转和镜像的概念;2.掌握坐标中图形的平移、旋转和镜像的变化规律;3.能够通过坐标变化描述图形的变化。
二、教学重点1.平移、旋转和镜像的概念;2.坐标中图形的平移、旋转和镜像的变化规律。
三、教学难点1.应用平移、旋转和镜像的概念解决与坐标相关的问题;2.理解图形经过变化后的坐标变化规律。
四、教学过程4.1 导入通过提问调动学生的思维,引导学生回顾关于坐标的知识,例如:在二维坐标系中,我们是如何表示一个点的?通过坐标的改变,点的位置会发生什么变化?4.2 探究平移1.提供一个初始图形,并让学生通过平移将其移动到指定位置。
在此过程中引导学生观察图形经过平移后各点的坐标变化情况。
例如:将图形向右平移 3 个单位,整个图形的坐标发生了什么变化?2.引导学生总结图形经过平移后的坐标变化规律。
例如:向右平移 n 个单位,图形中每个点的横坐标都增加了 n。
3.练习:给出一个图形的初始位置和平移后的位置,让学生求出平移的距离。
4.3 探究旋转1.提供一个初始图形,并让学生通过旋转将其变换到指定的位置。
在此过程中引导学生观察图形经过旋转后各点的坐标变化情况。
例如:将图形逆时针旋转90°,整个图形的坐标发生了什么变化?2.引导学生总结图形经过旋转后的坐标变化规律。
例如:逆时针旋转90°,则图形中每个点的坐标变为 (y, -x)。
3.练习:给出一个图形的初始位置和旋转后的位置,让学生求出旋转的角度。
4.4 探究镜像1.提供一个初始图形,并让学生通过镜像将其变换到指定的位置。
在此过程中引导学生观察图形经过镜像后各点的坐标变化情况。
例如:将图形关于 x 轴做镜像,整个图形的坐标发生了什么变化?2.引导学生总结图形经过镜像后的坐标变化规律。
例如:关于 x 轴的镜像,图形中每个点的纵坐标取相反数。
3.练习:给出一个图形的初始位置和镜像后的位置,让学生求出镜像的轴线。
坐标与图形的变化学案(2)----轴对称变化学习目标1.感受坐标平面内图形轴对称时点的坐标变化.2.会利用关于坐标轴对称的两个对称点的坐标关系,求作轴对称图形。
3.在学习过程中,进一步体会数形结合的思想和探索新知识的方法。
教学重点:对称点的坐标特征.教学难点:坐标平面内图形的轴对称。
教学过程:1、知识回顾A(x,y) 关于x轴对称B( )A(x,y)关于y轴对称C( )A(x,y)关于原点对称D( )2.练一练P(-3,5)关于x轴的对称点的坐标为(,)关于y轴的对称点的坐标为(,)关于原点的对称点的坐标为(,)新课讲解:例:如图,在平面直角坐标系中,△ABC的各顶点的坐标分别为:A(-5,1),B (-1,1),C(-2,4).(1)分别把点A,B,C关于x轴和y轴对称的坐标点填写在下表中.(2)在图中作出△关于x轴成轴对称的△A1B1C1,关于y轴对称的△ A2B2C2 (3)根据对应顶点坐标的变化规律,描述关于x轴,y轴成轴对称的两个三角形对应顶点坐标之间的关系.解:(1)△ABC关于x轴和y轴对称点坐标如下表:A(-5,1)B(-1,1)C(-2,4)关于x轴的对称点关于y轴的对称点(2)对称图形如图所示:(3)△ABC与△A1B1C1关于x轴对称,其横坐标相等,纵坐标互为相反数. △ABC与△ A2B2C2关于y轴对称,其纵坐标相等,横坐标互为相反数.由此可知,关于x成轴对称的两个图形,各对应顶点的横坐标相等,纵坐标互为相反数;关于y轴成轴对称的两个图形,各对应顶点的横坐标互为相反数,纵坐标相等.对点练习:1在平面直角坐标系中,△ABC与△A1B1C1 关于y轴对称,那么点A(-4,2)的对应点A1的坐标为(,)2将四边形ABCD的四个顶点的横坐标不变,纵坐标乘以-1,得四边形A1B1C1D1 ,那么两图形间的位置关系是()3 △ABC在直角坐标系中的位置如图所示.(1)作与△ABC关于x轴成轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标. (2)作与△ABC关于y轴成轴对称的△A2B2C2,并写出△A2B2C2各顶点的坐标解:由图可知A点坐标为(2,4),B点为(1,1),C点为(3,2).(1)△A1B1C1如图所示,由对称点坐标关系可知A1坐标为(2,-4),B1为(1,-1),C1为(3,-2).(2)△A2B2C2如图所示,由对称点坐标关系可知A2坐标为(-2,4),B2为(-1,1),C2为(-3,2).课堂小结:图形在坐标系中的轴对称-----转化为点在坐标系中的轴对称------关于x轴对称的点的特征和关于y轴对称的点的特征。
《18.3图形与坐标2》教学案例一、教材说明:1、教材版本:冀教版八年级(上)第十八章第3节《图形与坐标》第2课时。
2、“平面直角坐标系”是学习函数及其图象、的基础,是沟通数与形的桥梁。
这节课是在学习了坐标系与有关几何知识的基础上,进行函数图像在坐标系中变化,,学生在学习平面直角坐标系的概念,继续探究坐标系中点、图形变化的特征,为以后学习图形的平移、函数图像的平移打下基础。
本节内容需3课时,本设计为第2课时,本人大胆尝试,改编教材原有内容,结合学生现有水平,充分运用多媒体课件及导学案,创新编排,由点的平移拓展到图形的平移,符合学生的认知规律。
二、教学目标:(一)知识目标1、感受平面直角坐标系中图形的变化过程;2、探索平面直角坐标系中图形的变化过程及规律。
(二)技能目标1、会正确画出平面直角坐标系中图形的变化过程;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;3、在给定的条件下,能够根据象限内点的特征与图形变化的特征,解决一些简单的数学问题;4、初步培养学生探索总结规律的能力。
(三)情感目标1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。
3、让学生得到尝试、成功的情感体验,感受数学之美。
三、教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,结合图形的变化求相应点的坐标。
2、教学难点:探索象限内图形变化而产生的坐标变化特征,以及它们特征的简单运用。
四、教学媒体和教学技术选用1、提供学习资源:导学案(前一天发给学生自主完成)2、教学媒体:实物投影、多媒体课件五、教学过程:(一)、自学引路:(课前以导学案的形式发给学生,学生独立完成)根据右图完成下列问题:1、写出图中各点的坐标:点A( )点B( )点C( )点P( )2、将点A向右平移5个单位长度,得到点A1( );3、将点B向左平移2个单位长度,得到点B1( );4、将点P向上平移4个单位长度,得到点P1( ) ;5、将点C向下平移3个单位长度,得到点C1( );归纳总结:根据以上平移过程及结果,你发现了什么变化规律?想一想,做一做:点C(2,1)经过如何变化得到点C2(5,4)点A(-1,-1)经过如何变化得到点A2(2,3).使用说明:课前教师检查学生完成情况,确定课堂教学任务。
19.4坐标与图形变化一、教学目标初步掌握点的坐标变化与点的平移关系,进而理解图形各个点的坐标变化与图形平移的关系,并解决与平移有关的问题.经历探索点的平移与点的坐标变化之间的规律过程,体会数形结合思想. 了解利用图形的平移变换解决简单问题.培养学生主动探索的精神,提高学生的学习兴趣.二、教学重点和难点教学重点是让学生发现并归纳点的坐标变化与点的平移的关系;教学难点是文字语言、图形语言、坐标表示之间的转化以及应用.三、教学方法和教学手段本课采用教师的启发引导与学生的自主探究相结合的教学方法,利用多媒体等手段教学.五、教学过程设计与实施根据班级学生基础较好的特点,我把这节课分为五个环节:(一)一起探究在平面直角坐标系中,一只蚂蚁从原点出发,爬行路径如图19-4-1所示,(1)写出A、B、C、D、E这五个点的坐标。
(2)指出蚂蚁在各条线段上爬行的方向和距离,并填写下表。
2、在平面直角坐标系中,将一个图形沿坐标轴方向平移时,各顶点坐标是否有相同的变化规律?例、如图19-4-2在平面直角坐标系中,长方形ABCD各顶点坐标分别为A(-2,1)、B(2,1 )、C(2,3 )、D( -2,3 )。
将长方形AB CD沿x轴方向向右平移5个单位长度,得到长方形A1B1C1D1请写出长方形ABCD的各顶点坐标变化规律。
解:将长方形ABCD沿x轴方向向右平移5个单位长度,各顶点坐标平移方向一致,移动的距离都是5个单位长度。
因此平移后长方形A1B1C1D1各顶点坐标分别为A1(3,1)、B1(7,1)、C1(7,3)、D1(3,3).变化规律为长方形A1B1C1D1各顶点横坐标是将长方形ABCD各顶点横坐标都增加5,纵坐标不变得到的。
(二)做一做1、在图19-4-2中,将长方形ABCD沿y轴方向向下平移4个单位长度,画出平移后的长方形,写出其各顶点坐标,并说出平移前后各对应顶点坐标是如何变化的。
2、在图19-4-2中,将长方形ABCD沿x轴方向向右平移6个单位长度,再沿y轴方向向右平移5个单位长度.画出平移后的长方形,写出其各顶点坐标,并说出平移前后各对应顶点坐标是如何变化的。
义务教育教科书
《坐标与图形的变化》第二课时
同步练习
♦选择题
1•如图所示,AABC的顶点都在正方形网格格点上,点A的坐标为(-1, 4)•将△ABC沿y
轴翻折到笫一象限,则点C的对应点C'的坐标是()
2.在平面直角坐标系屮,等边三角形OAB关于x轴对称的图形是等边三角形OA' B'.若已知点A的坐标为(6, 0),则点B'的横坐标是()
数
八年级下册
A. 6
B. -6
C. 3
D. -3
教育部审定C 2
(T1 3 /
3•在平面直角坐标系中,AABC 的位置如图所示,点A 的坐标为(1, 3),将先向
再作出其关于x 轴的对称图形,则A 点的对应点的坐标为
AABC 向右平移4个单位得到△ A ;B]Ci,再作△A:BQ 关于x 轴的对称图形△A2B2C2, 的坐标是 ( )
5 •坐标平面内有点A (4, 8), B (-4, - 8),以坐标轴为对称轴,点A 可以由点B 经过m 次轴对称变换得到,则山的最小值为 (
) A. 1 B. 2 C. 3 D. 4
♦填空题
6.线段口在直角坐标系屮的位置如图所示,若线段M'N'与MN 关于y 轴对称,则点M 的对应点M'的坐标为 __________ .
7.如图所示,线段AB 两个端点的坐标分别为A (6, 6), B (8, 2),在第一象限内将线 段AB 缩小为原来的寸后得到线段CD,则端点D 的坐标为 ___________
乙
左平移3个单位, A. (-3, -2) 4.如图所示, D. (一2, -3)
AABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,
3),先把 则顶点A 2
A. (-3, 2)
B. (2, -3)
-1)
B. (一1,
C. (1, —2)
D. (3, y
&如图所示,/XABO在平面直角坐标系中,△A'B' 0与△ABO关于原点对称,已知A(-3, 1),则点B'的坐标为_________ .
答案和解析
一、选择题
ACDBB
二、填空题
6.(4, -2)
7.(4, 1)
& (1, 一2)。