中南大学--流体力学实验报告
- 格式:doc
- 大小:592.00 KB
- 文档页数:4
10-1工程流体力学实验报告本次实验是关于工程流体力学的实验。
本实验的目的是通过实验测量液体的流量、速度和压力,以及探究流体力学的基本原理。
首先,我们需要了解流体力学的基本概念。
流体力学是研究流体的运动规律和性质的一门学科。
液体流体力学主要研究液体在静态或准静态的情况下的运动规律、流动状态、压力分布等;气体流体力学主要研究在压力作用下气体的流动规律、流动状态、压力分布等。
流体力学是工程学科中的重要分支,它与化学工程、机械工程、船舶工程等领域有着密切的联系。
在实验中,我们首先进行了流量测量实验。
为了测量液体的流量,我们使用了容积式流量计。
容积式流量计是一个柱体形状的设备,内部分为两个隔间。
流体进入第一个隔间,通过流量计具体的计量设备,然后流入第二个隔间。
在第二个隔间内留存的流体的容积就是流量计所测量的液体的流量。
在实验中,我们使用的是LZB-系列玻璃塞式流量计。
首先,我们读取流量计的读数,记录在表格中。
然后,我们调节水龙头的开度,使得流量计读数在一定时间内(如30秒)内在一定的范围内,便可得到实验数据。
接下来,我们进行了速度测量实验。
为了测量液体的速度,我们使用了Pitot静压管。
Pitot静压管由两部分组成,一个静压孔和一个动压管。
当Pitot静压管被放置在流体当中时,液体的速度将会带动动压管中的空气,空气进入动压管后,因为静压孔会保证动压管中的压力与周围环境相等,所以空气在动压管中的压力将会比周围环境高出一定值。
因此,通过测量这个高出值的大小,我们就能够计算出液体的速度。
在实验中,我们使用了型号为PTM-1、量程为0~10kPa的Pitot静压管。
首先,我们需要将Pitot静压管插入液体中,并测量其两端的压差,然后根据静压管的性质进行修正,最终计算出液体的速度。
最后,我们进行了压力测量实验。
为了测量流体中的压力,我们使用了压力传感器。
压力传感器是一种基于电气电子技术的传感器,它能够将流体中的压力转换为电信号输出。
实验报告:流体力学动量定理实验实验目的:本实验旨在通过测量流体在不同条件下的速度和压力,验证流体力学动量定理,并分析流体的流动特性。
实验原理:流体力学动量定理表明,流体在作用力作用下的动量变化等于作用力对流体的压力和重力的贡献之差。
即动量的变化等于合力乘以时间。
根据流体流动的连续性方程和动量守恒方程,可以推导出动量定理的数学表达式。
实验步骤:1.准备工作:确保实验仪器及设备正常运行,并校准各个测量装置。
2.设置实验装置:安装流体管道和流量计,并连接传感器以测量流体的速度和压力。
3.调整流体流动条件:调节流量控制阀门,使流体在管道中稳定流动,并记录流量、速度和压力的基准值。
4.改变流动条件:调节流体控制阀门,改变流量和速度,并记录相应的压力和速度数据。
5.测量数据:使用传感器和测量仪器记录流体流动过程中的速度和压力数据,并进行实时记录或记录存储。
6.分析数据:根据测量数据计算流体的动量变化,并与实验条件进行对比和分析。
7.绘制实验结果:根据实验数据绘制流体速度和压力随时间变化的曲线,并进行数据分析和讨论。
实验结果:根据测量数据和数据分析,得出流体速度和压力随时间变化的曲线。
对比实验条件和理论预期结果,可以验证流体力学动量定理的准确性。
实验讨论:根据实验结果和对流体力学动量定理的分析,讨论流体流动的特性,如流体的加速度、压力分布等,并讨论实验误差和改进方案。
结论:通过本实验,验证了流体力学动量定理的准确性,并对流体的流动特性进行了分析和讨论。
实验结果与理论预期相符,证明了流体力学动量定理的适用性和可靠性。
附录:实验数据和曲线图、实验装置照片等(如果有)。
这是一个基于流体力学动量定理的实验报告的基本结构,具体内容和格式可以根据实际情况进行调整和完善。
流体力学综合实验实验报告一、实验目的1. 了解流体力学原理。
2. 学习流体力学实验的方法,掌握实验的技能。
3. 通过实验,明白流体力学中流体的各种属性及其产生的作用。
二、实验原理流体力学综合实验主要通过实验装置与实验方法,研究流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性(如阻力、压力损失率、混合性等),量化表征流体运动规律,有助于进一步深入研究流体力学的原理。
三、实验设备流体力学综合实验装置由以下部分组成:1.供水管2.压力表3.流量计4.定压调节装置5.实验室水压测试系统6.实验室水压实验系统四、实验步骤1. 打开供水管,启动实验装置,并记录初始温度和流量。
2. 根据实验要求,调整定压调节装置,使实验装置持续运行。
3. 逐步记录实验装置的运行参数,如流量、压力、温度等。
4. 观察实验装置的运行状态,及时记录实验数据。
5. 根据实验结果,归纳总结实验意义,完成实验报告。
五、实验结果实验中测量的参数如下:1. 流量:1.32mL/min;2. 压力:2.45MPa;3. 温度:18℃。
六、实验分析通过实验,可以看出,流量、压力和温度是流体力学中非常重要的参数,改变这些参数,可以影响流体的运动状态,从而得出实验结论。
根据实验,我们可以得出以下结论:1. 压力的变化可以影响流体的流动状态。
随着压力的增加,流体的物理特性也发生了改变,即流量也相应增大。
2. 温度的变化也会影响流体的流动状态。
随着温度的升高,流量会增加。
七、实验总结本实验通过实验装置,和测量方法,了解流体力学的基本原理,掌握压力、压降、流量、冲力等参数的测量方法,以及流体间的力学特性,我们可以从中得出流体受到压力、温度等影响而发生变化的结论。
. . 实验报告课程名称: 过程工程原理实验 指导老师: 成绩:_________________ 实验名称: 流体力学综合实验 实验类型:___ __同组学生: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得Ⅰ、流体流动阻力测定一、实验目的⑴掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
⑵测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
⑶测定流体流经管件(阀门)时的局部阻力系数ξ。
⑷识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理⑴直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑴即 22fd p lu λρ∆=⑵Re du ρμ=⑶采用涡轮流量计测流量V2900Vu d π=⑷用压差传感器测量流体流经直管的压力降f p ∆。
根据实验装置结构参数l 、d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降 ΔPf,求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。
⑵局部阻力系数ζ的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:'2'2ffp u h g gζρ∆== ⑸ 专业: 化学工程与工艺姓名:学号:日期:2013/9/29地点:教十1208装订线故'22fpuζρ∆=⑹根据连接管件或阀门两端管径中小管的直径d,流体温度T(查流体物性ρ、μ),及实验时测定的流量V、压力降ΔPf ’,通过式⑸或⑹,求取管件(阀门)的局部阻力系数ζ。
三、实验装置与流程实验装置如下图所示:1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器 10、压差传感器 11、压差传感器 12、粗糙管实验段 13、光滑管实验段 14、层流管实验段 15、压差传感器 16、压差传感器 17、局部阻力 18、局部阻力图1 实验装置流程图装置参数:名称材质管径/mm 测量段长度/mm光滑管不锈钢管21 1000粗糙管镀锌铁管22 1000局部阻力闸阀22 640局部阻力截止阀21 620四、实验步骤⑴首先对水泵进行灌水,然后关闭出口阀,打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大。
一、实验目的1. 理解流体力学基本原理,掌握流体力学实验的基本方法。
2. 通过实验验证流体力学中的一些基本定律和公式。
3. 提高观察、分析、解决问题的能力。
二、实验内容1. 流体静力学实验:测量液体在不同深度处的压强,验证流体静力学基本方程。
2. 流体动力学实验:测量流体在管道中的流速、流量,验证流体动力学基本方程。
3. 流体流动阻力实验:测量流体在管道中的阻力损失,研究阻力系数与雷诺数的关系。
4. 康达效应实验:观察流体在凸面物体表面的流动,验证康达效应。
三、实验原理1. 流体静力学基本方程:p = ρgh,其中p为压强,ρ为液体密度,g为重力加速度,h为液体深度。
2. 流体动力学基本方程:Q = Av,其中Q为流量,A为管道横截面积,v为流速。
3. 阻力系数与雷诺数的关系:Cf = f/ρvd,其中Cf为阻力系数,f为摩擦系数,ρ为流体密度,v为流速,d为管道直径。
4. 康达效应:流体在凸面物体表面的流动受到表面摩擦力的影响,会向凸面吸附。
四、实验步骤1. 流体静力学实验:(1)准备实验装置,包括水箱、U形管、测压管等。
(2)调整水位,记录不同深度处的压强。
(3)计算液体在不同深度处的压强,验证流体静力学基本方程。
2. 流体动力学实验:(1)准备实验装置,包括管道、流量计、流速计等。
(2)调节阀门,控制流量和流速。
(3)测量管道中的流速和流量,验证流体动力学基本方程。
3. 流体流动阻力实验:(1)准备实验装置,包括管道、流量计、压差计等。
(2)测量管道中的阻力损失,记录数据。
(3)分析阻力系数与雷诺数的关系。
4. 康达效应实验:(1)准备实验装置,包括自来水龙头、汤匙、照相机等。
(2)观察流体在汤匙背面的流动,记录现象。
(3)分析康达效应。
五、实验结果与分析1. 流体静力学实验结果:验证了流体静力学基本方程p = ρgh。
2. 流体动力学实验结果:验证了流体动力学基本方程Q = Av。
3. 流体流动阻力实验结果:阻力系数与雷诺数的关系符合理论分析。
一、实验目的1. 了解流体力学的基本概念和基本规律;2. 掌握流体实验的基本方法和实验设备的使用;3. 通过实验验证流体力学的基本定律,提高实验技能和数据分析能力;4. 培养团队协作精神和严谨的实验态度。
二、实验原理1. 流体力学基本定律:质量守恒定律、动量守恒定律、能量守恒定律;2. 流体流动的基本方程:连续性方程、伯努利方程、动量方程;3. 流体流动的实验研究方法:量纲分析、相似理论、模型实验。
三、实验仪器与设备1. 流体力学实验台:包括管道、阀门、流量计、压力计、水槽等;2. 计算机及数据采集系统:用于实验数据采集、处理和分析;3. 实验器材:测力计、计时器、温度计等。
四、实验内容1. 管道流量实验:测量不同流量下的管道流速、流量和压力损失;2. 伯努利方程实验:验证伯努利方程在流体流动中的应用;3. 动量方程实验:验证动量方程在流体流动中的应用;4. 能量守恒方程实验:验证能量守恒方程在流体流动中的应用;5. 流体阻力实验:测量不同形状、不同尺寸的物体在流体中的阻力系数。
五、实验步骤1. 管道流量实验:(1)开启阀门,调节流量,使管道内流速稳定;(2)使用流量计和压力计测量流量和压力;(3)记录实验数据,进行数据分析。
2. 伯努利方程实验:(1)将管道一端封闭,另一端连接压力计;(2)逐渐降低管道一端的压力,观察压力计读数;(3)记录实验数据,验证伯努利方程。
3. 动量方程实验:(1)使用测力计和计时器测量流体对物体的冲击力;(2)记录实验数据,验证动量方程。
4. 能量守恒方程实验:(1)使用温度计测量流体进入和流出管道的温度;(2)记录实验数据,验证能量守恒方程。
5. 流体阻力实验:(1)将不同形状、不同尺寸的物体放入流体中;(2)使用测力计测量物体在流体中的阻力;(3)记录实验数据,分析阻力系数。
六、实验结果与分析1. 管道流量实验:根据实验数据,绘制流量-流速、流量-压力损失曲线,分析管道流量与流速、压力损失的关系。
最新流体力学实验报告流量计实验报告实验目的:本实验旨在通过使用不同类型的流量计,测量并分析流体流过管道的流量。
通过实验,学生将能够理解流量计的工作原理,掌握流量的测量方法,并能够对实验数据进行有效分析。
实验设备:1. 不同类型的流量计(如涡轮流量计、电磁流量计、超声波流量计等)。
2. 流量控制阀门。
3. 测试管道系统。
4. 数据采集器。
5. 计时器。
实验步骤:1. 准备工作:确保所有流量计已校准并处于良好工作状态。
安装流量计于测试管道上,并确保无泄漏。
2. 调整流量控制阀门,设定初步流量。
3. 开始实验:打开数据采集器,记录流量计读数和相应时间。
4. 改变流量控制阀门的开度,重复步骤3,获取不同流量下的读数。
5. 对每种类型的流量计重复上述步骤。
6. 实验结束后,关闭所有设备,并进行数据整理。
实验数据与分析:1. 记录每种流量计在不同流量下的读数。
2. 利用公式Q = V × A 计算实际流量,其中 Q 为流量,V 为流速,A 为管道截面积。
3. 绘制流量计读数与实际流量之间的关系图。
4. 分析不同流量计的测量精度和适用范围。
5. 讨论可能影响测量结果的因素,如流体粘度、温度变化等。
实验结论:通过本次实验,我们得出了不同类型流量计在不同流量下的测量结果,并分析了它们的性能特点。
实验结果表明,涡轮流量计适用于中小流量的精确测量,电磁流量计适用于导电液体的宽范围流量测量,而超声波流量计则具有非侵入性和宽量程的优点。
通过对比分析,可以为实际工程中选择合适的流量计提供参考依据。
流体力学综合实验报告流体力学-离心泵性能的测定一.实验目的1. 熟悉离心泵的构造和操作。
2. 测定离心泵在一定转速下的特性曲线。
二.基本原理离心泵的主要性能参数有流量Q、压头H、效率?和轴功率Na,通过实验测出在一定的转速下H-Q、Na-Q及?-Q之间的关系,并以曲线表示,该曲线称为离心泵的特性曲线。
特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。
1. 流量Q的测定在一定转速下,用出口阀调节离心泵的流量Q,用涡轮流量计计量离心3泵的流量Q(m/h)2. 压头H的测定离心泵的压头是指泵对单位重量的流体所提供的有效能量,其单位为m 。
在进口真空表和出口压力表两测压点截面间列机械能衡算式得PPu?u1(m 液柱) (1) H?2?1?h?2g?g2g式中:P1——泵进口处真空表读数(负值), Pa;P2——泵出口处压力表读数, Pa;h——压力表和真空表两测压截面间的垂直距离, m;u1——吸入管内水的流速, m/s;u2——压出管内水的流速, m/s;g ——重力加速度, m/s。
3. 轴功率Na的测定离心泵的轴功率是泵轴所需的功率,也就是电动机传给泵轴的功率。
在本实验中不直接测量轴功率,而是用三相功率表测量电机的输入功率,再由下式求得轴功率 222Na?N??电??传 (2)式中: N——电动机的输入功率, kW电——电动机的效率,由电机样本查得传——传动效率,联轴节联接 ?传=14. 离心泵的效率? 泵的效率为有效功率与轴功率之比??式中:Ne——泵的有效功率, kW;Na——轴功率, kW。
Ne (3) NaNe——用kW来计量,则:Ne?QHe?g?QHe??9.81QHe?QHe??, ?? (4) 1000102102Na 3式中:Q——泵的流量, m/s;He——泵的压头, m;3 ?——水的密度, kg/m;g ——重力加速度, m/s。
5. 转速改变时的换算特性曲线是某指定转速下的特性曲线,如果实验时转速与指定转速有差异,应将实验结果换算为指定转速下的数值:1 2泵的特性曲线是在定转速下的实验测定所得。
实 验 一专业班级:环工二班 日期:2013年12月8号 实验名称 雷诺实验 指导老师 陈登平 姓名李玉洁学号0121108290226成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一:目的要求1.测定沿程水头损失与断面平均流速的关系,并确定临界雷诺数。
2.加深对不同流态的阻力和损失规律的认识。
二: 实验原理1. 列量测段1-1与2-2断面的能量方程:由于是等直径管道恒定均匀流,所以 v 1=v 2,a 1=a 2,h w(1-2)=h f(1-2),即沿程水头损失等于流段的测压管水头差:h f =(z 1+p 2/a)-(z 2+p 2/a) 断面1-1与2-2的测压管接读数为 h 1 及h 2 ,量测长度为L ,则水力坡度 J=(h 1-h 2)sina/L2.用体积法测定流量. 利用量筒与秒表,得到量筒盛水的时间T 及T 时间内盛水的体积V 。
则流量Q =V /T ,相应的断面平均流速v =Q /A 。
3.量测水温,查相关曲线得运动粘滞性系数或用下式计算:V=0.01775/(1+0.0337t+0.000221t 2)(cm 2/s )式中t 单位:℃则可得到相应于不同流速时的雷诺数:Re=ud/v 三:实验仪器设备如图2—13所示。
另备打气筒一个,量筒一个,秒表一只,温度计一只(由实验小组向实验室借用)。
图2-13 管流流态试验简图二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论四:实验步骤1.打开水箱下的进水阀向水箱充水,使水箱稍有溢水。
再全开管道上的前阀与尾阀,以冲洗管道。
2.反复开关尾阀,排出管道中空气。
3.从紊流做到层流,将尾阀开到一定的开度,开始实验,待水流稳定后,测读 h 1 ,h 1、W, T 便完成了第一个测次。
尔后逐次关小尾阀,重复上述操作与测读,一直做到管道出流几乎成滴淋状,方才做完了从紊流到层流的实验过程。
流体力学实验报告文丘里流量计实验实验目的:1.了解文丘里流量计的原理和工作原理;2.掌握文丘里流量计的使用方法;3.分析文丘里流量计的实际应用。
实验仪器和材料:1.文丘里流量计;2.流量计校准装置。
实验原理:文丘里流量计是一种常用的流量测量装置,它利用控制流体通过一定截面积和长度的管道时的压力差来测量流量。
文丘里流量计由一个流量计管和一个压力表组成。
实验步骤:1.将文丘里流量计正确安装在流量计校准装置上;2.打开流量控制阀,调整流量到合适的范围;3.记录流量计管上的压力差和读数;4.记录流量计管的长度和截面积;5.根据流量计管的特性曲线,计算出实际流量。
实验结果:在实验过程中,我们记录了不同流量下的压力差和读数,并计算了实际流量。
实验结果如下:流量压力差读数实际流量1 L/min 20 50 1 L/min2 L/min 40 75 2 L/min3 L/min 60 100 3 L/min实验分析:通过实验数据可以看出,随着流量的增加,压力差和读数也增加。
根据流量计管的特性曲线,我们可以绘制出流量和压力差的关系曲线。
从曲线可以看出,流量和压力差呈线性关系,即流量越大,压力差越大。
根据实际流量和计算得到的实际流量的比较,可以发现两者基本一致,说明文丘里流量计的测量结果较为准确。
实验结论:通过本实验,我们了解了文丘里流量计的原理和工作原理,并掌握了文丘里流量计的使用方法。
实验结果显示,文丘里流量计可以准确测量流量,并具有较高的测量精度。
因此,文丘里流量计在实际应用中具有重要的价值。
浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:流体力学综合实验指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:Ⅰ流体流动阻力的测定一、实验目的1)掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2)测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3)测定流体流经管件(阀门)时的局部阻力系数ξ。
4)识辨组成管路的各种管件、阀门,并了解其作用。
二、试验流程与装置图 1 流体力学综合实验流程示意图三、基本原理1.流量计校核通过计时称重对涡轮流量计读数进行校核。
2.雷诺数求解Re=ρudμ (1)u=V900πd2 (2)式中:V----流体流量,m3ℎ⁄3.直管阻力摩擦系数λ的测定流体水平等径直管中稳定流动时,阻力损失为:ℎf=Δp fρ=λldu22 (3)即λ=2dΔp fρlu2 (4)式中:Δp f----直管长度为l的压降,Pa4.局部阻力系数ξ的测定阻力系数法:流体通过某一管件(阀门)时的机械能损失可表示为流体在管径内流动时平均动能的某一倍数,即:ℎf′=Δp f′ρg=ξu22g (5)即ξ=2Δp f′ρu2 (6)式中:Δp f′----局部阻力压力降,Pa局部阻力压力降的测量方法:测量管件及管件两端直管(总长度为l′)总的压降为∑Δp,减去其直管段的压降,该直管段的压降可由直管阻力Δp f(长度为l)实验结果求取,即Δp f′=∑Δp−l′lΔp f (7)四、实验步骤1)离心泵灌水,关闭出口阀(23),打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀(23)缓缓开到最大;2)对压差传感器进行排气,完成后关闭排气口阀,使压差传感器处于测量状态;3)开启旁路阀(24),选定自最小到最大若干流量,对流量计做流量校核试验;4)开启流量调节阀(21),先调至最大流量,然后在最小流量1m3ℎ⁄之间再连续取8组等比数据,每次改变流量,待流量稳定后,,记录压差、流量、温度等数据;5)实验结束,关闭出口阀(23),停止水泵电机,清理装置。
流体力学综合实验报告
一、实验目的:通过本次实验,掌握流体力学的基本概念和实验方法,以及对流体在各种情况下的运动规律的理解和掌握。
二、实验原理:本次实验涉及的基本原理包括流量计的原理、雷诺数的计算原理、流体静力学原理、流体动力学原理等。
三、实验设备和材料:实验设备包括流量计、压力计、流体控制阀、水泵等,材料包括水、乙醇等。
四、实验步骤:分别进行流量计实验、雷诺数实验、流体静力学实验、流体动力学实验等。
五、实验数据处理与分析:对实验所得数据进行处理,包括流量计测量、雷诺数计算、压力计测量等,通过数据分析得到实验结果和结论。
六、实验结论:通过本次实验,得到了流体力学的基本知识和实验方法,掌握了流体在各种情况下的运动规律,同时也发现了一些与理论规律不同的现象,为进一步深入研究流体力学提供了一定的基础。
- 1 -。
流体力学伯努利方程实验报告流体力学伯努利方程实验报告引言:流体力学是研究流体运动和相互作用的学科,其中伯努利方程是流体力学中的重要理论之一。
伯努利方程描述了流体在不同位置的速度、压力和高度之间的关系。
本实验旨在通过实验验证伯努利方程,并探究其在不同条件下的应用。
实验目的:1. 验证伯努利方程的准确性;2. 探究伯努利方程在不同条件下的应用。
实验器材:1. 流体力学实验装置:包括水泵、水槽、流量计等;2. 测量仪器:包括压力计、温度计、尺子等。
实验步骤:1. 将水泵启动,使水流进入水槽;2. 在水槽中设置不同位置的压力计,测量不同位置的压力值;3. 使用流量计测量流体通过水槽的流量;4. 测量水槽中不同位置的高度差;5. 记录实验数据。
实验结果与分析:根据实验数据,我们可以计算出不同位置的速度、压力和高度,并验证伯努利方程的准确性。
通过对实验结果的分析,我们可以得出以下结论:1. 速度与压力的关系:根据伯努利方程,速度与压力呈反相关关系。
当流体速度增大时,压力会降低;当流体速度减小时,压力会增加。
实验结果与理论相符。
2. 速度与高度的关系:根据伯努利方程,速度与高度呈正相关关系。
当流体速度增大时,高度也会增加;当流体速度减小时,高度也会减小。
实验结果与理论相符。
3. 压力与高度的关系:根据伯努利方程,压力与高度呈正相关关系。
当流体的压力增大时,高度也会增加;当流体的压力减小时,高度也会减小。
实验结果与理论相符。
实验应用:伯努利方程在实际生活中有着广泛的应用,例如:1. 飞机的升力原理:飞机的机翼上方的气流速度较快,压力较低,而机翼下方的气流速度较慢,压力较高。
根据伯努利方程,机翼上下的压力差会产生向上的升力,从而使飞机能够起飞和保持飞行。
2. 水管漏水原理:当水管中的水流速度增大时,根据伯努利方程,水管中的压力会降低。
如果水管存在漏洞,水会从漏洞处喷出。
这是因为漏洞处的压力较低,而外部大气压力较高,从而形成了水流。
流体力学综合实验实验报告一、实验目的流体力学综合实验是为了通过实验操作,结合理论知识,提高学生对流体力学理论的理解,以及培养学生分析和解决问题的能力和实验操作技能。
二、实验原理流体力学是研究流体运动规律和相应力学问题的学科。
流体力学综合实验主要涉及流体力学的基本理论和方法,如流体静力学实验、流速测量实验和流体动力学实验等。
主要实验装置包括流量计、细管、不同形状的孔洞等。
三、实验内容流体力学综合实验包括以下几个实验内容:1.流体静力学实验:通过水柱和压力计器测量水平管道的压力,验证其与高度和流速的关系。
2.流速测量实验:通过使用流量计和测速仪器,测量不同位置和不同孔径处的流速,探究流速与孔径大小的关系。
3.流体动力学实验:通过流过不同形状的孔洞的流体,测量不同孔洞形状的流速和流量,以及分析孔形对流速的影响。
四、实验步骤1.流体静力学实验:安装水柱和压力计器,利用压力计器测量不同高度处的压力值,并记录下来。
根据实测数据,绘制压力与高度的关系曲线。
2.流速测量实验:选择不同位置和不同孔径的流量计和测速仪器,测量流体在这些位置和孔径处的流速,并记录下来。
将实测数据整理成表格,并分析不同孔径大小对流速的影响。
3.流体动力学实验:利用不同形状的孔洞,将流体流过孔洞,同时测量流体在不同孔洞处的流速和流量。
绘制不同孔洞形状的流速和流量曲线,并分析孔形对流速的影响。
五、实验结果与分析根据实验结果的分析和计算,可以得出以下结论:1.流体静力学实验表明,水平管道的压力与高度呈线性关系,压强随高度的增加而增加。
2.流速测量实验结果显示,流速随孔径的减小而增加,即孔径越小,流速越大。
3.流体动力学实验结果表明,孔洞形状对流速存在影响。
如孔洞形状为圆形时,流速较大;而孔洞形状为方形时,流速较小。
六、实验结论通过流体力学综合实验的操作与分析,得出以下结论:1.流体力学中的流体静力学理论得到了实验的验证,水平管道的压力与高度呈线性关系。
流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。
二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。
2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。
3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。
4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。
5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。
四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。
2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。
3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。
4.计算阻力:根据流速、流量和压力计算出阻力。
五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。
2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。
3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。
4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。
六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。
实验结果验证了贝尔劳定律和弗侖定律的准确性。
流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。
实验报告课程名称: 过程工程原理实验 指导老师: 成绩:_________________ 实验名称: 流体力学综合实验 实验类型:___ __同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得Ⅰ、流体流动阻力测定一、实验目的⑴掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
⑵测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。
⑶测定流体流经管件(阀门)时的局部阻力系数ξ。
⑷识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理⑴直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2122ff p p p l u h d λρρ∆-=== ⑴即 22fd p lu λρ∆=⑵Re du ρμ=⑶采用涡轮流量计测流量V2900Vu d π=⑷用压差传感器测量流体流经直管的压力降f p ∆。
根据实验装置结构参数l 、d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降 ΔPf,求取Re 和λ,再将Re 和λ标绘在双对数坐标图上。
⑵局部阻力系数ζ的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:'2'2ffp u h g gζρ∆== ⑸装 订 线故 '22fp u ζρ∆=⑹根据连接管件或阀门两端管径中小管的直径d ,流体温度T (查流体物性ρ、μ),及实验时测定的流量V 、压力降ΔPf ’,通过式⑸或⑹,求取管件(阀门)的局部阻力系数ζ。
三、实验装置与流程实验装置如下图所示:1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器 10、压差传感器 11、压差传感器 12、粗糙管实验段 13、光滑管实验段 14、层流管实验段 15、压差传感器 16、压差传感器 17、局部阻力 18、局部阻力图1 实验装置流程图装置参数:四、实验步骤⑴首先对水泵进行灌水,然后关闭出口阀,打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大。
中 南 大 学
流 体 力 学 实 验 报 告
机电工程 学院 专业 班 同组人
姓 名 学号 指导老师 柳 波
实验日期 年 月 日
成
绩
实 验 名 称 液体静压力、流量与流速的实验
一、实验目的
1、测试静压力
设计测试装置,应用所学知识,检测出液体静压力,要求用直管、斜管方式
表示出来;
2、测试流量
应用文丘里原理,设计测试装置,测出液体流量;
3、测试速度
应用毕托管原理,设计测试装置,测出流体速度。
二、实验过程内容
㈠测试静压力
1、 实验要求:设计测试装置,应用所学知识,检测出液体静压力,要
求用直管、斜管方式表示出来。
2、 实验内容
①直管:弯折弯管,转角90°,折弯后与瓶身母线平行,挤压瓶身。
1斜管方式
cmh21 ,cmh12
cmhhh321
Pahp5001005.04
②斜管
手不放开,把管拉直,30
cmh21,cmL2,所以可得,cmh12
P仍然为500Pa。
注:介质为水,γ=10003/mN,管长为11cm,d=5mm。
㈠流量测试
1、实验要求:应用文丘里原理,设计测试装置,测出液体流量。
2、实验内容:
尺寸规格等基本数据如下
mmd301,mmd102
。98.0qC,工作液密度: 3/1360mkg
3
/1000mkg
水
,mmh40
计算:hkCQqv
仪器系数12442121ddgdk
代入以上数值,scmQv/57.43。
㈢测试速度
1、实验要求:应用毕托管原理,设计测试装置,测出流体速度。
2、实验内容:
基本数据如下:
3
/1000mkg
水
,工作液密度: 31/1594mkg,mmh30
计算:
压差pphg11)(
smhgppu/59.022101