离散数学第十四讲
- 格式:pdf
- 大小:185.18 KB
- 文档页数:38
2.8、C1∧C2≈Res(C1,C2)2.10、(消解的完全性)一个合取范式是不可满足的当且仅当它有否证.3.1、由命题公式A1, A2, …, Ak推B的推理正确当且仅当A1∧A2∧…∧Ak→B为重言式.(推理正确不能保证结论一定正确)4.1、闭式在任何解释下都是命题5.1、(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式6.1、空集是任何集合的子集。
(推论:空集是唯一的)6.2、(包含排斥原理)设集合S上定义了n条性质,其中具有第i 条性质的元素构成子集Ai, 那么集合中不具有任何性质的元素数为:6.3、德摩根律:A-(B⋃C)=(A-B)⋂(A-C)A-(B⋂C)=(A-B)⋃(A-C)~(B⋃C)=~B~⋂C~(B⋂C)=~B~⋃C7.9、设R为A上的关系, 则(1) R 在A上自反当且仅当IA ⊆R(2) R 在A上对称当且仅当R=R^(-1)(3) R 在A上传递当且仅当R︒R ⊆R7.10、设R为A上的关系, 则有(1) r(R)=R∪R^0(2) s(R)=R∪R^(-1)(3) t(R)=R∪R^2∪R^3∪…9.1、设◦为S上的二元运算,el和er分别为S中关于运算的左和右单位元,则el = er = e为S上关于◦运算的惟一的单位元.9.2、设◦为S上的二元运算,θl和θr分别为S中关于运算的左和右单位元,则θl = θr = θ为S上关于◦运算的惟一的零元.9.3、设◦为S上的二元运算,e和θ分别为◦运算的单位元和零元,如果S至少有两个元素,则e≠θ.9.4、设◦为S上可结合的二元运算, e为该运算的单位元, 对于x∈S 如果存在左逆元yl 和右逆元yr, 则有yl = yr= y, 且y是x 的惟一的逆元.10.2、G为群,∀a,b∈G,方程ax=b和ya=b在G中有解且仅有惟一解. (G中适合消去律)10.3、G为群,a∈G且|a| = r. 设k是整数,则(1) a^k = e当且仅当r | k(r整除k)(2 )|a^-1| = |a|10.4、(子群判定定理一)设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a^-1∈H.10.5、(子群判定定理二)设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H有ab^-1∈H.10.6、(子群判定定理三)设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H.10.7、设H是群G的子群,则He=H,∀a∈G有a∈Ha10.8、设H是群G的子群,则∀a,b∈G有:a∈Hb ⇔ab-1∈H ⇔Ha=Hb10.9、设H是群G的子群,在G上定义二元关系R:∀a,b∈G, <a,b>∈R ⇔ab-1∈H则R是G上的等价关系,且[a]R = Ha.推论:设H是群G的子群, 则(1) ∀a,b∈G,Ha = Hb或Ha∩Hb = ∅(2) ∪{Ha | a∈G} = G10.10、(Lagrange)设G是有限群,H是G的子群,则:|G| = |H|·[G:H]其中[G:H] 是H在G中的不同右陪集(或左陪集) 数,称为H在G 中的指数.推论1:设G是n阶群,则∀a∈G,|a|是n的因子.推论2:对阶为素数的群G,必存在a∈G使得G = <a>.10.11、(循环群的生成元)设G=<a>是循环群. :(1) 若G是无限循环群,则G只有两个生成元,即a和a-1.(2) 若G是n 阶循环群,则G含有φ(n)个生成元. 对于任何小于n且与n 互质的数r∈{0,1,…,n-1}, ar是G的生成元.10.12、(循环群的子群)设G=<a>是循环群.(1) 设G=<a>是循环群,则G的子群仍是循环群.(2) 若G=<a>是无限循环群,则G的子群除{e}以外都是无限循环群.(3) 若G=<a>是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群.14.1、(握手定理)在任何无向图中,所有顶点的度数之和等于边数的2倍.14.2、(握手定理)在任何有向图中,所有顶点的度数之和等于边数的2倍;所有顶点的入度之和等于所有顶点的出度之和,都等于边数.推论:任何图(无向或有向) 中,奇度顶点的个数是偶数.14.5、在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1 的通路.推论:在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1的初级通路(路径).14.7、对任意无向图G中,有:κ(G)λ≤(G)δ≤(G)14.8、D强连通当且仅当D中存在经过每个顶点至少一次的回路14.9、D单向连通当且仅当D中存在经过每个顶点至少一次的通路14.10、无向图G=<V,E>是二部图当且仅当G中无奇圈15.1、无向图G是欧拉图当且仅当G连通且无奇度数顶点.15.2、无向图G是半欧拉图当且仅当G 连通且恰有两个奇度顶点.15.5、G是非平凡的欧拉图当且仅当G是连通的且是若干个边不重的圈的并.15.6、设无向图G=<V,E>是哈密顿图,对于任意V1⊂V且V1∅≠,均有p(G-V1) ≤ |V1|设无向图G=<V,E>是半哈密顿图,对于任意的V1⊂V且V1∅≠均有p(G-V1) ≤ |V1|+1 15.7、设G是n阶无向简单图,若对于任意不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n-1则G 中存在哈密顿通路.推论:设G为n(n≥3) 阶无向简单图,若对于G中任意两个不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n则G中存在哈密顿回路,从而G为哈密顿图.16.1、设G=<V,E>是n阶m条边的无向图,则下面各命题是等价的:(1) G 是树(2) G 中任意两个顶点之间存在惟一的路径.(3) G 中无回路且m=n-1.(4) G 是连通的且m=n-1.(5) G 是连通的且G 中任何边均为桥.(6) G 中没有回路,但在任何两个不同的顶点之间加一条新边,在所得图中得到惟一的一个含新边的圈.16.2、设T是n阶非平凡的无向树,则T 中至少有两片树叶.16.3、无向图G具有生成树当且仅当G连通.推论1 :G为n阶m条边的无向连通图,则m≥n-1.推论2 :余树的边数为m-n+1.推论3 :余树为G的生成树T的余树,C为G中任意一个圈,则C与余树一定有公共边17.3、平面图各面次数之和等于边数的两倍.17.4、极大平面图是连通的,并且n(n≥3)阶极大平面图中不可能有割点和桥.17.5、设G为n(n≥3)阶极大平面图,则G的每个面的次数均为3.17.6、(欧拉公式)设G为n阶m条边r个面的连通平面图,则n-m+r=217.7、(欧拉公式的推广)设G是具有k(k≥2)个连通分支的平面图,则n-m+r=k+117.8、设G为连通的平面图,且deg(Ri)≥l, l≥3,则m≤ l(n-2)/( l-2)推论:K5,K3,3不是平面图17.10、设G为n(n≥3)阶m条边的简单平面图,则m≤3n-6.17.11、设G为n(n≥3)阶m条边的极大平面图,则m=3n-6.17.12、设G 为简单平面图,则δ(G)≤5.17.13、G是平面图⇔G中不含与K5或K3,3同胚的子图.17.14、G是平面图⇔G中无可收缩为K5或K3,3的子图18.3、设n阶图G中无孤立顶点.(1) 设M为G中一个最大匹配,对于G中每个M非饱和点均取一条与其关联的边,组成边集N,则W=M⋃N为G中最小边覆盖.(2) 设W1为G中一个最小边覆盖;若W1中存在相邻的边就移去其中的一条,设移去的边集为N1,则M1=W1-N1为G中一个最大匹配.(3) G中边覆盖数α1与匹配数β1满足α1+β1=n.推论:设G是n阶无孤立顶点的图. M为G中的匹配,W是G中的边覆盖,则|M| ≤ |W|,等号成立时,M为G中完美匹配,W为G中最小边覆盖.18.4、M为G中最大匹配当且仅当G中不含M的可增广交错路径.18.5、(Hall定理)设二部图G=<V1,V2,E>中,|V1|≤|V2|. G中存在从V1到V2的完备匹配当且仅当V1中任意k(k=1,2,…,|V1|)个顶点至少与V2中的k个顶点相邻.本定理中的条件常称为“相异性条件”.18.6、设二部图G=<V1,V2,E>中,V1中每个顶点至少关联t (t≥1)条边,而V2中每个顶点至多关联t 条边,则G 中存在V1到V2的完备匹配.18.7、对于任意无向图G,均有χ(G) ≤∆(G)+1几个相关性质:χ(G)=1当且仅当G为零图χ(Kn)=n若G为奇圈或奇阶轮图,则χ(G)=3,若G为偶阶轮图,则χ(G)=4.若G的边集非空,则χ(G)=2当且仅当G为二部图18.8、(Brooks定理)若连通无向图G不是Kn,(n≥3),也不是奇数阶的圈,则χ(G) ≤∆(G) 18.10、(四色定理)任何平面图都是4-可着色的。
离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学-详解离散数学(Discrete Mathematics)目录• 1 什么是离散数学• 2 离散数学的发展• 3 离散数学与现代信息技术• 4 参考文献什么是离散数学离散数学是研究离散量的结构及其相互关系的数学学科,离散数学是数学几个分支的总称,研究基于离散空间而不是连续的数学结构。
更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括整数集)的数学分支。
与光滑变化的实数不同,离散数学的研究对象———例如整数、图和数学逻辑中的命题———不是光滑变化的,而是拥有不等、分立的值。
离散数学中的对象集合可以是有限或者是无限的。
特别是,有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。
包括基本的概率论、线性规划、矩阵和行列式的理论。
离散数学的应用遍及现代科学技术的诸多领域,它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学等必不可少的科研基础。
离散数学的发展历史上,离散数学涉及各个领域的一系列挑战性问题。
在图论中,大量研究的动机是企图证明四色定理。
这些研究虽然从1852年开始,但是直至1976年四色理论才得到证明,是由肯尼斯·阿佩尔和沃尔夫冈·哈肯大量使用计算机辅助来完成的。
在逻辑领域,大卫·希尔伯特于1900年提出的公开问题清单的第二个问题是要证明算术公理是一致的。
1931年,库尔特·哥德尔的第二不完备定理证明这是不可能的———至少算术本身不可能。
大卫·希尔伯特的第十个问题是要确定某一整系数多项式丢番图方程是否有一个整数解。
1970年,尤里·马季亚谢维奇证明这不可能做到。
第二次世界大战时盟军基于破解纳粹德军密码的需要,带动了密码学和理论计算机科学的发展。
英国的布莱切利园因而发明出第一部数字电子计算器———巨像计算机。
精选全文完整版可编辑修改离散数学教学大纲一、教学目标本课程的教学目标是:1.学习和掌握离散型关系结构的构成及分析方法,包括:集合论的主要内容:集合的基本概念、二元关系、函数、自然数和基数等;图论的主要内容:图的基本概念、欧拉图与哈密尔顿图、树、图的矩阵表示、平面图、图的着色、支配集、覆盖集、独立集与匹配、带权图及其应用等;2. 学习和掌握离散型代数结构的构成、性质和分析方法,熟悉半群、群、环、域、格、布尔代数等有着重要应用背景的代数模型;3. 学习和掌握组合配置的存在性证明和计数方法,并用于离散结构的性质分析。
4. 学习和掌握命题逻辑、一阶谓词逻辑的基本概念和推理方法。
5. 能够理论联系实际,用上述离散数学的描述工具和分析方法对实践中的离散系统进行建模和分析。
6. 通过严谨证明及正确逻辑推理的训练,进一步培养学生的抽象思维、计算思维能力和专业素质。
二、教学内容1.集合(教材第一章)●引言●预备知识(命题逻辑)●预备知识(一阶谓词逻辑)●集合的概念和集合之间的关系●集合的运算●基本的集合恒等式2.二元关系(教材第二章)●有序对与卡氏积●二元关系●关系的表示和关系的性质●关系的幂运算和闭包●等价关系和划分●序关系3.函数(教材第三章)●函数的基本概念、性质、合成、反函数4.自然数(教材第四章)●自然数的定义●自然数的性质5.基数(教材第五章)●集合的等势、有穷集合与无穷集合●基数和基数的比较与运算6.图(教材第七章)●图的基本概念●通路与回路●无向图和有向图的连通性●无向图的连通度7.欧拉图与哈密顿图(教材第八章)●欧拉图●哈密顿图8.树(教材第九章)●树9.图的矩阵表示(教材第十章)●图的矩阵表示10.平面图(教材第十一章)●平面图的基本概念●欧拉公式与平面图的判断●平面图的对偶图与外平面图●平面图与哈密顿图11.图的着色(教材第十二章)●点着色和色多项式●平面图着色和边着色12.支配集、覆盖集、独立集与匹配(教材第十三章)●支配集、点覆盖集、点独立集●边覆盖数与匹配●二部图中的匹配13.带权图及其应用(教材第十四章)●中国邮递员问题和货郎问题14. 代数系统(教材第十五章)●二元运算及其性质●代数系统、子代数和积代数●代数系统的同态与同构●同余关系与商代数15. 半群与独异点(教材第十六章)●半群与独异点16 . 群(教材第十七章)●群的定义和性质、子群●循环群、变换群与置换群●群的分解、正规子群与商群、群的同态与同构17. 环与域(教材第十八章)●环与域18. 格与布尔代数(教材第十九章)●格的定义和性质、子格、格同态与直积●模格、分配格、有补格与布尔代数19. 组合存在性定理(教材第二十章)●鸽巢原理和Ramsey定理20. 基本的计数公式(教材第二十一章)●两个计数原则、排列组合●二项式定理与组合恒等式●多项式定理21. 组合计数方法(教材第二十二章)●递推方程的公式解法●递推方程的其他求解方法●生成函数的定义和性质●生成函数、指数生成函数及应用●Catalan数与Stirling数22. 组合计数定理(教材第二十三章)●包含排斥原理与对称筛公式●Burnside引理与Polya定理23. 命题逻辑(教材第二十六章)●引言●命题和联结词●命题形式和真值表●联结词的完全集●推理形式●命题演算自然推理形式系统N●命题演算形式系统P●N与P的等价性●赋值与等值演算●命题范式●可靠性、和谐性与完备性24. 一阶谓词逻辑(教材第二十七章)●一阶谓词演算的符号化●一阶语言●一阶谓词演算形式系统NL●一阶谓词演算形式系统KL●NL与KL的等价性●KL的解释与赋值●KL的可靠性与和谐性●KL的和谐公式集三、教学方式以课堂讲授为主,辅以作业和练习,并配备助教对作业进行批改。
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电子工程等领域都有着广泛的应用。
下面我们来对离散数学的一些重要知识点进行整理。
一、集合论集合是离散数学的基础概念之一。
集合是由一些确定的、不同的对象组成的整体。
集合的表示方法有列举法和描述法。
集合的运算包括并集、交集、差集和补集。
并集是指将两个集合中的所有元素合并在一起组成的新集合。
交集则是指两个集合中共同拥有的元素组成的集合。
差集是从一个集合中去掉另一个集合中的元素得到的集合。
补集是在给定的全集范围内,某个集合之外的元素组成的集合。
集合之间的关系也非常重要,比如包含关系、相等关系等。
子集是指一个集合中的所有元素都属于另一个集合。
如果两个集合相互包含,那么它们就是相等的。
二、关系关系是集合中元素之间的某种联系。
关系可以用矩阵和图形来表示。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系。
对称性是指如果一个元素与另一个元素有关系,那么反过来另一个元素也与这个元素有关系;反对称性则是如果一个元素与另一个元素有关系,且另一个元素也与这个元素有关系,那么这两个元素必须相等。
传递性是指如果一个元素与另一个元素有关系,另一个元素与第三个元素有关系,那么第一个元素与第三个元素也有关系。
关系的合成是将两个关系结合起来得到一个新的关系。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,都有唯一的对应值在值域中。
函数的类型有单射、满射和双射。
单射是指定义域中的不同元素对应值域中的不同元素;满射是指值域中的每个元素都有定义域中的元素与之对应;双射则是既是单射又是满射。
四、代数系统代数系统由集合、运算和运算所满足的公理组成。
常见的代数系统有群、环、域等。
群是一种具有封闭性、结合律、单位元和逆元的代数系统。
环是在群的基础上增加了两个运算,并且满足一定的运算规则。
离散数学第三版[屈婉玲,耿素云,张立昂编著]2014年版离散数学第三版作者:屈婉玲,耿素云,张立昂著出版时间:2014丛编项: 21世纪大学本科计算机专业系列教材内容简介《离散数学(第3版)/21世纪大学本科计算机专业系列教材》是参照ACM和IEEE最新推出的Computing CurricuLa,根据教育部高等学校计算机科学与技术教学指导委员会最新编制的“高等学校计算机科学与技术专业规范”中制定的关于离散数学的知识结构和体系撰写的.全书共14章,内容包含证明技巧、数理逻辑、集合与关系、函数、组合计数、图和树、初等数论、离散概率、代数系统等,《离散数学(第3版)/21世纪大学本科计算机专业系列教材》体系严谨,文字精练,内容翔实,例题丰富,注重与计算机科学技术的实际问题相结合,并选配了大量难度适当的习题,适合教学.另外,《离散数学(第3版)/21世纪大学本科计算机专业系列教材》有配套的习题解答与学习指导等教学辅导用书,以及用于课堂教学的PPT演示文稿和在线数字资源等,以满足教学需要。
本书适合作为高等学校计算机及相关专业本科生“离散数学”课程的教材,也可以作为对离散数学感兴趣的人员的入门参考书。
目录第1章数学语言与证明方法1.1 常用的数学符号1.1.1 集合符号1.1.2 运算符号1.1.3 逻辑符号1.2 集合及其运算1.2.1 集合及其表示法1.2.2 集合之间的包含与相等1.2.3 集合的幂集1.2.4 集合的运算1.2.5 基本集合恒等式及其应用1.3 证明方法概述1.3.1 直接证明法和归谬法1.3.2 分情况证明法和构造性证明法1.3.3 数学归纳法1.4 递归定义习题第2章命题逻辑2.1 命题逻辑基本概念2.1.1 命题与联结词2.1.2 命题公式及其分类2.2 命题逻辑等值演算2.2.1 等值式与等值演算2.2.2 联结词完备集2.3 范式2.3.1 析取范式与合取范式2.3.2 主析取范式与主合取范式2.4 推理2.4.1 推理的形式结构2.4.2 推理的证明.2.4.3 归结证明法2.4.4 对证明方法的补充说明习题第3章一阶逻辑3.1 一阶逻辑基本概念3.1.1 命题逻辑的局限性3.1.2 个体词、谓词与量词3.1.3 一阶逻辑命题符号化3.1.4 一阶逻辑公式与分类3.2 一阶逻辑等值演算3.2.1 一阶逻辑等值式与置换规则3.2.2 一阶逻辑前束范式习题第4章关系4.1 关系的定义及其表示4.1.1 有序对与笛卡儿积4.1.2 二元关系的定义4.1.3 二元关系的表示4.2 关系的运算4.2.1 关系的基本运算4.2.2 关系的幂运算4.3 关系的性质4.3.1 关系性质的定义和判别4.3.2 关系的闭包4.4 等价关系与偏序关系4.4.1 等价关系4.4.2 等价类和商集4.4.3 集合的划分4.4.4 偏序关系4.4.5 偏序集与哈斯图习题第5章函数5.1 函数的定义及其性质5.1.1 函数的定义……第6章图第7章树及其应用第8章组合计数基础第9章容斥原理第10章递推方程与生成函数第11章初等数论第12章离散概率第13章初等数论和离散概率的应用第14章代数系统参考文献。