功率放大器综述
- 格式:ppt
- 大小:246.50 KB
- 文档页数:17
文献综述电子信息工程高效率音频功率放大器设计文献综述一、前言为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D类功率放大器,实现了高效率,低失真的设计要求。
为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。
使设计获得了良好的效果。
二、主题在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。
所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。
音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。
(一)早期的晶体管功放半导体技术的进步使晶体管放大器向前迈进了一大步。
自从有了晶体管,人们就开始用它制造功率放大器。
早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。
这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。
再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。
变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。
“还是胆机规声”,这种看法的确事出有因。
(二)晶体管功放的发展和互调失真随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路。
最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。
功率放大器微电子1101张涵予A类(甲类)功率放大器1.原理A类(甲类)放大器,是指电流连续地流过所有输出器件的一种放大器。
可认为它是一种良好的线性放大器。
A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。
当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。
当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。
2.应用当对效率要求不高的时候,大多数小信号线性放大器会设计成A 类(甲类),即输出级元件总是处于导通区。
这类放大器最常用于小信号级或低功率(例如驱动耳机)应用中。
A类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬3.优、缺点A类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真,即使不施用负反馈,它的开环路失真仍十分低,由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。
电路简单,调试方便A类功放放最大的缺点是效率低,因为它的效率低,供电器一定要能提供充足的电流。
一部25W的A类功放供电器的能力至少够100瓦AB类功放使用。
所以A 类机的体积和重量都比AB类大,这让制造成本增加,售价也较贵。
一般而言,A类功放的售价约为同等功率AB类功放机的两倍或更多。
A类功率功放发热量惊人,因为无讯号时仍有满电流流入,电能全部转为高热量。
当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。
为了有效处理散热问题,A类功放必须采用大型散热器。
B类(乙类)功率放大器1.原理B类功放放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率。
当有讯号时,每对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输出晶体管轮换工作时便发生交越失真,因此形成非线性。
音频功率放大器设计与制作
一、音频功率放大器设计综述
音频功率放大器是以音频信号作为输入,将输入的音频信号放大,输出更大的音频功率(声压),以满足音频系统的需要。
由于音频功率放大器的设计要求较高,一般采用多种多样的电子元件组成,如放大器、功率放大器、低通滤波器、高通滤波器等,以确保良好的信号质量。
1.1功率放大器的电路类型选择
在音频功率放大器的电路类型选择上,一般采用双极功率放大器电路类型,因为它具有优良的输入输出特性,它的输出电流和输入电压相关性较大,输入阻抗较低,输出阻抗较高,具有低失真和高信噪比等特点。
1.2功率放大器的输出功率
在音频功率放大器设计中,输出功率大小起着重要作用,当音频功率放大器的输出功率大小过大时,音响系统将出现过载的问题,导致音响系统出现声音变化,甚至发生损坏。
因此,必须根据音响系统的需要,合理选择功率放大器的输出功率。
功率放大器介绍功率放大器(PA)是一种电子设备,用来提高输入信号的功率。
它广泛应用于通信、广播、无线电、音频和雷达系统等领域中。
功率放大器通常使用晶体管、真空管、FET(场效应管)等半导体器件作为放大器的关键部件。
功率放大器的主要功能是将输入信号的功率放大到所需的输出功率水平。
输入信号可以是来自麦克风、信号产生器、无线电天线或其他源。
放大器通过应用电流或电压来控制其输入和输出之间的功率转换。
功率放大器的输出功率通常以瓦(W)为单位进行度量。
1.增益:功率放大器能够提供输出信号的放大程度,即输入信号和输出信号之间的比例关系。
增益通常以分贝(dB)为单位进行度量。
2.频率响应:功率放大器的频率响应指的是其能够放大的频率范围。
不同的功率放大器在频率响应上可能有所不同,因此选择合适的功率放大器是确保信号质量的重要因素。
3.效率:功率放大器的效率指的是其能够将输入功率转换为有用输出功率的能力。
高效率的功率放大器可以减少能源浪费,并减少设备的发热。
4.线性度:功率放大器的线性度指的是其在不同输入功率水平下输出信号的失真程度。
线性功率放大器能够准确地放大输入信号而不引入失真。
在选择和设计功率放大器时,需要考虑许多因素,包括输出功率、频率范围、电源要求、输出阻抗、输入和输出保护电路等。
不同的应用领域和要求可能需要不同类型的功率放大器。
下面介绍几种常见的功率放大器类型:1.A类功率放大器:A类功率放大器是一种基本的功率放大器,具有简单的电路结构和低成本。
然而,A类功率放大器的效率相对较低,并且会引入较大的功率失真。
2.AB类功率放大器:AB类功率放大器是在A类功率放大器基础上作出改进的一种类型。
它结合了A类功率放大器的简单性和低成本,同时提高了效率和线性度。
3.D类功率放大器:D类功率放大器是一种高效率的功率放大器,适用于需要低功耗和高输出功率的应用。
D类功率放大器使用脉冲宽度调制(PWM)技术,能够在高频率上工作。
什么是功率放大器如何设计功率放大器功率放大器是一种用于增加输入信号功率的电子装置。
在电子设备中,功率放大器被广泛应用于各种领域,例如音频放大器、射频放大器和通信系统等。
本文将介绍功率放大器的基本原理、设计方法和应用。
一、功率放大器的基本原理功率放大器的基本原理是通过放大输入信号的能量来使输出信号的功率增加。
它通常由两个关键组件构成:输入信号源和输出负载。
输入信号源提供待放大的信号,输出负载则接收放大后的信号。
功率放大器的核心是放大器电路。
放大器电路通过控制放大器管或晶体管的工作状态,使其能够放大输入信号,从而实现信号功率的增加。
放大器电路可以采用各种配置和拓扑结构,如共射放大器、共基放大器和共集放大器。
二、功率放大器的设计方法1. 确定功率需求:在设计功率放大器之前,首先需要确定所需的输出功率。
根据实际应用需求和信号特性,确定放大器的输出功率范围。
2. 选择放大器类型:根据功率需求、频率范围和性能要求,选择适合的放大器类型。
常见的功率放大器类型包括A类、B类、AB类和C类放大器等。
3. 设计电源电路:功率放大器需要稳定的直流电源来供电。
设计电源电路时,需考虑电源电压、电流和波动等因素,确保电源能够为放大器提供足够的电能。
4. 选择放大器管或晶体管:根据输出功率和频率要求,选择合适的放大器管或晶体管。
不同类型的管或晶体管在性能和工作参数上有所区别,需根据实际情况进行选择。
5. 确定反馈网络:为了提高功率放大器的稳定性和线性度,通常需要设计反馈网络。
反馈网络可根据具体情况来确定,常见的反馈方式包括电压反馈和电流反馈。
6. 进行仿真和调试:在设计完成后,进行仿真和调试,通过模拟实验验证设计的性能和参数是否满足要求。
如有不足,可进行调整和优化。
三、功率放大器的应用功率放大器在各个领域都具有广泛的应用。
以下是一些典型的应用场景:1. 音频放大器:功率放大器在音频设备中用于放大音频信号。
例如,音响系统中的功放器就是一种音频功率放大器,用于将音源信号放大到足够的音量以驱动扬声器。