算法初步
- 格式:doc
- 大小:1.41 MB
- 文档页数:18
算法初步单元教学设计优秀5篇《分数初步认识》教学设计篇一通过两周的课程设计,完成了预定的目标,其中有很多的随想。
老师的题目发下来的很早,大概提前了3周,当时就着手搜索有关线索二叉树的思想,思路,借了一本《数据结构-c语言描述》,在大体上就有了一个轮廓,先是输入二叉树,在对二叉树进行线索化,依次往下,但在具体实现时,遇到了很多问题:首先是思想的确定,其非常重要,以前有了这个想法,现在愈加清晰起来,因此,花了大量的时间在插入删除的具体操作设计上,大概三个晚上的时间,对其中什么不清晰明确之处均加以推敲,效果是显著的,在上机上相应的节约了时间。
通过具体的实验编码,思路是对的,但是在小问题上摔了一次又一次,大部分时间都是花在这方面,这个节点没传过来啊之类的,以后应该搞一个小册子,记录一些错误的集合,以避免再犯,思想与C语言联系起来,才是我们所需要的,即常说的理论与实践的关系。
数据结构是基础的一门课,对于有过编程经验的人,结合自己的编程体会去悟它的思想;而且我觉得随着编程经历的丰富对它的体会越深入,较初接触是对一些思想可能只是生硬的记忆,随着学习的深入逐渐领悟了很多。
看了这次课程设计的题目,虽然具体要求没有看清,但是总结一下,可以看出,其需要我们能把一个具体案例或一件事情反映为程序来表达,数据结构就是桥梁,通过自己的设计,使应用能力得以融汇,对与问题,具有了初步的分析,继而解决之的能力,感觉对以后的学习会有很大的帮助,学习无非是用于实践。
认识到自己的不足,希望能有进一步的发展。
影子系统激活算法初步篇二教学内容:教科书第55页的例1、例2,练习十二的第7—12题。
教学目的:1.使学生理解并掌握从一个数里连续减去两个数,改为从这个数里减去这两个减数的和的简便算法。
2.通过求加、减法算式中的未知数,使学生进一步理解加、减法各部分间的关系,为学习简易方程和列方程解应用题做较好的准备。
教学重点:求加、减法算式中的未知数教学难点:理解加、减法各部分间的关系教具准备:小黑板教学过程:一、教学例1出示例1:育名小学图书室新买来一叁0本图书。
算法初步的概念算法是指解决特定问题的一系列步骤和规则的有序集合。
它是计算机程序的核心,不仅仅应用于计算机科学领域,还被广泛应用于物流、金融、医疗等各个领域的问题解决中。
算法的基本特点包括确定性、有限性、输入、输出和可行性。
确定性指的是在相同条件下,算法每次的执行都应该得到相同的结果;有限性指的是算法必须在有限步骤内结束;输入是指算法接收的数据,输出是指算法最终产生的结果;可行性是指算法能够被计算机执行。
在算法的设计中,有两个核心概念,即时间复杂度和空间复杂度。
时间复杂度是指算法执行所需的时间,它可以用来度量算法的执行效率,一般用大O符号表示;空间复杂度是指算法执行所需的存储空间,它也可以用来度量算法的执行效率,同样用大O符号表示。
算法的分类有很多种方法,根据实际问题可以将算法分为以下几类:1. 暴力搜索算法:即穷举法,通过逐个枚举的方式来寻找问题的解。
这种算法的优点是简单易懂,但是随着问题规模的增大,其执行时间会急剧增加,因此一般用于问题规模较小的情况。
2. 贪心算法:贪心算法每次选择当前情况下最优的解决方案,从而不断向前推进。
它的优点是执行速度快,但缺点是可能无法得到全局最优解。
3. 分治算法:将原问题分解成多个子问题,然后解决子问题,并将子问题的解合并起来得到原问题的解。
分治算法的经典例子是快速排序和归并排序。
4. 动态规划算法:动态规划算法通过将原问题分解成多个重叠子问题,并保存子问题的解来避免重复计算。
动态规划的经典例子是背包问题和最短路径问题。
5. 回溯算法:回溯算法通过不断尝试种种可能的解决方案,并通过约束条件来回溯和剪枝,从而找到问题的解。
回溯算法的经典例子是八皇后问题和0-1背包问题。
6. 图算法:图算法主要用于解决与图结构相关的问题,例如最短路径问题、最小生成树问题和网络流问题等。
除了上述常见的算法设计方法,还有一些其他的算法思想和技巧,如分支界限算法、模拟退火算法、遗传算法等。
1
第十一章 算法初步
一、程序框图
注意:(1)赋值语句中的“=”与平时用的“=”意义是不一样的; (2)赋值符号“=”也可以写成“←”。
二、程序的三种基本结构
(1)顺序结构:是指程序按语句出现的先后次序依次执行,是一种最简单、最基本的控制结构。
(2)条件结构:是指当程序执行到某处时,将根据某种给出的判断条件决定是否执行或不执行某些语句,以改变程序的执行流向。
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件,反复执行某一处理步骤的情况。
三、典型算法 (1)求和
例、下图给出一个程序框图,其运行结果是____________.
2。
第一章算法初步1.1算法与程序框图算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
1. 算法的概念(1)算法的定义:广义的算法是指完成某项工作的方法和步骤,在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
(2)算法的特征:①确定性:算法的每一步都应当做到准确无误、“不重不漏”。
“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务。
②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣。
分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续。
③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行。
(3)算法的描述:自然语言、程序框图、程序语言。
2. 程序框图(1)程序框图的概念:是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;3. 画程序框图的规则如下:(1)一个完整的程序框图必须有起止框,用来表示程序的开始和结束。
(2)使用标准的图形符号表示操作,带箭头的流程线表示算法步骤的先后顺序,框图一般按从上到下、从左到右的方向画。
(3)算法中间要处理数据或计算,可分别写在不同的处理框中。
(4)如果一个流程由于纸面等原因需要分开画。
要在断开处画上连结点,并标出连结的号码。
(5)注释框不是流程图必需的部分,只是为了提示用户一部分框图的作用以及对某些框图的操作结果进行说明。
它帮助阅读流程图的用户更好的理解流程图的来龙去脉。
算法初步教案一、教学目标1、知识与技能目标了解算法的概念和特征。
掌握用自然语言和流程图描述算法的方法。
能够分析简单问题,设计出有效的算法,并能用流程图表示出来。
2、过程与方法目标通过实际问题的分析和解决,培养学生的逻辑思维能力和问题解决能力。
通过算法的设计和流程图的绘制,提高学生的动手实践能力和创新能力。
3、情感态度与价值观目标让学生体会算法在解决实际问题中的重要作用,激发学生学习算法的兴趣。
培养学生严谨的思维习惯和合作精神。
二、教学重难点1、教学重点算法的概念和特征。
用自然语言和流程图描述算法。
2、教学难点复杂问题的算法设计。
流程图的规范绘制。
三、教学方法讲授法、演示法、实践法、讨论法四、教学过程1、导入(5 分钟)通过一个简单的生活实例,如“如何泡茶”,引导学生思考解决问题的步骤,从而引出算法的概念。
2、算法的概念(10 分钟)给出算法的定义:算法是指解决某一问题的明确和有限的步骤。
举例说明算法在生活和计算机中的应用,如计算数学题、排序数据等。
3、算法的特征(10 分钟)有穷性:一个算法必须在执行有限个步骤之后终止。
确定性:算法的每一步骤都必须有明确的定义,不能有歧义。
可行性:算法的每一步骤都必须是可行的,能够通过有限的操作实现。
输入:一个算法有零个或多个输入。
输出:一个算法有一个或多个输出。
4、用自然语言描述算法(15 分钟)以“求解两个数的最大值”为例,用自然语言详细描述算法的步骤。
让学生练习用自然语言描述一些简单问题的算法,如“判断一个数是否为偶数”。
5、用流程图描述算法(20 分钟)介绍流程图的常用图形符号,如起止框、输入输出框、处理框、判断框、流程线等。
以“求解两个数的最大值”为例,绘制流程图展示算法的流程。
让学生分组合作,选择一个问题,先用自然语言描述算法,再绘制流程图。
6、算法的设计(20 分钟)提出一个较复杂的问题,如“计算一个班级学生的平均成绩”。
引导学生分析问题,确定算法的步骤。
高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法在数学和日常生活中的应用。
2. 掌握算法的基本步骤,能够清晰地描述和分析算法的过程。
3. 学会使用循环结构编写算法,熟练掌握基本的编程技巧。
4. 通过解决实际问题,培养学生的逻辑思维能力和创新能力。
二、教学内容1. 算法的基本概念:算法、输入、输出、步骤2. 算法的基本步骤:排序、查找、乘法口诀、求解一元二次方程3. 循环结构:for循环、while循环、do-while循环4. 实际问题求解:编写算法解决生活中的实际问题,如计算器、购物清单等。
三、教学重点与难点1. 重点:算法的基本概念、基本步骤和循环结构。
2. 难点:循环结构的嵌套使用和复杂问题的算法设计。
四、教学方法与手段1. 采用问题驱动的教学方法,引导学生从实际问题中提炼出算法。
2. 使用多媒体教学手段,展示算法的过程和效果,增强学生的直观感受。
3. 引导学生通过编程实践,巩固算法知识,提高解决问题的能力。
五、教学安排1. 第一课时:介绍算法的基本概念,学习算法的输入、输出、步骤。
2. 第二课时:学习算法的基本步骤,掌握排序、查找、乘法口诀、求解一元二次方程等基本算法。
3. 第三课时:学习循环结构,掌握for循环、while循环、do-while循环的用法。
4. 第四课时:运用所学算法解决实际问题,编写算法程序。
5. 第五课时:进行课堂讨论,分享算法解决问题的经验,进行算法设计的交流和探讨。
六、教学过程1. 导入:通过引入日常生活中的算法例子,如计算购物找零、制定旅行计划等,激发学生的兴趣,引出算法的概念。
2. 新课导入:介绍算法的定义、特点和作用,引导学生了解算法在数学和科学领域中的应用。
3. 案例分析:分析排序、查找等基本算法,让学生通过具体案例理解算法的基本步骤和原理。
4. 编程实践:让学生动手编写简单的算法程序,如排序算法、查找算法等,加深对算法概念的理解。
算法初步算法定义算法(Algorithm)是指解决特定问题或完成特定任务的一系列步骤。
算法是一种精确定义的计算过程,可以由计算机进行执行。
它可以用来解决各种问题,如排序、搜索、图像处理等。
算法包含输入、输出、有穷性、确定性和可行性等特点。
输入是算法的初始数据,输出是算法的结果。
有穷性指算法必须在有限的时间内结束。
确定性指算法的每个步骤都必须有明确的定义。
可行性指算法必须是可行的,即可以通过计算得出结果。
算法的性能度量在比较不同算法的优劣时,我们通常需要考虑算法的性能。
对于算法的性能度量,主要包括以下几个方面:时间复杂度时间复杂度是度量算法的执行时间随数据规模增长的变化趋势。
我们通常通过大 O 表示法来表示时间复杂度。
例如,如果一个算法的时间复杂度为 O(n),则表示算法的执行时间随输入规模 n 增长线性地增加。
常见的时间复杂度有:•O(1):常数时间复杂度,表示算法的执行时间与输入规模无关。
•O(log n):对数时间复杂度,表示算法的执行时间随着输入规模呈对数增长。
•O(n):线性时间复杂度,表示算法的执行时间随着输入规模呈线性增长。
•O(n^2):平方时间复杂度,表示算法的执行时间随着输入规模的平方增长。
空间复杂度空间复杂度是度量算法在执行过程中所需的存储空间大小的度量。
和时间复杂度类似,我们通常使用大 O 表示法来表示空间复杂度。
常见的空间复杂度有:•O(1):常数空间复杂度,表示算法的空间使用量是固定的。
•O(n):线性空间复杂度,表示算法的空间使用量随着输入规模线性增长。
•O(n^2):平方空间复杂度,表示算法的空间使用量随着输入规模的平方增长。
算法的正确性与可行性在比较算法的性能时,我们还需要考虑算法的正确性与可行性。
正确性是指算法可以正确地解决问题,可行性是指算法可以在可行的时间与空间限制内完成。
常见算法排序算法排序算法是将一组无序的数据按照特定的顺序进行排列的算法。
常见的排序算法有:•冒泡排序(Bubble Sort)•插入排序(Insertion Sort)•选择排序(Selection Sort)•快速排序(Quick Sort)•归并排序(Merge Sort)搜索算法搜索算法是在给定的数据集中查找特定元素的算法。
算法初步一、知识概述主要学习了算法初步,首先引出了算法的描述性的定义及算法的主要特征,然后借助例题进一步展现这些特征.程序框图能够更加直观、清楚地描述算法步骤.用算法语句描述算法是用计算机解决问题的前提条件,而一般的操作顺序是先设计算法,接着用程序框图表示算法,然后将程序框图转化为算法语句.本节按照三种基本的逻辑结构的顺序,分别介绍了相关的基本的算法语句,其中包含了与相应程序框图比较、把程序框图转化为算法语句的过程.最后学习了算法案例,了解经典的算法案例有助于学生深入理解算法的特征和进一步体会算法的思想.二、重难点知识归纳(一)算法的基本概念1、算法定义描述:在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特性:①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.④输入:一个算法中有零个或多个输入.⑤输出:一个算法中有一个或多个输出.(二)三种基本逻辑结构1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构.2、条件结构:条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构.3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构.循环结构又称重复结构,循环结构可细分为两类:(1)当型循环结构:每次执行循环体前对循环条件进行判断,当条件满足时执行循环体,不满足时停止.(2)直到型循环结构:执行了一次循环体之后,对控制循环条件进行判断,当条件不满足时执行循环体,满足则停止.(三)基本算法语句1、输入语句2、输出语句3、赋值语句注意:赋值语句中的“=”叫做赋值号,它和数学中的等号不同,计算机执行赋值语句时,先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量.4、条件语句当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句1,否则执行ELSE后的语句2.其对应的程序框图为:(如上右图)计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句.其对应的程序框图为:(如上右图)5、循环语句(1)WHILE语句其中循环体是由计算机反复执行的一组语句构成的.WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的.当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE 与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句.因此,当型循环有时也称为“前测试型”循环.其对应的程序结构框图为:(如上右图)(2)UNTIL语句当计算机遇到UNTIL语句时,先判断条件的真假,如果条件不符合,就执行DO 与LOOP UNTIL之间的循环体;然后再检查上述条件,如果条件仍不符合,再次执行循环体,直到某一次符合条件时停止.其对应的程序结构框图为:(如上右图)(四)算法案例1、辗转相除法与更相减损术辗转相除法与更相减损术的区别:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显.(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.2、秦九韶算法3、进位制进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值.可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数.三、典型例题剖析例1、设计求|x-2|的算法,并画出流程图.解:算法如下:⑴若x<2,则|x-2|等于2-x,⑵若x≥2,则|x-2|等于x-2.其流程图如图:例2、(I)用辗转相除法求840与1764的最大公约数.(II)用更相减损术求440 与556的最大公约数.解:(I)用辗转相除法求840与1764 的最大公约数.1764 = 840×2+84;840 = 84×10+0.所以840与1764 的最大公约数是84.(II)用更相减损术求440 与556的最大公约数.556-440 = 116;440-116 = 324;324-116 = 208;208-116 = 92;116-92 = 24;92-24 = 68;68-24 = 44;44-24 = 20;24-20 = 4;20-4 = 16;16-4 = 12;12-4 = 8;8-4 = 4.所以440 与556的最大公约数4.例3、设计算法求的值.要求画出程序框图,写出用基本语句编写的程序.解:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:例4、已知函数, 编写一程序求函数值.解:例5、有10个互不相等的数,写出找出其中一个最大数的算法和程序.解:(一)算法S1:输入一个数,放在MAX中S2:i=1S3:输入第1个数,放入x中S4:若x>MAX,则MAX=xS5: i=i+1S6:若i≤9,返回S3继续执行,否则停.(二)程序框图。
高考数学必修三算法初步知识点
1、算法的概念:
①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。
②算法的五个重要特征:
ⅰ有穷性:一个算法必须保证执行有限步后结束;
ⅱ确切性:算法的每一步必须有确切的定义;
ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;
ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。
所谓0个输入是指算法本身定出了初始条件。
ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的。
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法
(1)程序框图的基本符号:
(2)画流程图的基本规则:
①使用标准的框图符号
②从上倒下、从左到右
③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
④判断可以是两分支结构,也可以是多分支结构
⑤语言简练
⑥循环框可以被替代
3、三种基本的逻辑结构:顺序结构、条件结构和循环结构
(1)顺序结构:
顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
(2)条件结构:分支结构的一般形式。
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
小学信息技术教案算法初步信息技术是现代社会中必不可少的一门技能,它的发展不仅为我们提供了更多的学习、工作和娱乐方式,还能够培养学生的逻辑思维和问题解决能力。
在小学阶段,学生正处于信息技术学习的起始阶段,因此,教案设计需要注意内容的选择和教学方法的灵活运用。
本文将介绍一份小学信息技术教案,以算法为主要内容进行初步讲解。
教案名称:算法初步1. 教学目标- 了解算法的基本概念- 能够举一反三,运用算法思维解决简单问题- 培养学生对逻辑思维的培养和抽象化能力2. 教学准备- 教师:计算机、投影仪、教具(例如积木、拼图等)- 学生:笔记本电脑或平板电脑3. 教学流程第一步:引入算法1. 教师向学生简单解释算法的概念,并提供相关的示例(如烧开水的步骤)2. 与学生一起讨论算法的作用和意义,启发学生思考如何用算法解决生活中的问题第二步:算法实践1. 学生分组,每个小组使用教具(如积木)构建一个简单的迷宫2. 学生利用计算机编写一个程序,通过算法控制一个机器人在迷宫中寻找出口3. 学生在编写程序的过程中,要求按照逻辑思路将问题分解为多个步骤,并用代码表示第三步:算法简化1. 学生尝试简化自己编写的程序,找出可以合并的步骤,减少程序的复杂性2. 鼓励学生通过代码复用、循环等方式优化自己的算法3. 学生可以相互交流,分享自己的优化方法,进行相互学习和改进第四步:算法拓展1. 学生尝试改变迷宫的形状,要求使用相同的算法解决问题2. 学生可以自由发挥,编写自己感兴趣的小程序,并与同学分享第五步:总结与分享1. 学生对这次算法实践的过程进行总结,分享自己的学习心得和体会2. 教师对学生的表现进行评价和鼓励,同时提出进一步学习算法的建议4. 教学评估- 在算法实践过程中,教师观察学生的参与程度和合作能力- 学生编写的程序能否顺利实现机器人在迷宫中寻找出口的功能- 学生能否成功简化和优化自己的算法5. 教学延伸- 学生可以继续学习更复杂的算法,如排序算法、搜索算法等- 教师可以用更具挑战性的任务来培养学生的算法思维和问题解决能力通过本教案的设计,学生可以初步了解算法的概念和应用,并能够通过编写简单的程序来实现算法。
《第一章算法初步》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个算法正确的执行是算法执行过程中每一步的操作都满足:A、有穷性B、确定性C、可行性D、输入输出的确定性2、一个算法的正确性可以用以下哪个指标来衡量?A、算法的效率B、算法的易懂性C、算法的简洁性D、算法的正确性3、下列语句表示的是一种算法,那么这个算法的功能是 ( )A、输入一个数据B、输出一个数据C、输入并输出一个数据D、先输入一个数据,进行运算后再输出结果4、下面哪个是算法的特征?A. 计算规律简单B. 只能用标准的计算器步骤C. 需要多个步骤完成D. 步骤随机改变5、在以下选项中,不属于算法四大特点的是()A、有穷性B、确定性C、可扩展性D、可行性6、下列算法执行后的输出结果是()A. 12B. 24C. 36D. 487、若编程实现下列算法:第一步:设定初始值 a = 5, b = 10;第二步:if (a > b) then a = a - 2 else b = b + 3; 第三步:输出 a 和 b 的值;则程序的输出结果是:A. a = 3, b = 13B. a = 3, b = 10C. a = 5, b = 13D. a = 5, b = 108、阅读下面的算法语句,执行后输出的S值为多少?S = 0 I = 1 While I <= 10 S = S + I I = I + 2 Wend Print SA、25B、26C、50D、55二、多选题(本大题有3小题,每小题6分,共18分)1、在算法设计中,以下是哪些算法分类属于算法设计的基本方法?()A、分治法B、动态规划C、贪心法D、回溯法E、分支限界法2、已知算法A的步骤如下:(1)输入一个正整数n;(2)计算n的阶乘;(3)输出结果。
请从以下选项中选择正确的算法描述:A. 递归算法B. 非递归算法C. 算法A是求阶乘的正确方法D. 算法A不是求阶乘的正确方法E. 上述选项均正确3、以下关于算法的功能描述,哪些是正确的?()A、算法可以简化问题解的计算过程B、算法一定能找到解决问题的所有可能解C、算法能够被计算机程序化实现D、算法的步骤必须是明确的,不能含糊其辞三、填空题(本大题有3小题,每小题5分,共15分)1、在算法设计中,一个基本操作序列可以表示为______ ,其中n为基本操作重复执行的次数。
高二算法初步知识点算法是计算机科学的核心内容之一,也是高中信息技术课程的重要组成部分。
在高二阶段,学生需要初步掌握一些常见的算法知识点。
本文将介绍高二算法初步知识点,帮助学生理解和应用这些知识。
一、排序算法排序算法是一种将一组数据按照一定顺序排列的算法。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。
这些算法的核心思想各不相同,但都能够实现对数据的排序。
在高二阶段,学生需要学会分析这些算法的时间复杂度和空间复杂度,并能够根据不同的需求选择合适的排序算法。
二、查找算法查找算法是在一组数据中寻找目标值的算法。
常见的查找算法有顺序查找、二分查找等。
顺序查找是一种逐个比较数据的方法,适用于无序数据;而二分查找则是将有序数据逐步折半查找,效率较高。
在高二阶段,学生需要学会分析这些算法的时间复杂度,并能够理解和应用各种查找算法。
三、递归算法递归算法是一种通过不断缩小问题规模来解决问题的方法。
递归算法通常包含一个基准情况和一个递归调用。
经典的递归算法有阶乘计算、斐波那契数列等。
在高二阶段,学生需要熟悉递归算法的原理,并能够编写递归函数来解决问题。
四、图的遍历算法图是由节点和连接节点的边组成的数据结构。
图的遍历算法主要有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种先访问节点的所有邻居节点,再递归访问邻居节点的邻居节点的方法;而广度优先搜索是一种先访问节点的所有邻居节点,再依次访问邻居节点的邻居节点的方法。
这些算法在解决图相关问题时非常有用。
五、动态规划算法动态规划算法是一种通过存储已解决子问题的解来解决整个问题的方法。
动态规划算法通常包含一个状态转移方程和一个递推过程。
经典的动态规划问题有背包问题、最长公共子序列等。
在高二阶段,学生需要了解动态规划算法的基本思想,并能够应用它来解决问题。
总结:高二算法初步知识点主要包括排序算法、查找算法、递归算法、图的遍历算法和动态规划算法。
这些算法的应用范围广泛,掌握它们对于培养学生的计算机思维和解决实际问题都具有重要意义。
算法初步实验课教案一、教学目标1. 理解算法的基本概念和特点2. 掌握算法的设计方法和分析手段3. 熟练使用编程语言实现算法4. 培养学生的创新能力和团队合作精神二、教学内容1. 算法的基本概念和特点2. 算法的设计方法:递归、分治、贪心、动态规划等3. 算法分析:时间复杂度、空间复杂度4. 常见算法实现:排序、查找、图论算法等5. 算法实验:编程实现并分析给定算法三、教学方法1. 讲授:讲解算法的基本概念、设计方法和分析手段2. 实践:学生动手编程实现算法3. 讨论:分组讨论算法实现过程中遇到的问题和解决方法4. 报告:学生提交算法实验报告,进行分析总结四、教学安排1. 第一课时:算法的基本概念和特点2. 第二课时:算法的设计方法3. 第三课时:算法分析4. 第四课时:常见算法实现5. 第五课时:算法实验及报告五、教学评价1. 课堂参与度:学生提问、回答问题、参与讨论的情况2. 编程实践:学生算法实现的正确性和效率3. 实验报告:学生的分析总结能力和团队合作精神4. 课后作业:巩固所学知识,提高自主学习能力六、教学资源1. 教材:算法导论、计算机算法等2. 编程环境:Python、C++、Java等编程语言及其开发工具3. 网络资源:相关算法论文、开源算法实现等七、教学过程1. 引入:通过生活中的实例引入算法概念,激发学生兴趣2. 讲解:详细讲解算法的基本概念、设计方法和分析手段3. 实践:学生动手编程实现经典算法4. 讨论:分组讨论算法实现过程中遇到的问题和解决方法5. 报告:学生提交算法实验报告,进行分析总结八、教学注意事项1. 关注学生个体差异,因材施教,提供不同难度级别的编程任务2. 强调算法思维,引导学生从问题出发,设计并分析算法3. 注重团队合作,鼓励学生互相学习、互相帮助4. 及时给予学生反馈,提高教学效果九、教学拓展1. 算法竞赛:介绍国内外算法竞赛,鼓励学生参加锻炼能力2. 算法研究:引导学生关注前沿算法研究,培养创新能力3. 实际应用:探讨算法在实际产业中的应用,提高学生算法应用能力十、课后作业1. 复习课堂所学内容,巩固算法基本概念和分析方法2. 完成课后编程练习,加深对算法实现的理解3. 阅读相关算法论文或书籍,拓展算法知识体系4. 结合自身兴趣或实际问题,尝试设计与分析新的算法十一、教学评估1. 课堂问答:评估学生对算法基本概念的理解和掌握程度。
第十一章算法初步本章知识结构图考纲解读1.了解算法的含义和思想.2.理解程序框图的3中基本逻辑结构:顺序、条件分支、循环.3.理解5种基本算法语句——输入、输出、赋值、条件和循环语句的含义.命题趋势探究预测在2019年高考中,本章知识仍为考查的热点,内容以程序框图为主.从形式上看,以选择题和填空题为主,或以实际问题为背景,侧重知识应用能力的考查,要求考生具备一定的逻辑推理能力.本专题主要考察算法的逻辑结构,要求能够写出程序的运行结果、指明算法的功能、补充程序框图,求输入参量,并常将算法与其他板块知识(尤其是数列)进行综合考查.一般来说,有关算法的试题属中档题目,分值稳定在5分.知识点精讲一、算法与程序框图1.算法算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是确定的和能执行的,并且能够在有限步之内完成.2. 程序框图(1)定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)说明:在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向的流程线将程序框连接起来,表示算法步骤的执行顺序.3.3种基本逻辑结构程序框图有3种基本的逻辑结构,如表11-1所示.二、基本算法语句1.3中基本算法语句的一般格式和功能3中基本算法语句的一般格式和功能如表11-2所示.2.条件语句(1)算法中的条件结构由条件语句来表达. (2)条件语句的格式及框图如图11-1和11-2所示. ①IF—THEN 格式IF 条件 THEN 语句体 END②IF—THEN —ELSE 格式 IF 条件 THEN 语句体1 ELSE 语句体2END图11-23.循环语句(1)算法中的循环结构是由循环语句来实现. (2)循环语句的格式及框图如图11-3和11-4所示. ①UNTIL 语句DO循环体LOOP UNTIL 条件②WHILE 语句 WHILE 条件循环体END(3)WHILE 语句与UNTIL 语句之间的区别与联系如表11-3所示.三、算法案例 1.辗转相除法辗转相除法又叫欧几里德算法,是一种求最大公约数的古老而有效的算法,其步骤如下: (1)用两数中较大的数除以较小的数,求得商和余数; (2)以除数和余数中较大的数除以较小的数; (3)重复上述两步,直到余数为0; (4)较小的数是两数的最大公约数. 2.更相减损术更相减损术是我国古代数学专著《九章算术》中介绍的一种求两数最大公约数的算法,其基本过程为:对于任意给定的两个正整数,以大数减小数,接着把所得的差与较小的数比较,并以大数减小数,继续该操作,直到所得的数相等为止,这个数(等数)就是所求的最大图11-3图11-4公约数.3.秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n次多项式的值的方法。
4.进位制进位制是人们为了计数和运算方便而约定的记数系统,“满k进1”就是k进制,k进制的基数是k.题型归纳及思路提示根据考纲要求并结合高考中常见题型,程序框图主要用于数列、分段函数、大小比较等程序性问题的解决.要求考生能读懂程序框图,理解所执行的程序.题型155-160是针对程序框图中所解决的问题来分类,但从算法角度讲没有本质区别,因而解决它们的思路是一致的,具体是:(1)先通过程序框图宏观分析是解决什么样的(数学)问题,并明确该问题解决的具体思路步骤;(2)将该问题的解决思路步骤与程序框图所执行的程序比较;(3)根据题目要求做答(可能是求输出结果或输入参量,也可能是填充判断框).题型155 程序框图中的数列求和问题思路提示循环体是所求和的表达式,也是反复执行的步骤,需按变量取值依次进行.例11.1如果执行如图11-5所示的框图,输入N=5,则输出的数等于( )A. 54B.45C.65D.56图11-6图11-7变式1 如图11-6所示是一个算法的流程图,则输出S 的值是_______变式2 如图11-7所示的程序框图,输出的S 是126, 则①应为( ).A.n ≤5?B.n ≤6?C.n ≤7?D.n ≤8?P输出yP题型156 程序框图中的分段函数求值的问题思路提示本类问题是对变量不同的范围有不同的表达式.对于输入的x 的值应根据条件语句所确定的x 的取值范围选择相应的解析式代入求值.例11.2 阅读如图11-8所示的程序框图,运行相应的程序, 当输入x 的值为-25时,输出x 的值为( ). A.-1 B.1 C.3 D.9 .变式 1 已知函数2log ,22,2x x y x x ≥⎧=⎨-<⎩ ,如图11-9所示,表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写______;②处应填写______.变式 2 执行如图11-10所示的程序框图,若输入10x =,则输出y 的值为______.输出Px题型157 程序框图中的概率统计问题思路提示计算机模拟产生随机数是计算概率的一种重要的方法.统计中数字特征计算如均值、方差等这些问题通过程序框图处理.例11.3 如图11-11所示是用模拟方法估计圆周率 π值的程序框图,P 表示估计结果, 则图中空白框应填入( ).A. 1000N P =B. 41000NP = C. 1000M P = D. 41000MP =变式1 在可行域内任取一点,规则如图11-13所示(即程序框图),则能输出数对(,)x y 的概率为( ). A. 14 B. 2π C .4π D. 8π.,,n a1=图11-14结束图11-13变式2:随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图11-14所示的程序框图输出的s = ,s 表示的样本的数字特征是 .变式3:如果执行如图11-15所示的程序框图,输入正整数n ,m ,满足n m ≥,那么输出的p 等于A. 1m n C -B. 1m n A -C. m n CD. mn A图 11-15题型158 程序框图中数的比较大小问题思路提示数的大小排序在程序框图中要注意的是“赋值号=”的含义,它不是数学中的符号,而是表明将右边的数赋给左边的数,这是解决这类题型的关键所在,即对数进行位置的变换。
例11.4如果执行如图11-16所示的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则A .A +B 为1a ,2a ,…,N a 的和B .2A B为1a ,2a ,…,N a 的算术平均数 C .A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数 D .A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数图11-16变式1 如图11-17所示,右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分。
当126,9.x x ==p =8.5时,3x 等于 A .11 B .10 C .8 D .7图11-17题型159 程序框图在解决其他问题中的应用思路提示对于一些问题,我们可以根据它的要求编写程序框图,这里要注意其中判断框与循环体之间的关系.例11.5 如图11-18所示,流程框图(算法流程图)的输出值x= .图11-18变式1 (1)执行如图11-19所示的程序框图,若输出的n为4,则输入P的取值范围为().A. (0.75, 0.875)B. (0.75, 0.875]C. [0.75, 0.875)D. [0.75, 0.875](2) 执行如图11-19所示的程序框图,若输出的n为4,则输入P可能为().A. 0.7B. 0.75C. 0.8D. 0.9(3) 执行如图11-19所示的程序框图,若P=0.8,则输出n= .图11-19变式2 根据图11-20所示的程序框图,将输出的,x y 值依次记为x 1,x 2,…,x n ,…,x 2014;y 1,y 2,…,y n ,…,y 2014.(1) 求数列{ x n }的通项公式;(2)写出y 1,y 2,y 3,y 4,由此猜想出{ y n }的一个通项公式y n ,并证明你的结论;(3)求1122(*,2014)n n n z x y x y x y n n =++⋅⋅⋅+∈≤N .图11-20题型160 算法案例思路提示按照秦九韶算法计算多项式值是转化为一次式值反复计算,这体现了将高次多项式值转化为一次式值得计算.例11.6 用秦九韶算法求多项式542()543f x x x x =++ 21x ++,当2x =时的值.变式1用秦九韶算法求多项式764()853f x x x x =+++ 21x +,当3x = 时的值的时候,第二步计算的结果为 .变式2 (1)把十进制数21转化为二进制数;(2)将八进制数31072(8)转化为十进制数最有效训练题48(限时45分钟)1. 执行如图11-22所示的程序框图,输出的S值为().A. 2B. 4C. 8D. 162. 执行如图11-23所示的程序框图,若输入x=2,则输出的y的值为().A. 2B. 5C. 11D. 233. 如图11-24所示给出的是计算1111246100+++⋅⋅⋅+的一个程序框图.其中判断框内应填入的条件是().A. i<50?B. i >50?C. i<25?D. i >25?4.(2017课标3,文8)执行如图11-25所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.2图11-22 图11-23图11-24 图11-255. 【2017课标II ,文10】执行如图11-26所示的程序框图,如果输入的1a =-,则输出的S =A.2B.3C.4D.56. (2017课标1,文10)执行如图11-27所示的程序框图是为了求出满足321000n n ->的最小偶数nA .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2图11-26 图11-277. 若某程序框图如图11-28所示,则该程序运行后输出k 的值是 . 8. 执行如图11-29所示的程序框图,输入1,3x n =-=,则输出的数S = .图11-28 图11-299. (2017江苏,4)阅读如图11-30所示的算法流程图,若输入的值为116,则输出的的值是 .10. 执行如图11-31所示的程序框图,若输入的n 值为8,则输出S 的值为.图11-30 图11-3111. 如图11-32所示是一个计算机装置示意图,J 1,J 2是数据入口处,C 是计算机结果的出口,计算机过程是由J 1,J 2分别输入自然数m 和n ,经过计算机处理后将所得自然数由C 输出,此种计算装置完成的计算机满足以下3个性质: ○1若J 1,J 2分别输入1,则输出结果为1; ○2若J 1输入任何固定自然数m 不变,J 2输入自然数n 增大1,则输出结果比原来大2; ○3若J 2输入1,J 1输入自然数m 增大1,则输出结果为原来的2倍. 试问:(1)若J 1输入1,J 2输入自然数n ,输出结果为多少?(2)若J2输入1,J1输入自然数m,输出结果为多少?图11-3212. 甲、乙两同学进行下棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到了一个人比对方多2分或满8局时停止.设甲在每局比赛中获胜的概率为12p p⎛⎫>⎪⎝⎭,且各局比赛胜负相互独立.已知第二局比赛结束时比赛停止的概率为5 8 .(1)如图11-33所示为统计这次比赛的局数n和甲、乙的总分S,T的程序框图.其中如何甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.请问在○1,○2两个判断框中应分别填写什么条件?(2)求p的值;(3)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列及Eξ.图11-33。