线性代数课程教学大纲
- 格式:doc
- 大小:56.00 KB
- 文档页数:5
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
《线性代数》教学大纲一、课程概述1. 课程研究对象和研究内容《线性代数》是数学中的一个重要分支,是高等工科院校的重要基础理论课。
其不仅在数学、力学、物理学和技术学科中有各种重要应用,而且在计算机图形学、计算机辅助设计、密码学、虚拟现实等技术中无不是理论和算法的基础内容。
本课程教学内容主要有:行列式;矩阵;n维向量空间;线性方程组;特征值与特征向量;二次型。
通过本课程的学习,能够培养学生对研究对象进行有序化、代数化、可解化的处理方法,并且为其他后续课程打好基础。
因此,本课程对学生今后专业的发展具有非常重要的意义。
2. 课程在整个课程体系中的地位《线性代数》是计算机专业的基础课。
《线性代数》的后续课是《离散数学》,《计算方法》等。
二、课程目标1.知道《线性代数》这门学科的理论和方法及其在专业教育体系中的位置;2.理解这门学科的基本概念、基本定理和基本方法;3.熟练掌握行列式、矩阵的运算;会用行列式与矩阵的方法求解齐次线性方程组、非齐次线性方程组的解;学会矩阵的特征值、特征向量及二次型的相关应用;4.突出计算能力的培养,引导学生进行归纳、对比和思考,培养学生的创造性能力;5.学会用线性代数的方法处理离散对象;6.培养运用本学科的基本知识与基本技能分析问题、解决问题的能力;逐步培养学生抽象思维和逻辑推理的能力;7.通过本课程的学习,协助学生逐步树立辩证唯物主义的观点。
三、课程内容和要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科和教学现象的认知。
理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。
学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。
线性代数与概率论课程教学大纲5篇第一篇:线性代数与概率论课程教学大纲线性代数与概率论课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:线性代数与概率论所属专业:材料物理与材料化学课程属性:必修学分:4(二)课程简介、目标与任务;本课程将对线性代数和概率论里的一些常见概念和基础知识进行讲解。
线性代数里所涉及到的对向量和矩阵的分析和操作,在科学研究和工程技术中均有着广泛的应用。
从向量和矩阵中抽象出来的线性空间和线性变换的概念,将为学生以后更深入的学习和实践提供必要的背景和知识准备。
概率论是统计方向的理论基础,对于将来实际工作中的数据分析和处理有着指导性作用。
这门72学时的课把线性代数和概率论放在一起讲实际上强度是比较大的。
线性代数部分先从行列式讲起,接着介绍关于向量组和矩阵的一些基本概念和运算。
有了这些知识储备后,在第三章对于线性方程组问题给出了一个完整的解答。
第四章对向量和矩阵的数学抽象引入了线性空间与线性变换,并对空间的代数结构和变换性质作了讨论。
最后两章是关于矩阵的比较实用部分,包括特征值与特征向量,矩阵对角化与二次型。
概率论部分先定义了样本空间与随机事件,接着引入概率的概念,列举了一些计算简单概率的方法和例子。
随后对随机事件的量化导致了随机变量的引入。
从第四章到第七章均是关于随机变量和随机变量函数的内容,我们讨论了一些常见分布及其数字特征,包括期望值,方差和关联函数(协方差)等。
对于独立的随机变量序列,我们运用切比雪夫不等式证明了大数律,最后介绍了中心极限定理。
希望学生通过本课程的学习,能够熟悉线性代数里的一些基本概念和思考问题的方法,培养数学抽象思维的能力,理解和熟练掌握向量和矩阵的一些性质和相关运算,对于随机过程和随机变量亦有一个初步的具体认识。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;所需要的先修知识储备为基本的微积分,代数方程和一些矢量分析。
线性代数教学大纲一、课程简介线性代数是现代数学中的基础课程之一,它研究向量和线性方程组的理论和应用。
本课程旨在通过理论与实践相结合的教学方式,使学生系统掌握线性代数的基本概念、理论和方法,以及其在实际问题中的应用。
二、教学目标1. 理论掌握:掌握线性代数的基本概念,包括矩阵、向量空间、线性变换等,并能运用相关理论解决简单的线性方程组和矩阵运算问题。
2. 方法应用:了解线性代数在不同领域的应用,如图像处理、物理建模、统计学等,并能将线性代数的方法应用于实际问题当中。
3. 分析与推理:培养学生分析问题、推导结论的能力,提高其逻辑思维和抽象化能力。
4. 团队合作:通过课堂讨论、小组合作等多样化教学方式,培养学生与他人合作解决问题的能力。
三、教学内容1. 向量空间a. 向量的定义与运算b. 向量空间的定义与性质c. 线性相关与线性无关d. 维数与基底2. 矩阵与线性方程组a. 矩阵的定义与运算b. 矩阵的行列式和逆c. 线性方程组的解法d. 线性方程组的几何解释3. 线性变换a. 线性变换的定义与性质b. 线性变换的矩阵表示c. 特征值与特征向量4. 特殊矩阵a. 对称矩阵与正定矩阵b. 相似矩阵c. 正交矩阵与单位ary矩阵5. 应用案例与实践a. 线性方程组的应用b. 图像处理中的线性代数c. 数据拟合与回归分析d. 线性代数在最优化问题中的应用四、教学方法1. 理论讲解:通过课堂授课,向学生讲解线性代数的基本概念和理论。
2. 例题演练:通过大量例题讲解和课堂练习,帮助学生掌握线性代数的方法和技巧。
3. 实际应用:结合具体的实际应用案例,引导学生将线性代数的方法应用于实际问题中。
4. 小组合作:鼓励学生在小组中合作解决问题,培养学生的团队合作能力。
5. 课后练习:布置大量课后习题,巩固学生对线性代数知识的理解和掌握。
五、评估方法1. 课堂表现:包括学生对理论知识的掌握、学习态度与参与度等。
2. 作业完成情况:评估学生对课程内容的理解与应用能力。
《线性代数A》教学大纲contents •课程目标与要求•教学内容与计划•线性方程组•矩阵及其运算•向量空间与线性变换•特征值与特征向量•二次型与矩阵合同•课程复习与考试指导目录01课程目标与要求010204知识与技能目标掌握线性代数的基本概念、基本理论和基本方法。
熟练掌握矩阵的运算、行列式的计算以及线性方程组的解法。
理解向量空间、线性变换以及特征值和特征向量的概念。
能够运用所学知识解决一些实际问题,如线性规划、数据分析等。
03培养学生的抽象思维能力和逻辑推理能力。
提高学生分析问题和解决问题的能力。
培养学生的自主学习能力和团队协作精神。
教授学生如何将线性代数知识应用于其他学科和实际生活中。
01020304过程与方法目标02030401情感态度与价值观目标激发学生对线性代数学习的兴趣和热情。
培养学生的数学素养和严谨的科学态度。
帮助学生认识到线性代数在现代科技和社会发展中的重要作用。
培养学生的创新思维和实践精神。
学生需要按时完成作业和练习,积极参与课堂讨论。
平时成绩主要包括作业完成情况、课堂表现、小组讨论等。
考核方式包括平时成绩、期中考试和期末考试,其中平时成绩占总评的30%,期中考试占总评的30%,期末考试占总评的40%。
期中和期末考试主要考察学生对课程内容的掌握程度和应用能力。
课程要求与考核方式02教学内容与计划教学内容概述向量空间与线性变换特征值与特征向量线性方程组矩阵与行列式介绍向量空间的基本概念、线性变换及其性质,为后续的线性方程组、特征值与特征向量等内容打下基础。
讲解线性方程组的解法,包括高斯消元法、矩阵的秩与线性方程组解的关系等,培养学生解决实际问题的能力。
系统介绍矩阵的基本运算、矩阵的逆、转置以及行列式的定义和性质,为后续的线性代数知识提供必要的数学工具。
深入讲解特征值与特征向量的概念、性质以及计算方法,为理解线性变换的几何意义和应用奠定基础。
教学重点与难点教学重点向量空间的基本概念、线性变换及其性质、线性方程组的解法、矩阵的基本运算以及特征值与特征向量的概念和应用。
《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。
(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。
一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。
主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。
通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。
线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。
思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。
线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。
同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。
《线性代数》(Linear Algebra)课程教学大纲40学时 2.5学分一、课程的性质、目的及任务本课程是讨论数学中线性关系经典理论的课程,它具有较强的抽象性及逻辑性,是高等院校理工科、经济管理各专业的一门重要基础课。
由于线性问题广泛存在于科学技术的各个领域,且某些非线性问题在一定条件下可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。
尤其在计算机日益普及的今天,本课程的地位与作用更显得重要。
通过教学,使学生掌握本课程的基本理论与方法,初步培养抽象思维与逻辑推理能力,了解数值计算方法,为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。
对于非数学专业的大学生而言,学习《线性代数》其意义不仅仅是学习一种专业的工具,事实上,在提高大学生的学习能力、培养科学素质和创新能力等方面,《线性代数》都发挥着重要作用。
二、适应专业理工科各专业、经济管理各专业三、先修课程初等数学四、课程的基本要求(一)线性方程组1、理解矩阵的初等变换,熟练掌握利用矩阵的初等行变换将矩阵化为阶梯形矩阵、行最简阶梯形矩阵的方法;2、熟练掌握求解线性方程组的初等变换法。
(二)矩阵1. 掌握单位矩阵、对角矩阵、对称矩阵及其性质;2. 掌握矩阵的线性运算、乘法、转置运算及运算律;3. 理解逆矩阵的概念、掌握逆矩阵的性质及求逆矩阵的初等变换法;理解矩阵可逆的充分必要条件;4. 了解分块矩阵及其运算。
(三)行列式及其应用1、掌握行列式的递推定义;2、了解行列式的性质;3、掌握二,三阶及n阶行列式的基本计算方法:降阶法和化三角形法;4、掌握利用行列式判断矩阵的可逆性,掌握克莱姆(Gramer)法则及应用。
(四)向量空间1. 理解n元向量概念;2. 理解向量组的线性相关、线性无关的定义;3. 掌握向量组的极大无关组与向量组的秩的概念;4. 理解矩阵的秩的概念、并掌握矩阵求秩的方法;5. 了解n维向量空间R n、子空间、基底、维数、坐标等概念;6. 掌握齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充要条件;7. 理解齐次线性方程组的基础解系及通解概念;8. 理解非齐次线性方程组解的结构及通解概念;(五)特征值与特征向量。