2016聚焦中考数学(甘肃省)考点跟踪突破18概率的应用
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
考点跟踪突破2整式及其运算一、选择题(每小题6分,共18分)1.(2015·长沙)下列运算中,正确的是(B)A.x3÷x=x4B.(x2)3=x6C.3x-2x=1D.(a-b)2=a2-b22.(2014·毕节)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(D)A.2B.0C.-1D.13.(2015·恩施)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元,再次降价20%,现售价为b元,则原售价为(A)A.(a+54b)元B.(a+45b)元C.(b+54a)元D.(b+45a)元二、填空题(每小题6分,共30分)4.(2014·连云港)计算(2x+1)(x-3)=__2x2-5x-3__.5.(2015·连云港)已知m+n=mn,则(m-1)(n-1)=__1__.6.(2015·资阳)已知:(a+6)2+b2-2b-3=0,则2b2-4b-a的值为__12__.7.(2012·黔东南州)二次三项式x2-kx+9是一个完全平方式,则k的值是__±6__.解析:∵x2-kx+9=x2-kx+32,∴-kx=±2×x×3,解得k=±6 8.(2015·铜仁)请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a+b)6=__a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6__.三、解答题(共52分)9.(10分)化简:(1)(2015·温州)(2a+1)(2a-1)-4a(a-1);解:原式=4a2-1-4a2+4a=4a-1(2)(2015·咸宁)(a2b-2ab2-b3)÷b-(a-b)2.解:原式=a2-2ab-b2-(a2-2ab+b2)=-2b210.(12分)(1)(2015·长沙)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-。
2016年中考真题精品解析 数学(甘肃武威卷)精编word 版一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .2.(3分)在1,﹣2,0,35这四个数中,最大的数是( ) A .﹣2 B .0 C .35 D .1 3.(3分)在数轴上表示不等式x ﹣1<0的解集,正确的是( )A .B .C .D .4.(3分)下列根式中是最简二次根式的是( )A .32 B .2 C .9 D .12 5.(3分)已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°7.(3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A .1:16B .1:4C .1:6D .1:28.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x9.(3分)若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( )A .﹣6B .6C .18D .30 10.(3分)如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .二、填空题(共8小题,每小题4分,满分32分)11.(4分)因式分解:2a 2﹣8= .12.(4分)计算:(﹣5a 4)•(﹣8ab 2)= . 13.(4分)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .14.(4分)如果单项式2x m+2n y n ﹣2m+2与x 5y 7是同类项,那么n m 的值是 .15.(4分)三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .16.(4分)如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .17.(4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .18.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .三、解答题(共5小题,满分38分)19.(6分)计算:()023160sin 23121--+︒++--⎪⎪⎭⎫ ⎝⎛-. 20.(6分)如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.21.(8分)已知关于x 的方程x 2+mx+m ﹣2=0.(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标;(2)求点M (x ,y )在函数y=﹣2x的图象上的概率. 四、解答题(共5小题,满分50分)24.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(10分)如图,函数y 1=﹣x+4的图象与函数y 2=k x(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y 1和y 2的大小关系.26.(10分)如图,已知EC ∥AB ,∠EDA=∠ABF .(1)求证:四边形ABCD 是平行四边形;(2)求证:OA 2=OE •OF .27.(10分)如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明;(3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】A.考点:中心对称图形.2.在1,﹣2,0,53这四个数中,最大的数是( ) A .﹣2 B .0 C.53D .1 【答案】C.【解析】试题分析:根据正数大于零,零大于负数,可得﹣2<0<1<53.故选C. 考点:有理数的大小比较.3.在数轴上表示不等式x ﹣1<0的解集,正确的是( )A .B .C .D . 【答案】C.【解析】试题分析:解不等式x ﹣1<0得:x <1.把它表示在数轴上可知选项C 正确.考点:数轴上表示不等式的解集.4.下列根式中是最简二次根式的是( ) A .32 B .3 C .9 D .12 【答案】B.【解析】试题分析:利用最简二次根式的定义分析得出答案.选项A :被开方数中含有分母,故不是最简二次根式;选项C :39=,故不是最简二次根式;选项D :3212=,故不是最简二次根式.故选B. 考点:最简二次根式.5.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A.考点:1平面直角坐标系内点的坐标特征;2不等式.6.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°【答案】D.【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°.∵DE ⊥CE ,∴∠DCE=90°-∠EDC=56°.故选D.考点:1平行线的性质;2直角三角形.7.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A .1:16B .1:4C .1:6D .1:2【答案】D.【解析】试题分析:根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方.可求得周长比是1:2.故选D.考点:相似三角形的性质.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .x x 60050800=+B .x x 60050800=-C .50600800+=x xD .50600800-=x x 【答案】A.考点:分式方程的应用.9.若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( )A .﹣6B .6C .18D .30【答案】B.【解析】试题分析:∵x 2+4x ﹣4=0,∴x 2+4x=4,∴原式=3(x 2﹣4x+4)﹣6(x 2﹣1)=3x 2﹣12x+12﹣6x 2+6=﹣3x 2﹣12x+18=﹣3(x 2+4x )+18=﹣12+18=6.故选B.考点:1整式的化简求值.2整体代入.10.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .【答案】B.【解析】 试题分析:过A 点作AH ⊥BC 于H ,∵△ABC 是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH= BC=2, 当0≤x ≤2时,如图1,∵∠B=45°,∴PD=BD=x ,∴y=12·x ·x=12x 2; 当2<x ≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x ,∴y=12(4﹣x )·x=﹣12x 2+2x ,故选B.考点:1二次函数;2分类思想;3数形结合.二、填空题(共8小题,每小题4分,满分32分)11.因式分解:2a 2﹣8= .【答案】2(a+2)(a-2).【解析】试题分析:2a 2-8=2(a 2-4)=2(a+2)(a-2).考点:因式分解.12.计算:(﹣5a 4)•(﹣8ab 2)= . 【答案】40a 5b 2.【解析】试题分析:(-5a 4)·(-8ab 2)=[(-5)×(-8)]·a 4+1b 2=40a 5b 2.考点:整式的乘法.13.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .【答案】92.考点:三角函数. 14.如果单项式2x m+2n y n ﹣2m+2与x 5y 7是同类项,那么n m的值是 .【答案】13.【解析】试题分析:根据题意,得⎩⎨⎧=+-=+72252m n n m .解得⎩⎨⎧=-=31nm .∴n m =3-1=13.考点:1同类项;2二元一次方程组.15.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 . 【答案】12.考点:1一元二次方程;2三角形.16.如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .【答案】 6. 【解析】试题分析:∵∠ABC=45°,∴∠AOC=90°,∴OA 2+OC 2=AC 2. ∴OA 2+OA 2=(23)2.∴OA= 6.故⊙O 的半径为 6. 考点:1圆周角定理;2勾股定理..17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .【答案】6. 【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB ,∵∠1=∠ABC ,∴∠ABC=∠ACB ,∴AC=AB ,∵AB=6cm , ∴AC=6cm .考点:1轴对称;2矩形的性质;3等腰三角形.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= . 【答案】(n+1)2【解析】试题分析: x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,···,∴x n =1+2+3+···+n=n (n +1)2.∴x n+1+x n =(n +1)(n +2)2+n (n +1)2=(n+1)2.考点:探索规律.三、解答题(共5小题,满分38分)19.计算:()23160sin 23121--+︒++--⎪⎪⎭⎫⎝⎛-.【答案】6.考点:1实数的混合运算;2零指数幂和负整数指数幂;3特殊角三角函数值.20.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.【答案】(1)画图见解析;(2)画图见解析,A 2(-3,-1),B 2(0,-2),C 2(-2,-4).考点:1轴对称变换;2平移变换. 21.已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析.【解析】试题分析:(1)直接把x=1代入原方程可求得m 得值;(2)计算出根的判别式,再证明其大于零即可. 试题解析:(1)将x=1代入方程x 2+mx+m ﹣2=0,得:1+m+m ﹣2=0,∴m=12;(2)∵△=m 2﹣4×1×(m ﹣2)=m2﹣4m+8=(m ﹣2)2+4,∴不论m 取何值,(m ﹣2)2≥0,∴(m ﹣2)2+4>0.∴不论m 取何实数,该方程都有两个不相等的实数根.考点:1一元二次方程;2完全平方式.22.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364) (1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)【答案】(1)1.17米;(2)2245.考点:1解直角三角形;2弧长公式.23.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.【答案】(1)树状图见解析,则点M 所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)29.﹣2),(2,0);(2)∵点M (x ,y )在函数y=﹣2x的图象上的有:(1,﹣2),(2,﹣1),∴点M (x ,y )在函数y=﹣2x 的图象上的概率为:29.考点:列表法或树状图法求概率. 四、解答题(共5小题,满分50分)24.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B 所在扇形的圆心角是多少度? 【答案】(1)300;(2)m=60,n=90;(3)72°.考点:统计图.25.如图,函数y 1=﹣x+4的图象与函数y 2=kx(x >0)的图象交于A (m ,1),B (1,n )两点. (1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y 1和y 2的大小关系.【答案】(1)k=3,m=3,n=3;(2)当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 【解析】试题分析:(1)(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,将A 坐标代入反比例解析式求出k 的值;(2)利用图像,可知分x=1或x=3,1<x <3与x >3三种情况判断出y 1和y 2的大小关系即可. 试题解析:(1)把A (m ,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A (3,1),把A (3,1)代入y=kx得:k=3,把B (1,n )代入一次函数解析式得:n=﹣1+4=3;(2)∵A (3,1),B (1,3),∴根据图像得当1<x <3时,y 1>y 2;当x >3时,y 1<y 2;当x=1或x=3时,y 1=y 2. 考点:1一次函数;2反比例函数;3数形结合. 26.如图,已知EC ∥AB ,∠EDA=∠ABF . (1)求证:四边形ABCD 是平行四边形;(2)求证:OA 2=OE •OF .【答案】(1)证明见解析;(2)证明见解析.考点:1平行线分线段成比例;2平行四边形性质和判定.27.如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点. (1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.【答案】(1)证明见解析;(2)DE 与圆O 相切,证明见解析;(3)233. 【解析】试题分析:(1)连接AD ,根据等腰三角形三线合一性质得到AD ⊥BC ,再根据90°的圆周角所对的弦为直径中点,∴E 为CF 中点,DE=12BF ,在Rt △ABF 中,∠AFB=90°,AB=6,AF=3,∴BF=33362222=-=-AF AB ,则DE=12BF=233.考点:1圆;2等腰三角形;3平行线的性质.28.如图,已知抛物线y=﹣x 2+bx+c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.【答案】(1)抛物线:y=-x 2+2x+3,直线AB :y=-x+3;(2)7)235(15-或41)325(9-;(3)存在,最大面278,P (32,154). ∴直线AB 的解析式为y=﹣x+3;(2)由题意得,OE=t ,AF=2t ,∴AE=OA ﹣OE=3﹣t ,∵△AEF 为直角三角形,∴①若△AOB ∽△AEF ,∴AF AB =A E OA ,∴3352t t -=,∴t=7)235(15-.②△AOB ∽△AFE ,∴OA AF =ABA E ,∴tt-=3523,∴t=41)325(9-;综上所述,t=7)235(15-或41)325(9-;(3)如图,存在,过点P 作PC ∥AB 交y 轴于C ,当直线PC 与y=﹣x 2+2x+3有且只有一个交点时,∆PAB 面积最大.∵直线AB 解析式为y=﹣x+3,∴设直线PC 解析式为y=﹣x+b ,∴﹣x+b=﹣x 2+2x+3,∴x 2﹣3x+b ﹣3=0,∴△=9﹣4(b ﹣3)=0,∴b=214.解方程组⎪⎩⎪⎨⎧++-=+-=324212x x y x y ,得⎪⎪⎩⎪⎪⎨⎧==41523y x .∴P (32,154)∴BC=214﹣3=94.过点B 作BD ⊥PC ,考点:1二次函数;2一次函数;3相似三角形;4平面直角坐标系中,直线平行与垂直解析式关系.。
甘肃省兰州市2016年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】主视图是从正面看到的图形,从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A.【考点】几何体三视图2.【答案】B 【解析】反比例函数2y x=的图像受到k 的影响,当k 大于0时,图像位于第一、三象限,当k 小于0时,图像位于第二、四象限,本题中2k =大于0,图像位于第一、三象限,所以答案选B.【考点】反比例函数3.【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为34,即对应中线的比为34,所以答案选A. 【考点】相似三角形的性质4.【答案】D【解析】在Rt △ABC 中,63sin 5BC A AB AB ===,解得10AB =,所以答案选D. 【考点】三角函数5.【答案】B【解析】根据题目,20b ac ∆=-4=,判断得方程有两个相等的实数根,所以答案选B.【考点】一元二次方程根6.【答案】C【解析】根据三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例,得23AE AD EC DB ==,所以答案选C. 【考点】平行线分线段成比例定理7.【答案】A【解析】在△OAB 中,OA OB =,所以50A B ∠=∠=︒,根据垂径定理的推论,OC 平分弦AB 所对的弧,所以OC 垂直平分弦AB ,即9040BOC B ∠=︒-∠=︒,所以答案选A .【考点】圆的性质,垂径定理8.【答案】B【解析】在二次函数的顶点式()2y a x h k =-+中,12b h a =-=,2434ac b k a -==,所以答案选B. 【考点】二次函数的一般式化为顶点式9.【答案】C【解析】设原正方形边长为xm ,则剩余空地的长为(x -1)m ,宽为(x -2)m ,面积为()(118.)2x x --=【考点】一元二次方程10.【答案】C【解析】连接OB ,则OAB OBA ∠∠=,OCB OBC ∠∠=∵四边形ABCO 是平行四边形,∴OAB OCB ∠=∠,∴OBA OBC ∠∠=,∴ABC OBA OBC AOC ∠∠∠∠=+=,∴120ABC AOC ∠=∠=︒,∴60OAB OCB ∠=∠=︒,连接OD ,则OAD ODA ∠=∠,OCD ODC ∠=∠,由四边形的内角和等于360º可知,∴360ADC OAB ABC OCB OAD OCD ∠︒∠∠∠∠∠=-----,60ADC ∠=︒.【考点】菱形的判定和性质,同弧所对圆周角与圆心角的关系11.【答案】D【解析】将123P P P ,,坐标分别代入二次函数,可知12y y =,315y c =-+由二次函数的性质可知,该函数图像的顶点坐标为()1,1c +,且关于1x =对称,在2P 到3P 为单调递减函数,所以23y y >,所以123.y y y =>【考点】二次函数图像的轴对称性12.【答案】C【解析】利用弧长公式即可求解.【考点】弧长公式13.【答案】C【解析】①0a <,0b <,0c >故正确;②抛物线与x 轴有两个交点,故正确;③对称轴为1x =-,化简得20a b -=,故错误;④当1x =-时,所对应的2y >,故正确.【考点】二次函数的图像与性质14.【答案】A【解析】∵CE ∥BD ,DE ∥AC ,∴四边形OCED 是平行四边形,∴OD EC =,OC DE =∵矩形ABCD 的对角线AC 与BD 相交于点O ,∴OD OC =.连接OE ,∵2DE =,∴2DC =,DE =∴四边形OCED 的面积为×2DC DE =.【考点】矩形,菱形,平行四边形,勾股定理15.【答案】A【解析】连接AF ,CF ,DE ,BE ,OA ,OB ,OC ,OD∵ACF AOE EOC AOF COF S S S S S =+++, ∴1211 2222k k OF AC AC EF ++=, ∵EBD DOF BOF EOD EOB S S S S S =+++,∴1211 BD BD 2222k k OF EF ++=, 代入具体数值化简得:21222k k -=,∴214k k -= 【考点】反比例函数的图像与性质第Ⅱ卷二、填空题16.【答案】-7【解析】二次函数最值问题,可将其化为顶点式2(2)7y x =+-.【考点】二次函数顶点式17.【答案】20【解析】概率问题【考点】频率的应用18.【答案】1m <【解析】根据题意得10m -<,则1m <.【考点】反比例函数的性质19.【答案】AC BD =或90BAD ∠=︒或90ABC ∠=︒或90BCD ∠=︒或90CDA ∠=︒【解析】由题知四边形ABCD 为菱形,所以只需一个角为90度,或对角线相等.【考点】正方形的判定20.【答案】1,2或32 【解析】四边形ABCD 的四个顶点到其对角线交点的距离相等,只有当该交点在圆上时满足题意.【考点】几何图形的新定义三、解答题21.【答案】(11(2)112y =,22y =- 【解析】(1)2211=--=原式 (2)原方程可变形为22320y y +-=,这里2a =,3b =,2c =- 24250b ac ∆=-=>335224y --±==⨯ 即112y =,22y =- 【考点】实数的计算,一元二次方程22.【答案】如图,四边形ABCD 即为所求。
考点跟踪突破24矩形、菱形与正方形一、选择题(每小题6分,共24分)1.(2015·沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是(B )A .平行四边形B .菱形C .矩形D .正方形2.(2015·青岛)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF =3,BD =4,则菱形ABCD 的周长为(C )A .4B .46C .47D .28解析:∵E 、F 分别是AB 、BC 边上的中点,∴AC =2EF =2 3.∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OA =12=3,OB =12BD =2,AC ⊥BD.∴在Rt △AOB 中,AB =OA 2+OB 2=(3)2+22=7,∴菱形ABCD 的周长为47,第2题图),第4题图)3.(2014·呼和浩特)已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于点E ,F(不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为(B )A .△CDE 与△ABF 的周长都等于10cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10cmC .△CDE 与△ABF 全等,且周长都为5cmD .△CDE 与△ABF 全等,但它们的周长和面积都不能确定4.(2014·宜宾)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是(B )A .nB .n -1C .(14)n -1D .14n 二、填空题(每小题7分,共28分)5.(2014·凉山州)顺次连接矩形四边中点所形成的四边形是__菱形__.学校的一块菱形花园两对角线的长分别是6m 和8m ,则这个花园的面积为__24_m 2__.6.(2014·毕节)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为__30__度.7.(2015·泰安)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.若AB =8,AD =12,则四边形ENFM 的周长为__20__.解析:N 是BC 的中点,E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN ∥MC ,NF ∥ME ,EN =12MC ,FN =12MB.又MB =MC ,∴四边形ENFM 是菱形.由M 是AD 的中点,AD =12得AM =6.在Rt △ABM 中,由勾股定理得BM =10.∵E 是BM 的中点,∴EM =5,∴四边形ENFM 的周长为20。
一次方程(组)及其应用一、选择题(每小题6分,共24分)1.(2015·无锡)方程2x -1=3x +2的解为( D )A .x =1B .x =-1C .x =3D .x =-32.(2015·内江)植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是( D ) A .⎩⎪⎨⎪⎧x +y =523x +2y =20 B .⎩⎪⎨⎪⎧x +y =522x +3y =20 C .⎩⎪⎨⎪⎧x +y =202x +3y =52 D .⎩⎪⎨⎪⎧x +y =203x +2y =52 3.(2015·巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( A ) A .a =3,b =1 B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-14.(2015·黑龙江)为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( C )A .4B .3C .2D .1解析:设5人一组的有x 个,6人一组的有y 个,根据题意可得:5x +6y =40,当x =1,则y =356(不合题意);当x =2,则y =5;当x =3,则y =256(不合题意);当x =4,则y =103(不合题意);当x =5,则y =52(不合题意);当x =6,则y =53(不合题意);当x =7,则y =56(不合题意);当x =8,则y =0.故有2种分组方案.故选:C二、填空题(每小题6分,共24分)5.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13,(分式的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式性质2)去括号,得9x +15=4x -2.(去括号法则或分配律)(移项),得9x -4x =-15-2.(等式性质1)合并,得5x =-17.(合并同类项)(系数化为1),得x =-175.(等式性质2) 6.(2015·常州)已知x =2是关于x 的方程a(x +1)=12a +x 的解,则a 的值是__45__.7.(2015·枣庄)已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =5,则2a +b 的值为__265__. 8.(2015·嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为__1338__. 三、解答题(共52分)9.(10分)(1)(2014·滨州)解方程:2-2x +13=1+x 2; 解:去分母得:12-2(2x +1)=3(1+x),去括号得:12-4x -2=3+3x ,移项合并得:-7x =-7,解得:x =1(2)(2015·重庆)解方程组⎩⎪⎨⎪⎧y =2x -4①,3x +y =1②. 解:⎩⎪⎨⎪⎧y =2x -4①,3x +y =1②,①代入②得:3x +2x -4=1,解得:x =1,把x =1代入①得:y =-2,则方程组的解为⎩⎪⎨⎪⎧x =1,y =-210.(12分)(2015·滨州)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):①⎩⎪⎨⎪⎧x +2y =3,2x +y =3的解为________; ②⎩⎪⎨⎪⎧3x +2y =10,2x +3y =10的解为________; ③⎩⎪⎨⎪⎧2x -y =4,-x +2y =4的解为________; (2)以上每个方程组的解中,x 值与y 值的大小关系为________;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.解:(1)①⎩⎪⎨⎪⎧x =1,y =1 ②⎩⎪⎨⎪⎧x =2,y =2 ③⎩⎪⎨⎪⎧x =4,y =4 (2)x =y (3)⎩⎪⎨⎪⎧3x +2y =25,2x +3y =25,解为⎩⎪⎨⎪⎧x =5,y =511.(10分)已知关于x ,y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,求这个公共解.解:解法一:取a =1,解得3y +3=0,y =-1,取a =-2,得-3x +9=0,x =3,∴⎩⎪⎨⎪⎧x =3,y =-1 解法二:整理得(x +y -2)a =x -2y -5,∵当a 每取一个值时,就有一个方程,而这些方程有一个公共解,可知方程(x +y -2)a =x -2y -5有无数个解,∴⎩⎪⎨⎪⎧x +y -2=0,x -2y -5=0,解得⎩⎪⎨⎪⎧x =3,y =-112.(10分)(2015·泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?解:设每件衬衫降价x 元,依题意有120×400+(120-x)×100=80×500×(1+45%),解得x =20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标13.(10分)(2015·黄冈)已知A ,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A ,B 两件服装的成本各是多少元?解:设A 服装成本为x 元,B 服装成本y 元,由题意得:⎩⎪⎨⎪⎧x +y =500,30%x +20%y =130,解得:⎩⎪⎨⎪⎧x =300,y =200,答:A 服装成本为300元,B 服装成本200元2016年甘肃名师预测1.方程组⎩⎪⎨⎪⎧2x +y =●,x +y =3,的解为⎩⎪⎨⎪⎧x =2,y =▲,则遮盖的两个数“●”与“▲”分别为( B ) A .1,2 B .5,1 C .2,3 D .2,42.已知(x -y +3)2+2-y =0,则x +y =__1__.。
图形的相似一、选择题(每小题6分,共30分)1.(2015·乐山)如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A ,B ,C 和D ,E ,F.已知AB BC =32,则DE DF的值为( D ) A .32 B .23 C .25 D .35,第1题图) ,第2题图)2.(2015·海南)如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( D )A .0对B .1对C .2对D .3对3.(2015·呼伦贝尔)如图,把△ABC 沿AB 边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半,若AB =2,则此三角形移动的距离AA′是( A )A .2-1B .22C .1D .12,第3题图) ,第4题图)4.(2015·咸宁)如图,以点O 为位似中心,将△ABC 放大得到△DEF.若AD =OA ,则△ABC 与△DEF 的面积之比为( B )A .1∶2B .1∶4C .1∶5D .1∶65.(2014·河北)在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( A )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对二、填空题(每小题6分,共24分)6.(2015·河南)如图,△ABC 中,点D ,E 分别在边AB ,BC 上,DE ∥A C .若BD =4,DA =2,BE =3,则EC =__32__.,第6题图) ,第8题图)7.(2015·东莞)若两个相似三角形的周长比为2∶3,则它们的面积比是__4∶9__.8.(2015·黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是__8__米(平面镜的厚度忽略不计).9.(2015·葫芦岛)如图,在矩形ABCD 中,AD =2,CD =1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB n C n C n -1的面积为__5n 2__. 解析:∵四边形ABCD 是矩形,∴AD ⊥DC ,∴AC =AD 2+CD 2=22+12=5,∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 的边长的比为5:2∴矩形AB 1C 1C 的面积和矩形ABCD 的面积的比5:4,∵矩形ABCD 的面积=2×1=2,∴矩形AB 1C 1C的面积=52,依此类推,矩形AB 2C 2C 1的面积和矩形AB 1C 1C 的面积的比5:4,∴矩形AB 2C 2C 1的面积=5223,∴矩形AB 3C 3C 2的面积=5325,按此规律第n 个矩形的面积为: 5n 22n -1,故答案为:5n 2三、解答题(共46分)10.(14分)(2015·咸宁)如图,在△ABC 中,AB =AC ,∠A =36°,BD 为角平分线,DE ⊥AB ,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.(1)解:△ADE≌△BDE,△ABC ∽△BCD(2)证明:∵AB=AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 为角平分线,∴∠ABD =12∠ABC =36°=∠A,在△ADE 和△BDE 中,∵错误!∴△ADE ≌△BDE(AAS );证明:∵AB=AC ,∠A=36°,∴∠ABC =∠C=72°,∵BD 为角平分线,∴∠DBC =12∠ABC=36°=∠A,∵∠C =∠C,∴△ABC ∽△BCD11.(16分)(2015·抚顺)如图,将△ABC 在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A 3B 3C 3.(1)△ABC 与△A 1B 1C 1的位似比等于____;(2)在网格中画出△A 1B 1C 1关于y 轴的轴对称图形△A 2B 2C 2;(3)请写出△A 3B 3C 3是由△A 2B 2C 2怎样平移得到的?(4)设点P(x ,y)为△ABC 内一点,依次经过上述三次变换后,点P 的对应点的坐标为____.解:(1)△ABC 与△A 1B 1C 1的位似比等于=AB A 1B 1=24=12(2)如图所示:(3)△A 3B 3C 3是由△A 2B 2C 2沿x 轴向左平移2个单位,再沿y 轴向上平移2个单位得到 (4)点P(x ,y)为△ABC 内一点,依次经过上述三次变换后,点P 的对应点的坐标为(-2x -2,2y +2).故答案为:12;(-2x -2,2y +2)12.(16分)(2015·泰安)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B .(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长.解:(1)∵AB=AC ,∴∠B =∠C.∵∠APD=∠B,∴∠APD =∠B=∠C.∵∠APC=∠BAP+∠B,∠APC =∠APD+∠DPC,∴∠BAP =∠DPC,∴△ABP ∽△PCD ,∴BP CD =AB CP,∴AB ·CD =CP·BP.∵AB=AC ,∴AC ·CD =CP·BP(2)∵PD∥AB,∴∠APD =∠BAP.∵∠APD=∠C,∴∠BAP =∠C.∵∠B=∠B,∴△BAP ∽△BCA ,∴BA BC =BP BA .∵AB=10,BC =12,∴1012=BP 10,∴BP =2532016年甘肃名师预测1.如图,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC,使截得的三角形与△ABC 相似,这样的直线共有( C )A .1条B .2条C .3条D .4条,第1题图) ,第2题图)2.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO =OC ,连接CQ 并延长CQ 交边AB 于点P.则点P的坐标为.解析:∵四边形OABC 是边长为2的正方形,∴OA =OC =2,OB =22,∵QO =OC ,∴BQ =OB-OQ =22-2,∵正方形OABC 的边AB∥OC,∴△BPQ ∽△OCQ ,∴BP OC =BQ OQ ,即BP 2=22-22,解得BP =22-2,∴AP =AB -BP =2-(22-2)=4-22,∴点P 的坐标为(2,4-22)。
2016年中考数学(甘肃兰州卷)一、选择题(共15小题)1.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【答案】A.考点:简单组合体的三视图.2.反比例函数是2yx=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【答案】B.【解析】试题分析:∵反比例函数是2yx=中,k=2>,∴此函数图象的两个分支分别位于一、三象限.故选B.考点:反比例函数的性质.3.已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为()A.34B.43C.916D.169【答案】A.【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A . 考点:相似三角形的性质. 4.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =( ) A .4 B .6 C .8 D .10【答案】D .考点:解直角三角形;实数;等腰三角形与直角三角形.5.一元二次方程2210x x ++=的根的情况( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】B .【解析】试题分析:∵△=4﹣4×1×1=0,∴一元二次方程2210x x ++=有两个相等的实数根;故选B .考点:根的判别式.6.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC=( )A .13B .25C .23D .35【答案】C .【解析】试题分析:∵DE ∥BC ,∴AE EC =23AD DB =,故选C . 考点:平行线分线段成比例.7.如图,在⊙O 中,若点C 是»AB 的中点,∠A =50°,则∠BOC =( )A .40°B .45°C .50°D .60°【答案】A .考点:圆心角、弧、弦的关系.8.二次函数224y x x =-+化为2()y a x h k =-+的形式,下列正确的是( )A .2(1)2y x =-+B .2(1)3y x =-+C .2(2)2y x =-+D .2(2)4y x =-+【答案】B .【解析】试题分析:设原正方形的边长为xm ,依题意有:(x ﹣1)(x ﹣2)=18,故选C . 考点:由实际问题抽象出一元二次方程.10.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45°B .50°C .60°D .75°【答案】C .考点:圆内接四边形的性质;平行四边形的性质;圆周角定理.11.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>【答案】D .【解析】试题分析:∵22y x x c =-++,∴对称轴为x =1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.12.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .πcmB .2πcmC .3πcmD .5πcm【答案】C .【解析】试题分析:根据题意得:l =1085180π⨯=3πcm ,则重物上升了3πcm ,故选C . 考点:旋转的性质;弧长的计算.13.二次函数2y ax bx c =++的图象如图所示,对称轴是直线x =﹣1,有以下结论:①abc >0;②24ac b <;③2a +b =0;④a ﹣b +c >2.其中正确的结论的个数是( )A .1B .2C .3D .4【答案】C .故选C .考点:二次函数图象与系数的关系;数形结合.14.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC , AD =23,DE =2,则四边形OCED 的面积( )A .23B .4C .43D .8【答案】A .考点:矩形的性质;菱形的判定与性质.15.如图,A ,B 两点在反比例函数1k y x =的图象上,C 、D 两点在反比例函数2k y x=的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则21k k -=( )A .4B .143C .163D .6【答案】A .【解析】试题分析:设A (m ,1k m ),B (n ,1k n )则C (m ,2k m ),D (n ,2k n ),由题意:122110323n m k k mk k n ⎧-=⎪⎪-⎪=⎨⎪-⎪=⎪⎩,解得21k k -=4.故选A .考点:反比例函数图象上点的坐标特征.二、填空题(共5小题)16.二次函数243y x x =+-的最小值是 .【答案】﹣7.【解析】试题分析:∵243y x x =+-=2(2)7x +-,∵a =1>0,∴x =﹣2时,y 有最小值=﹣7.故答案为:﹣7.考点:二次函数的最值.17.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.【答案】20.考点:利用频率估计概率.18.双曲线1m y x-=在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .【答案】m <1.【解析】试题分析:∵双曲线1m y x -=在每个象限内,函数值y 随x 的增大而增大,∴m ﹣1<0,解得:m <1.故答案为:m <1.考点:反比例函数的性质;解一元一次不等式.19.▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,请添加一个条件: ,使得▱ABCD 为正方形.【答案】∠BAD =90°.【解析】试题分析:∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,▱ABCD 为正方形.故答案为:∠BAD =90°.考点:正方形的判定;平行四边形的性质.20.对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :33y x =-交x 轴于点M ,⊙M 的半径为2,矩形ABCD 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .【答案】(132-,33-)或(332+,3).∴223AB =,AB =3,则AD =1,∵DG ∥y 轴,∴△MDG ∽△MON ,∴DG DM ON MN =,∴323DG =,考点:圆的综合题;新定义;分类讨论.三、解答题(共8小题)21.(11018()2cos 45(2016)2π----o ;(2)2242y y y +=+.【答案】(121;(2)112y =,22y =-. 【解析】试题分析:(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用利用零指数幂法则计算即可得到结果;(2)先把方程化为一般式,然后利用因式分解法解方程.试题解析:(1)原式=2222212+-⨯-=21+; (2)22320y y +-=,(2y ﹣1)(y +2)=0,2y ﹣1=0或y +2=0,所以112y =,22y =-. 考点:解一元二次方程-因式分解法;零指数幂;负整数指数幂;特殊角的三角函数值.22.如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD .(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】答案见解析.考点:正多边形和圆;作图—复杂作图.23.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.【答案】14.【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率.试题解析:列表如下:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概率=416=14.考点:列表法与树状图法.24.如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED 的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】10.考点:解直角三角形的应用;探究型.25.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【答案】(1)是平行四边形;(2)①AC=BD;②AC⊥BD..【解析】综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)①AC=BD.理由如下:考点:矩形的判定与性质;平行四边形的判定;菱形的判定与性质.26.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A3,1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.【答案】(1)3yx=;(2)P(23-,0);(3)E(3-,﹣1),在.【解析】试题分析:(1)将点A(3,1)代入kyx=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(3,﹣3),计算求出S△AOB=12×3×4=23.则S△AOP=12S△AOB=3.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣3,﹣1),即可求解.试题解析:(1)∵点A(3,1)在反比例函数kyx=的图象上,∴k=3×1=3,∴反比例函数的表达式为3y=;(2)∵A(3,1),AB⊥x轴于点C,∴OC=3,AC=1,由射影定理得2OC=AC•BC,可得BC=3,B(3,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=3,BC﹣DE=1,∴E(3-,﹣1),∵3-×(﹣1)=3,∴点E在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.27.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:C F是⊙O的切线;(2)若⊙O的半径为5,BC=10,求DE的长.【答案】(1)证明见解析;(2)203.【解析】试题分析:(1)连接OC,欲证明CF是⊙O的切线,只要证明∠OCF=90°.(2)作DH⊥AC于H,由△AEO∽△ABC,得AO AEAC AB=求出AE,EC,再根据sin∠A=sin∠EDH,得到∴DE=AB EHBC⋅=21010310⨯=203.考点:切线的判定.28.如图1,二次函数2y x bx c=-++的图像过点A (3,0),B(0,4)两点,动点P 从A 出发,在线段A B上沿A → B 的方向以每秒 2 个单位长度的速度运动,过点P作PD⊥y于点D ,交抛物线于点C .设运动时间为t(秒).(1)求二次函数2y x bx c=-++的表达式;(2)连接B C,当t=56时,求△BCP的面积;(3)如图2,动点P从A 出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动,当点P与B 重合时,P、Q两点同时停止运动,连接D Q、PQ,将△DPQ沿直线PC折叠到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系式及t的取值范围.【答案】(1)2543y x x=-++;(2)4;(3)22241215(0)2551714414436155()2755511172t t tSt t t⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.【解析】试题分析:(1)直接将A 、B 两点的坐标代入列方程组解出即可;4930c b c =⎧⎨-++=⎩,解得:534b c ⎧=⎪⎨⎪=⎩,∴解析式为:2543y x x =-++;(2)如图1,当56t =时,AP =2t ,∵PC ∥x 轴,∴OB AB OD AP =,∴452OD t=,∴OD =85t =8556⨯=43,当y =43时,43=2543x x -++,23580x x --=,解得:11x =-,283x =,∴C (﹣1,43),由BD PD OB OA =,得44343PD -=,则PD =2,∴S △BCP =12×PC ×BD =18323⨯⨯=4;(3)分两种情况讨论:①如图3,当点E 在AB 上时,由(2)得OD =QM =ME =85t ,∴EQ =165t ,由折叠考点:二次函数综合题;动点型;分段函数;分类讨论;压轴题.。
考点跟踪突破16统计的应用一、选择题(每小题6分,共30分)1.(2015·武汉)下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( D )A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的为16:002.(2014·舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( A )A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况3.(2015·呼和浩特)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( B )A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额4.如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( C )A.音乐组B.美术组C.体育组D.科技组5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如右表,则棉花纤维长度的数据在8≤x<32这个范围的频率为( A )棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2二、填空题(每小题6分,共18分)6.(2015·凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O型血的有__10__人.7.(2015·河池)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须且只能选修其中一门.为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图.已知该校学生人数为2000人,由此估计选修A 课程的学生有__800__人.8.(2016·苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是__72__度.三、解答题(共52分)9.(2016·无锡)某校为了了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=__12__,b=__0.08__;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1 200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?解:(1)由题意可得:a=50×0.24=12(人),∵m=50-10-12-16-6-2=4,∴b=450=0.08(2)补图略(3)由题意可得,该校在上学期参加社区活动超过6次的学生有1 200×(1-0.20-0.24)=672(人),答:该校在上学期参加社区活动超过6次的学生有672人10.(18分)(2016·贵港)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是__120__;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为__30°__,m的值为__25__;(3)若该校共有学生1 500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人)(2)“了解”所对应扇形的圆心角的度数为:360°×10120=30°;30120×100%=25%,则m 的值是25(3)若该校共有学生1 500名,则该校学生对足球的了解程度为“基本了解”的人数为:1 500×25%=37511.(18分)(2016·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环 方差 甲 a 7 7 1.2 乙7b8c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?解:(1)甲的平均成绩a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大从新排列为:3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数b =7+82=7.5(环),其方差c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2 (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大。
因式分解一、选择题(每小题6分,共24分)1.(2015·武汉)把a2-2a分解因式,正确的是( A)A.a(a-2) B.a(a+2)C.a(a2-2) D.a(2-a)2.(2015·临沂)多项式mx2-m与多项式x2-2x+1的公因式是( A)A.x-1 B.x+1 C.x2-1 D.(x-1)23.(2014·衡阳)下列因式分解中正确的个数为( C)①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y).A.3个B.2个C.1个D.0个4.若实数x,y,z满足(x-z)2-4(x-y)(y-z)=0,则下列式子一定成立的是( D) A.x+y+z=0 B.x+y-2z=0C.y+z-2x=0 D.x+z-2y=0解析:左边=[(x-y)+(y-z)]2-4(x-y)(y-z)=(x-y)2-2(x-y)(y-z)+(y-z)2=[(x-y)-(y-z)]2,故(x-y)-(y-z)=0,x-2y+z=0二、填空题(每小题6分,共24分)5.(2015·泸州)分解因式:2m2-2=__2(m+1)(m-1)__.6.(2015·南京)分解因式(a-b)(a-4b)+ab的结果是__(a-2b)2__.7.(2015·衡阳)已知a+b=3,a-b=-1,则a2-b2的值为__-3__.8.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y的值为__2__.三、解答题(共52分)9.(10分)分解因式:(1)x2-4x-12;解:x2-4x-12=x2-4x+4-16=(x-2)2-16=(x-2+4)(x-2-4)=(x+2)(x-6)(2)8(x2-2y2)-x(7x+y)+xy.解:8(x2-2y2)-x(7x+y)+xy=8x2-16y2-7x2-xy+xy=x2-16y2=(x+4y)(x-4y)10.(10分)若△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,判断△ABC的形状.解:∵a+2ab=c+2bc,∴a-c+2ab-2bc=0,(a-c)+2b(a-c)=0,∴(1+2b)(a-c)=0.∵1+2b≠0,∴a-c=0,a=c,∴△ABC是等腰三角形11.(10分)有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是____.解:或a2+3ab+2b2=(a+b)(a+2b)12.(11分)设a =12m +1,b =12m +2,c =12m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值. 解:原式=(a 2+2ab +b 2)-(2ac +2bc)+c 2=(a +b)2-2(a +b)c +c 2=(a +b -c)2=[(12m +1)+(12m +2)-(12m +3)]2=(12m)2=14m 213.(11分)阅读材料:对于多项式x 2+2ax +a 2可以直接用公式法分解为(x +a)2的形式,但对于多项式x 2+2ax -3a 2,就不能直接用公式法了,我们可以根据多项式的特点,在x 2+2ax -3a 2中先加上一项a 2,再减去a 2这项,使整个式子的值不变.解题过程如下:x 2+2ax -3a 2=x 2+2ax -3a 2+a 2-a 2(第一步)=x 2+2ax +a 2-a 2-3a 2(第二步)=(x +a)2-(2a)2(第三步)=(x +3a)(x -a).(第四步)参照上述材料,回答下列问题:(1)上述分解因式的过程,从第二步到第三步,用到了哪种分解因式的方法( ) A .提公因式法 B .平方差公式法C .完全平方公式法D .没有分解因式(2)从第三步到第四步用到的是哪种分解因式的方法__________;(3)参照阅读材料中的方法,请将m 2-6mn +8n 2分解因式.解:(1)C (2)平方差公式法(3)m 2-6mn +8n 2=m 2-6mn +8n 2+n 2-n 2=(m -3n)2-n 2=(m -2n)(m -4n)2016年甘肃名师预测1.若ab =3,a -2b =5,则a 2b -2ab 2的值是__15__.2.如果多项式2x 3+x 2-26x +k 有一个因式是2x +1,求k 的值.解:∵2x+1是2x 3+x 2-26x +k 的因式,∴可设2x 3+x 2-26x +k =(2x +1)·R.令2x +1=0,x =-12,得2×(-12)3+(-12)2-26×(-12)+k =0,-14+14+13+k =0,k =-13。
考点跟踪突破18 概率的应用
一、选择题(每小题7分,共35分)
1.(2013·宜昌)2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( A )
A .科比罚球投篮2次,一定全部命中
B .科比罚球投篮2次,不一定全部命中
C .科比罚球投篮1次,命中的可能性较大
D .科比罚球投篮1次,不命中的可能性较小
2.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )
A.110
B.19
C.16
D.15
3.(2014·黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是( A )
A.23
B.56
C.16
D.12
4.(2015·自贡)如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是( B )
A.34
B.23
C.13
D.12
5.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )
A.38
B.12
C.58
D.34
二、填空题(每小题7分,共21分)
6.(2014·长沙)100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为__1
20
__.
7.(2015·深圳)从1,2,3这三个数中,任意抽取两个不同的数字组成一个两位数,则这个两位数能被3整除的概率是__1
3
__.
8.(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概
率为__3
4
__.
三、解答题(共44分)
9.(10分)(2013·常州)一个不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中随机摸出一个球是白球的概率是多少?
(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.
解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为2
3 (2)根据题意画
出树状图如下:
一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以P(两次摸出的球都是白球)=26=1
3
10.(10分)(2015·常德)商场为了促销某件商品,设置了如图所示一个转盘,它被分成3个相同的扇形,各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取.每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作指向右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买该商品的价格不超过30元的概率是多少?
解:画树状图如下:
由树状图可知,在9种等可能的结果中,不超过30元的只有三种,∴顾客购买该商品的价格不超过30元的概率P =39=1
3
11.(12分)(2014·安徽)如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1. (1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?
(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.
解:(1)小明可选择的情况有3种,每种发生的可能性相等,恰好选中绳子AA 1的情况为1种,所以小明恰好选中绳子AA 1的概率P =1
3 (2)依题意,分别在两端随机任选两个绳
头打结,总共有三类9种情况,列表或画树状图表示如下,每种发生的可能性相等.
其中左、右结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1.故这三根绳子连接成为一根长绳的概率
P =69=23
12.(12分)(2015·广州)4件同型号的产品中,有1件不合格产品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格的概率;
(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?
解:(1)P(抽到的是不合格品)=11+3=1
4
(2)所有抽取情况共有12种,其中抽到的都是合格品的情况有6种,故P(抽到的都是合格品)=612=12 (3)由题意,得3+x
4+x =0.95,解得x =16,故x 的值大约为16
2016年甘肃名师预测
1.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )
A .47
B .49
C .29
D .19
2.在四边形ABCD 中,(1)AB∥CD,(2)AD∥BC ,(3)AB =CD ,(4)AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是__2
3
__.。