全等三角形专项训练
- 格式:doc
- 大小:317.00 KB
- 文档页数:3
三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
专题18 全等三角形一、单选题1.(2021·湖南怀化·九年级)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分△EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【答案】C【详解】由尺规作图的痕迹可得:GH垂直平分线段EF.故选C.2.(2021·江苏南京·九年级)如图,在等腰△ABC中,AB=AC,D、E分别在BC、AC上,AD=DE,BD=CE,若△ADE=m°,则△BAD的度数是()A.m°B.1902m⎛⎫-⎪⎝⎭°C.(90-m)°D.3902m⎛⎫-⎪⎝⎭°【答案】D【分析】分别过点E、G作EF△CD、DG△AB,证明△CEF△△BDG、△DEF△△ADG,从而证明△CDE△△ADB,得到△EDC=△BAD,再利用等边对等角,用m表示出△AED和△CED,再利用平角的定义即可表示出△BAD的度数.【详解】解:分别过点E、G作EF△CD、DG△AB,垂直分别为F、G,△AB=AC , △△B =△C ,△EF △CD ,DG △AB , △△EFC =△DGB =90°, 在△CEF 和△BDG 中△△EFC =△DGB ,△C =△B ,CE =BD , △△CEF △△DGB (AAS ), △EF =DG ,在Rt △DEF 和Rt △ADG 中 △DE =AD ,EF =DG , △Rt △DEF △Rt △ADG (HL ), △△CED =△ADB ,△EDC =△DAB , △AD =ED ,△ADE =m °, △△DEA =180-()2m °△△ADB =△CED =180-(180-)2m°, △△BAD =△EDC =180°-(△ADB +△ADE )=180°-180-(180-+)2mm ° =3(90-)2m° , 故选:D . 【点睛】本题主要考查了全等三角形的判定、等腰三角形的性质等知识,能够根据线段相等等已知条件构造全等三角形是解答此题的关键.3.(2021·江苏九年级)如图,Rt AOB Rt COD △≌△,直角边分别落在x 轴和y 轴上,斜边相交于点E ,且tan 2OAB ∠=.若四边形OAEC 的面积为12,反比例函数(0)ky x x=>的图像经过点E ,则k 的值是( )A .7B .8C .9D .10【答案】B 【分析】过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,证明三角形全等,得对应边相等,用来证明四边形为正方形,再根据tan 2OAB ∠=,建立边与边之间的等量关系,利用两直线平行和四边形的面积,即可求出解. 【详解】解:过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,如图:Rt AOB Rt COD △≌△,,,OA OC OB OD ABO CDO ∴==∠=∠,OB OC OD OA ∴-=-,即:BC AD =, 在BCE DAE =中,{ABO CDO BEC DEA BC AD ∠=∠∠=∠=,()BCE DAE AAS ∴≌, EC AE ∴=,在CEO 和AEO △中, OC OA OE OE EC EA =⎧⎪=⎨⎪=⎩()CEO AEO SSS ∴≌,45COE AOE ∴∠=∠=︒,COEAOESS=,,,EG OC EF AO OA OC ⊥⊥⊥,∴四边形OFEG 为正方形,EG EF OG OF ∴===,tan 2,2OBOAB OA∠=∴=, 设OA OC a ==,则2OB OD a ==, 设EG EF x ==,则OG OF x ==,//EG OA ,EG BGOA BO ∴=, 即:22x a x a a-=, 解得:23x a =, 22(,)33E a a ∴,四边形OAEC 的面积为12, 162AEOSS ∴==四边形OAEC, 162OA EF ∴⨯=, 12623a a ∴⨯⨯=, 解得:218a =, 22248339k a a a ∴=⨯==, 故选:B . 【点睛】本题考查了反比例函数k 的几何意义,待定系数法,三角形全等的判定与性质,正方形的判定与性质,三角形的面积,解直角三角形,解题的关键是:利用点的坐标表示出相应线段的长度.4.(2021·山东九年级)如图,在ABC中,AB AC=,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若5,1AE BE==,则EC的长度是()AB.C.9D【答案】A【分析】利用基本作图得到CE△AB,根据线段的和差关系可得AC=AB=6,然后利用勾股定理计算CE的长.【详解】△AE=5,BE=1,△AB=6,由作图可知CM为AB的垂线,即CE△AB,△在△ACE中,AC2=AE2+CE2,△AB=AC,△62=52+CE2,解得:CE(负值舍去),故选:A.【点睛】本题考查了基本作图及勾股定理,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题关键.5.(2021·江苏省天一中学九年级)如图,ABC中,△C=90o,BC=8,AC=6,点P在AB上,AP=3.6,点E从点A出发,沿AC运动到点C,连接PE,作射线PF垂直于PE,交直线BC于点F,EF的中点为Q,则在整个运动过程中,线段PQ扫过的面积为()A.8B.6C.94πD.2516π【答案】B【分析】连接CQ,PQ,证明点Q在CP的垂直平分线上,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,可得PQ扫过的面积为△PMN的面积,证明△ABC△△ACP,得到MN△AB,再证明△CMN△△CBA,得到相似比,求出△CMN的面积即可得解.【详解】解:连接CQ,PQ,△△ACB=90°,PE△PF,Q为EF中点,△PQ=CQ=12EF,△点Q在CP的垂直平分线上,如图,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,△PQ扫过的面积为△PMN的面积,△△ACB=90°,AC=6,BC=8,△AB,△AP=3.6,则35AP ACAC AB==,又△C=△C,△△ABC△△ACP,△△APC =△ACB =90°,即CP △AB , △MN △CP , △MN △AB ,△△CMN △△CBA ,又MN 垂直平分CP , △12CM CN CB CA ==,且△CMN 和△PMN 的面积相等, △S △PMN =S △CMN =14S △ABC =116842⨯⨯⨯=6,故选B .【点睛】本题考查了相似三角形的判定和性质,垂直平分线的性质,勾股定理,直角三角形斜边中线的性质,解题的关键是推出点Q 的路径,得到点Q 在CP 的垂直平分线上.6.(2021·吉林)如图,在ABC 中,90ACB ∠>︒按以下步骤作图:分别以点A 和C 为圆心,大于12AC 的边长为半径作圆弧,两弧相交于点M 和N ;作直线MN 交AB 于点D ,连结CD .若5cm AB =,则BC 的长可能是( )A .7cmB .6cmC .5cmD .4cm【答案】D 【分析】由基本作图得到MN 垂直平分AC ,则DA =DC ,根据三角形三边的关系得到BC <CD +DB ,然后对各选项进行判断. 【详解】解:由作法得MN 垂直平分AC , △DA =DC ,△CD +BD =DA +DB =AB =5, △BC <CD +DB , △BC <5. 故选:D . 【点睛】本题考查了作图-基本作图-作已知线段的垂直平分线.也考查了线段垂直平分线的性质.7.(2021·广西柳州·)如图,在Rt △ABC 中,△ACB =90°,AC =BC ,点M 在AC 边上,且A M=2,M C =6,动点P 在AB 边上,连接PC ,P M ,则PC +P M 的最小值是( )A .B .8C .D .10【答案】A 【分析】首先利用等腰三角形和垂直平分线的性质求出8AC '=和90C AC ∠'=︒,然后利用勾股定理求解即可. 【详解】解:如解图,过点C 作CO AB ⊥于点O ,延长CO 到点C ',使OC OC '=,连接MC ',交AB 于点P ',此时MC P M P C P M P C '='+''='+'的值最小,连接AC ',,,90CO AB AC BC ACB ⊥=∠=︒,1245ACO ACB ∴∠=∠=︒.,CO OC CO AB ='⊥,268AC CA AM MC ∴'==+=+=, 45OC A OCA ∴∠'=∠=︒, 90C AC ∴∠'=︒, C A AC ∴'⊥,MC ∴'=PC PM ∴+的最小值为故选:A .【点睛】本题主要考查等腰三角形的性质,垂直平分线的应用和勾股定理,找到P 点的位置是关键.8.(2021·湖南长沙·九年级)如图,用直尺和圆规作图,以点O 为圆心,适当长为半径画弧,分别交OB ,OA 于点E 、D ,再分别以点E 、D 为圆心,大于12ED 的长为半径画弧,两弧交于点C ,连接OC ,则△ODC △OEC 的理由是( )A .SSSB .SASC .AASD .HL【答案】A 【分析】连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD ,利用SSS 即可证明△ODC △OEC . 【详解】如图,连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD , 在△EOC 与△DOC 中, OE OD OC OC CE CD =⎧⎪=⎨⎪=⎩, △△EOC △△DOC (SSS ). 故选A . 【点睛】本题考查了基本作图及三角形全等的判定方法,根据作图方法确定出三角形全等的条件是解决问题的关键. 9.(2021·四川宜宾市·)如图,在ABC 中,90,16,C AC AB ∠=︒=的垂直平分线MN 交AC 于点D ,交AB 于点E ,连接BD ,若:3:5CD DB =,则ABC 的面积为( )A .16B .32C .48D .64【答案】D 【分析】由于CD :DB =3:5,可设DC =3x ,BD =5x ,由于MN 是线段AB 的垂直平分线,故AD =DB ,AD =5x ,又知AC =16,即可据此列方程解答. 【详解】解:△CD :DB =3:5, △设DC =3x ,BD =5x ,又△MN 是线段AB 的垂直平分线, △AD =DB =5x ,又△AC=16cm,△3x+5x=16,解得,x=2,△CD=6,DB=10,在Rt△BDC中,CD=6,DB=10,BC8=,△△ABC的面积=12AC×BC=12×16×8=64.故选D.10.(2021·河北唐山·)如图,所示的正方形网格中,一条A,B,C三点均在格点上,那么ABC的外接圆圆心是()A.点E B.点F C.点G D.点H【答案】C【分析】由ABC的外接圆圆心在AB与BC的垂直平分线上,根据网格可知EG所在直线是AB的垂直平分线,BC 的垂直平分线是点G所在直线即可.【详解】解:△A,B,C三点均在格点上,连结BC,△ABC的外接圆圆心在AB与BC的垂直平分线上,由网格可知EG所在直线是AB的垂直平分线,BC的垂直平分线是点G所在直线,△点G是ABC的外接圆圆心.故选择:C.【点睛】本题考查网格三角形,三角形外接圆圆心,线段垂直平分线,掌握网格三角形,三角形外接圆圆心,线段垂直平分线是解题关键.二、填空题11.(2021·建昌县教师进修学校九年级)如图,在ABC中,AC=4,BC=8,分别以点A,B为圆心,等长为半径作弧,交AB,BC,AC于点D,E,F,再以点F为圆心,DE长为半径作弧,交前弧于点G,连接AG并延长交BC于点H.则BH长_____.【答案】6【分析】根据尺规作图可得△CAH=△B,故可得到△ACH△△BCA,得到AC HCBC AC=,故可求出CH,从而求出BH的长.【详解】根据尺规作图可得△CAH=△B,又△C=△C△△ACH△△BCA△AC HC BC AC=△484HC =△HC=2故BH=BC-HC=6故答案为6.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知尺规作角相等的方法及相似三角形的判定定理. 12.(2021·建昌县教师进修学校九年级)如图,E 是正方形ABCD 外一点,连接AE ,BE ,DE ,AP △AE 交DE 于点P ,连接BP ,若AE =AP =1,PB △EB △ED ;△点B 到直线DE 的距离是1;△APDAPBSS+=;△S 正方形ABCD .其中正确结论的序号为______.【答案】△△△ 【分析】根据正方形性质可得AD =AB ,△BAD =ADC =90°,再由AP △AE ,易证△ABE △△ADP ,再利用等腰直角三角形性质可得:△AEB =135°,进而可得:EB △ED ;由勾股定理即可求得BE =1,即点B 到直线DE 的距离为1;设正方形ABCD 边长为a ,根据勾股定理可得22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a=+,即可求得:APDAPBS S+=,2正方形2ABCD S a ==+,即可求解.【详解】解:△四边形ABCD 是正方形, △AD =AB ,△BAD =△ADC =90° △AP △AE , △△EAP =90°△△BAE +△BAP =△BAP +△DAP =90°, △△BAE =△DAP , △AE =AP =1,△△ABE △△ADP (SAS ), △△AEB =△APD ,BE =DP △△AEP 是等腰直角三角形,△△AEP =△APE =45°,EP ===,△△APD =180°-△APE =180°-45°=135°, △△AEB =135°,△△BED =△AEB -△AEP =135°-45°=90°, △EB △ED ,故△正确;△1BE ==,故△正确;过点E 作EF △AB 于点F ,过点P 作PG △AB 于点G ,△AF =BF ,△AFE =△PGA =90°, △△EAF +△P AG =△P AG +△APG =90°, △△EAF =△APG , △△EAF △△APG (AAS ), △EF =AG ,AF =PG ,设正方形ABCD 边长为a ,则AB =a ,12AF PG a ==,△AG EF ====,△BG AB AG a =-=-, 在Rt BPG △ 中,由勾股定理得:22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a =+,△()12APDAPBAEBAPBSSSSAB EF PG +=+=+1122a a ⎫⎪=+=⎪⎝⎭,故△正确;△2正方形2ABCD S a ==+,故△错误,故正确的有△△△. 故答案为:△△△. 【点睛】本题主要考查了正方形性质,等腰直角三角形性质,勾股定理,全等三角形判定和性质,三角形面积和正方形面积等;熟练掌握相关知识点是解题的关键.13.(2021·东莞市东莞中学初中部九年级)如图,OA =OB ,AC =BC ,△ACO =30°,则△ACB =__.【答案】60° 【分析】利用SSS 证明△AOC △△BOC 可得△BCO =△ACO =30°,进而可求解△ACB 的度数. 【详解】解:在△ACO 和△BCO 中, OA OB AC BC OC OC =⎧⎪=⎨⎪=⎩, △△AOC △△BOC (SSS ), △△BCO =△ACO =30°, △△ACB =△BCO +△ACO =60°, 故答案为:60°. 【点睛】本题考查了全等三角形判定与性质,熟知全等三角形的判定定理是解题的关键.14.(2021·江苏)如图,在四边形ABCD 中,AB △DC ,过点C 作CE △BC ,交AD 于点E ,连接BE ,△BEC =△DEC ,若AB =6,则CD =___.【答案】3 【分析】延长AD ,BC 交于点P ,先证明BCE PCE ≅△△,可得到PC =BC ,从而得到CD 是ABP △ 的中位线,即可得出答案. 【详解】如图,延长AD ,BC 交于点P , △CE △BC ,△90PCE BCE ∠=∠=︒ , 又△△BEC =△DEC ,CE =CE , △()BCE PCE ASA ≅ , △PC =BC , △AB △DC ,△CD 是ABP △ 的中位线, △116322CD AB ==⨯= , 故答案为3. 【点睛】本题主要考查了三角形的中位线定理和三角形全等,解题的关键是做辅助线构造出三角形,找到三角形的中位线.15.(2021·江苏九年级)如图所示的网格是正方形网格,图形的各个顶点均为格点,则△1+△2=___.【答案】135°【分析】直接利用网格证明△ABC△△CDE,得出对应角△1=△3,进而得出答案.【详解】解:如图所示:可知:AB=CD=3,BC=DE=1,△B=△D=90°,△△ABC△△CDE(SAS),△△1=△3,则△1+△2=△2+△3=135°.故答案为:135°.【点睛】此题主要考查了全等三角形的判定和性质,正确借助网格分析是解题关键.三、解答题16.(2021·西安市铁一中学九年级)如图,已知直线l外有一点P,请用尺规作图的方法在直线l上找一点Q,使得Q到P的距离最小(保留作图痕迹,不写作法).【答案】见解析.【分析】以点P为圆心,适当长为半径,作弧交直线l于两点,再作以这两点为线段的垂直平分线,交直线于点Q 即可.【详解】解:如图,点Q即是所求作的点.【点睛】本题考查过直线外一点,作直线的垂直平分线,是重要考点,掌握相关知识是解题关键.17.(2021·建昌县教师进修学校九年级)如图,在ABC中,△BAC=90°,AB=AC=4,过点C作MN△AB,点P为斜边BC上一点,点Q为直线MN上一点,连接PQ,作PR△PQ交直线AC于点R.(1)当点Q在射线CM上时△如图1,若P是BC的中点,则线段PQ,PR的数量关系为;△如图2,若P不是BC的中点,写出线段CP,CQ,CR之间的数量关系,并证明你的结论;(2)若14CP BC=,3CQ=,请直接写出CR的长.【答案】(1)△PQ=PR;CQ CR+=,见解析;(2)5或1【分析】(1)△PQ=PR;连结AP,△BAC=90°,AB=AC,可得△ACP=45°,由点P为BC中点,可得AP△BC,AP平分△BAC,可得△APQ+△QPC=90°,△P AC=45°,可求△RAP=135°,△ACP=△P AC=45°,可证△RAP△△QCP (ASA)即可;CQ CR+=.作PE △PC交AC于点E,可得△EPC=90°,可得△EPQ+△QPC=90°,由PR△PQ,可得△RPE+△EPQ=90°,可得△RPE=△QPC,再证△PER△△PCQ(ASA),可得ER=CQ,在Rt△CEP中,利用三角函数可求CE=即可;(2)由△BAC=90°,AB=AC=4,利用勾股定理可求BC=14CP BC=,可14CP BC=Q在MN上位置分两种情况:当点Q在CM上与点Q在CN上时,利用结论可求CR.【详解】(1)△连结AP,△△BAC=90°,AB=AC,△△ACP=45°,△点P为BC中点△AP△BC,AP平分△BAC,△△APQ+△QPC=90°,△P AC=45°,△△RAP=180°-△P AC=135°,△ACP=△P AC=45°△AP=CP,△RP△PQ,△△RP A+△APQ=90°,△△RP A=△QOC,△MN∥AB,△△ACQ=△BAC=90°,△△QCP=△ACQ+△PCA=90°+45°=135°=△RAP,在△RAP和△QCP中,RAP QCPAP CPRPA QPC∠=∠⎧⎪=⎨⎪∠=∠⎩△△RAP△△QCP(ASA),△PR=PQ,故答案为:PQ =PR ;CQ CR +=.证明:作PE △PC 交AC 于点E ,则△EPC =90°, △△EPQ+△QPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPE =△QPC ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°,△ACM =△BAC =90° △△PEC =45°△PE =PC ,△PER =△PCQ =135°, 在△REP 和△QCP 中,REP QCP EP CPRPE QPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△PER △△PCQ (ASA ), △ER =CQ ,在Rt △CEP 中,cos △PEC =PC CE =CE = 又△CE ER CR +=,CQ CR +=.(2)△△BAC =90°,AB =AC =4,△BC = △14CP BC =△1144CP BC ==⨯ 当点Q 在CM 上时CR CQ =+当点Q 在CN 上时证明:作PE △PC 交CN 于点E , 则△EPC =90°, △△EPR+△RPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPC =△QPE ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°=△BCQ ,△ACN =△ACB +△BCQ =90°=△BAC△△PEC =45°△PE =PC ,△PEQ =△PCR =135°, 在△QEP 和△RCP 中,QEP RCP EP CPQPE RPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△QEP △△RCP (ASA ), △EQ =CR ,在Rt △CEP 中,cos △PEC=PC CE =CE = 又△CR CE CR -=,△CQ CR =.=3CR CQ =△CR 的长为5或1. 【点睛】本题考查等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数,掌握等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数是解题关键.18.(2021·广东广州·铁一中学)如图,90A ∠=︒,//AD BC ,点E 是AB 上的一点,且AE BC =,12∠=∠.求证:ADE BEC △△≌.【答案】见解析 【分析】根据等角对等边可得ED EC =,由此根据HL 证明Rt ADE △和Rt BEC △全等解答即可. 【详解】证明:12∠=∠,ED EC ∴=,△90A ∠=︒,//AD BC , △18090B A ∠=︒-=︒∠, 在Rt ADE △和Rt BEC △中,AE BC ED EC=⎧⎨=⎩, Rt Rt (HL)ADE BEC ∴△≌△.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定方法是解决本题的关键.19.(2021·江苏高港区·高港实验学校九年级)如图,在正方形ABCD 中,F 为BC 为边上的定点,E 、G 分别是AB 、CD 边上的动点,AF 和EG 交于点H 且AF △EG .(1)求证:AF =EG ; (2)若AB =6,BF =2.△若BE =3,求AG 的长;△连结AG 、EF ,求AG +EF 的最小值. 【答案】(1)见解析;(2)△【分析】(1)过点G 作GM △AD 交AB 于点M ,则可得AD =MG ,然后证明△GME △△ABF 即可;(2)△过点G 作GM △AD 交AB 于点M ,连接AG ,由(1)可得EM =BF =2,从而可求得AM ,在Rt △AMG 中由勾股定理即可求得AG 的长;△过点F 作FP △EG ,FP =EG ,连接AP ,则易得GP =EF ,当A 、G 、P 三点共线时,AG +EF 最小,在Rt △AFP 中由勾股定理即可求得AP 的长即可. 【详解】(1)过点G 作GM △AD 交AB 于点M △四边形ABCD 是正方形△△BAD =△B =90゜,AB △CD ,AD =AB △△EMG =△BAD =△B =90゜ △AB △CD ,GM △AD△四边形AMGD 是平行四边形 △△BAD =90゜△四边形AMGD 是矩形 △MG =AD △MG =AB △AF △EG△△AEH +△EAH =90゜ △△EAH +△AFB =90゜ △△AEH =△AFB 在△GME 和△ABF 中EMG B AEH AFB MG AB ∠=∠⎧⎪∠=∠⎨⎪=⎩△△GME △△ABF (AAS ) △AF =EG(2)△过点G作GM△AD交AB于点M,连接AG,如图由(1)知,△GME△△ABF△EM=BF=2△AB=6,BE=3△AE=AB-BE=3△AM=AE-EM=1在Rt△AMG中,GM=AD=6,由勾股定理得:AG=△过点F作FP△EG,FP=EG,连接AP,如图则四边形EFPG是平行四边形△GP=EF△AG+GP≥GP△当A、G、P三点共线时,AG+EF=AG+GP最小,最小值为线段AP的长△AF△EG,FP△EG△FP△AF在Rt△ABF中,由勾股定理得AF==△AF=EG,EG=FP△FP=AF=在Rt△AFP中,由勾股定理得AP=所以AG+EF的最小值为【点睛】本题考查了正方形的性质,平行四边形的判定与性质,矩形的判定与性质,全等三角形的判定与性质,勾股定理,两点间线段最短等知识,灵活运用这些知识是解决的关键,确定AG+EF最小值是线段AP的长是难点.20.(2021·杭州市丰潭中学九年级)如图,已知AB是△O的弦,OB=1,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交△O于点D,连接AD.设△B=α,△ADC=β.(1)求△BOD的度数(用含α,β的代数式表示);(2)若α=30°,当AC的长度为多少时,以点A、C、D为顶点的三角形与B、C、O为顶点的三角形相似?请写出解答过程.(3)若α=β,连接AO,记△AOD、△AOC、△COB的面积分别为S1,S2,S3,如果S2是S1和S3的比例中项,求OC的长.【答案】(1)△BOD=2α+2β;(2)AC(3)OC.【分析】(1)作辅助线OA,根据同弧所对的圆周角是圆心角的一半即可确定△DOB的值;(2)分析△ACD中只有△D可能等于30°,得出△D的对应角为△B,根据相垂径定理可得出AC的长;(3)先根据比例中项得出a和b的关系式,再证明△ACD△△OCA,再得出AD和AC的关系式,两式联立即可求出AC、AD,从而求出OC.【详解】解:(1)连接AO,如图:△OA =OD ,OA =OB ,△B =α,△ADC =β, △△OAD =△ADC =α,△OAB =△B =β,△△BOD =2△DAB =2(△OAD +△OAB )=2α+2β; (2)△点C 不与A 、B 重合, △△DAC >30°,△ACD >30°, △△ACD △△OCB , △△D =△B =α=30°,由(1)知△DOB =2(30°+30°)=120°, △△BOC =60°, △△OCB =90°,根据垂径定理知C 是AB 的中点,△AC =BC =OB •cos 30°=1=(3)△α=β, △△ADO =△ABO , △OA =OD =OB ,△△ADO =△OAD =△ABO =△OAB , △△ADO △△ABO ,△OA 是△DAC 的角平分线,设AD =a ,AC =b ,AD 、AC 边上的高为h , 则:112S ah =,212S bh =,3()12S a b h =-,又△S 2是S 1和S 3的比例中项,△2213S S S =•,即211()()1222bh ah a b h =•-,化简得a 2﹣b 2=ab △,△α=β, △△DOB =4α, △△DCB =3α, △△AOC =△DAC =2α, △△ACO ~△DCA , △AO COA C A C D A C D ==, △11b OCa OC b+==,整理得:bOC a=,a 2b =a +b △, 联立△△得:1a b ⎧=⎪⎨⎪=⎩△OC=21.(2021·珠海市九洲中学九年级)如图,AC 是平行四边形ABCD 的对角线.(1)利用尺规作出AC 的垂直平分线(要求保留作图痕迹,不写作法);(2)设AC 的垂直平分线分别与AB 、AC 、CD 交于点E 、O 、F ,求证:OE OF =. 【答案】(1)答案见详解;(2)答案见详解 【分析】(1)如图可得AC 的垂直平分线;(2)由根据作图知,PQ 是AC 的垂直平分线,又由四边形ABCD 是平行四边形,易证得△AOE △△COF ,继而证得结论. 【详解】 解:(1)如图:(2)证明:根据作图知,PQ 是AC 的垂直平分线, △OA =OC ,且EF △AC , △四边形ABCD 是平行四边形, △AB △CD , △△OAE =△OCF , 在△OAE 和△OCF 中, OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AOE △△COF (ASA ), △OE =OF . 【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质与作法以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.(2021·温州绣山中学九年级)如图,在△ABCD 中,对角线AC ,BD 交于点O ,AE △BD ,CF △BD ,垂足分别为E ,F . (1)求证:EO =FO ;(2)若AE =EF =4,求AC 的长.【答案】(1)见解析;(2) 【分析】(1)由平行四边形的性质得到AB =CD ,△ABE =△CDF ,然后根据题意证明ABE CDF △≌△即可.(2)根据OE =OF =12EF 求出OE 的长度,然后根据勾股定理求出AO 的长度,即可根据平行四边形对角线互相平分求出AC 的长度. 【详解】(1)△四边形ABCD 是平行四边形, △AB =CD ,AB △CD , △△ABE =△CDF , △AE △ED ,CF △BD , △△AEB =△CFD =90°, 在△ABE 和△CDF 中,AEB CFD ABE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △()ABE CDF AAS △≌△, △BE =DF , △OB =OD , △OB -BE =OD -DF , △OE =OF .(2)△AE =EF =4, △OE =OF =122EF =,△在Rt AEO中,AO =△2AC AO == 【点睛】此题考查了平行四边形的性质,三角形全等和勾股定理的运用,解题的关键是熟练掌握平行四边形的性质,三角形全等和勾股定理.23.(2021·福建泉州五中)如图,在ABCD 中,AE BC ⊥于点E ,CF AD ⊥于点F ,求证:BE DF =.【答案】见解析.【分析】根据平行四边形的性质可得AB =CD ,△B =△D ,然后利用AAS 定理证明△ABE △△CFD 可得BE =DF【详解】 证明:四边形ABCD 是平行四边形,AB CD ∴=,B D ∠=∠,AE BC ⊥,CF AD ⊥,90AEB CFD ∴∠=∠=︒在ABE ∆和CDF ∆中,AEB CFD B DAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE CDF AAS ∴∆≅∆,BE DF ∴=.【点睛】此题主要考查了平行四边形的性质和全等三角形的性质与判定,平行四边形的性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分,是我们证明直线的平行、线段相等、角相等的重要方法.。
三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。
求证:△ABD ≌△ACD 。
2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。
求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。
求证:AC ⊥CE 。
6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF=EG ,(2)BF ∥DG 。
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。
求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。
8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。
求证:△ABE ≌△DCF 。
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。
求证:AB=AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。
求证:PA=PD 。
12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。
求证:EB ∥CF 。
13、如图(13)△ABC ≌△EDC 。
求证:BE=AD 。
14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。
全等三角形基本模型专项训练一、单选题1如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E分别在边BC及其延长线上,BD2+CE2=DE2,F为△ABC外一点,且FB⊥BC,FA⊥AE,则结论:①FA=AE;②∠DAE=45°;③S△ADE=14AD⋅EF;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.①②【答案】A【分析】根据全等三角形的性质,证明△ABF和△ACE全等,即可得到FA=AE;连接DF如图见解析,证明△ADE和△ADF全等,即可得到∠DAE=45°;延长AD交EF于H如图见解析,利用等腰直角△AFE三线合一的性质,∠FAE=90°,∠DAE=45°∠DAE=45°,可知AH⊥EF,S△ADE=12AD⋅EH,HE=HF=12EF,即可判断③;在Rt△EBF和Rt△EAF中,利用勾股定理以及等式的性质,即可判断④.【详解】解:∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°∴∠ACE=180°-∠ACB=135°∵FB⊥BC∴∠FBE=90°∴∠ABF=∠ABC+∠FBE=135°∴∠ABF=∠ACE∵FA⊥AE∴∠FAE=90°=∠BAC∴∠FAE-∠FAC=∠BAC-∠FAC即∠CAE=∠BAF在△ABF和△ACE中,∠ACE=∠ABF AC=AB∠CAE=∠BAF∴△ACE≌△ABF ASA∴FA=EA,故①正确;连接DF,如图:∵△ACE≌△ABF∴BF=CE在Rt△BDF中,BD2+BF2=DF2∴BD2+CE2=DF2∵BD2+CE2=DE2∴DE=DF∵AE=AF,AD=AD∴△ADE≌△ADF SSS∴∠DAE=∠DAF∴∠DAE=12∠EAF=45°,故②正确;延长AD交EF于H,如图:∵AE=AF,∠EAD=∠FAD∴AH⊥EF,HE=HF=12EF∴S△ADE=12AD⋅EH=12AD⋅12EF=14AD⋅EF,故③正确;在Rt△EBF中,BE2+BF2=EF2∵CE=BF∴BE2+CE2=EF2∵AE=AF,∠FAE=90°∴EF2=AE2+AF2=2AE2∴BE2+CE2=2AE2,故④正确,综上所述,正确的有①②③④,故选:A.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形性质等知识,解题的关键是灵活运用所学知识.2如图所示,△ABC中,AC=BC,M、N分别为BC、AC上动点,且BM=CN,连AM、CN,当AM +BN最小时,CMCN=( ).A.2B.32C.54D.1【答案】D 【分析】过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,先证明△BCN ≌△HBM ,即有BN =HM ,则AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,再证明△ACM ≌△HBM ,问题随之得解.【详解】如图,过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,∵BH ∥AC ,∴∠C =∠CBH ,∵BH =AC ,BM =CN ,∴△BCN ≌△HBM ,∴BN =HM ,∴AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,如图,此时∵BH ∥AC ,∴∠C =∠CBH ,∠CAM =∠BHM ,∵AC =BC ,∴△ACM ≌△HBM ,∴CM =BM ,∵BM =CN ,∴CM CN=CM BM =1,故选:D .【点睛】本题主要考查了全等三角形的判定与性质,作出辅助线,构造全等三角形是解答本题的关键.3如图,正五边形ABCDE 中,点F 是边CD 的中点,AF ,BC 的延长线交于点N ,点P 是AN 上一个动点,点M 是BN 上一个动点,当PB +PM 的值最小时,∠BPN =()A.72°B.90°C.108°D.120°【答案】C【分析】本题考查了正多边形的定义,全等三角形的判定与性质等知识.连接BF ,EF ,PE ,EM ,根据全等三角形的判定与性质可得EP =BP ,则当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,分别求出∠BAP 和∠ABP 的度数,然后利用三角形外角的性质求解即可.【详解】解:连接BF ,EF ,PE ,EM ,∵正五边形ABCDE ,∴AE =AB =BC =ED ,∠BAE =∠AED =∠BCD =∠EDC =5-2 ×180°5=108°,∵点F 是边CD 的中点,∴CF =DF ,∴△BCF ≌△EDF SAS ,∴BF =EF ,又AE =AB ,AF =AF ,∴△AEF ≌△ABF SSS ,∴∠EAF =∠BAF =12∠BAE =54°,∴△AEP ≌△ABP SAS∴EP =BP ,∴PB +PM =EP +PM ≥EM ,∴当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,同理可求∠ABP =∠AEP =12∠AED =54°,∴∠BP N =∠BAP +∠ABP =108°,即当PB +PM 的值最小时,∠BPN =108°.故选:C .4如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:①AB =MG ;②S △ABC =S △AFN ;③过点B 作BI ⊥EH 于点I ,延长B 交AC 于点J ,则AJ =CJ .④若AB =1,则EH 2+FN 2=5.其中正确的结论个数是()A.1个B.2个C.3个D.4个【答案】D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出△ACB ≌△MCG SAS ,进而得到AB =MG ,即可判断①;过点F 作FO ⊥NA 交NA 延长线于点O ,证明出△AFO ≌△ABC AAS ,得到OF =BC ,然后利用三角形面积公式即可得到S △ABC =S △AFN ,即可判断②;过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ ,证明出△ABP ≌△BEI AAS ,得到AP =BI ,同理得到CQ =BI ,得到CQ =AP ,然后证明出△AJP ≌△CJQ AAS ,得到AJ =CJ ,即可判断③;根据全等三角形的性质得到EH =2BJ ,然后利用勾股定理证明出EH 2=AC 2+4BC 2,同理得到NF 2=4AC 2+BC 2,然后得到EH 2+NF 2=5AB 2=5,即可判断④.【详解】∵在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC =MC ,BC =GC ,∠MCA =∠GCB =90°∵∠ACB =90°∴∠MCG =∠ACB =90°∴△ACB ≌△MCG SAS∴AB =MG ,故①正确;如图所示,过点F 作FO ⊥NA 交NA 延长线于点O ,∵∠FAO +∠BAO =∠CAB +∠BAO =90°∴∠FAO =∠CAB又∵∠O =∠ACB =90°,AF =AB∴△AFO ≌△ABC AAS∴OF =BC∵AN =AC∵S △ANB =12AN ⋅OF ,S △ACB =12AC ⋅BC ∴S △ABC =S △AFN ,故②正确;如图所示,过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ∵∠ABP +∠BEI =90°,∠EBI +∠BEI =90°∴∠ABP =∠BEI又∵∠P =∠BIE =90°,AB =BE∴△ABP ≌△BEI AAS∴AP =BI同理可证,△BCQ ≌△HBI AAS ∴CQ =BI∴CQ =AP∵∠P=∠CQJ=90°,∠AJP=∠CJQ∴△AJP≌△CJQ AAS∴AJ=CJ,故③正确;∵△ABP≌△BEI AAS∴BP=EI∵△BCQ≌△HBI AAS∴BQ=HI∵△AJP≌△CJQ AAS∴PJ=QJ∵EH=EI+HI=PB+BQ=PJ+QJ+BQ+BQ=2BJ ∵AJ=CJ∴BJ2=CJ2+BC2=14AC2+BC2∴EH2=2BJ2=4BJ2=414AC2+BC2=AC2+4BC2同理可证,NF2=4AC2+BC2∴EH2+NF2=AC2+4BC2+4AC2+BC2=5AC2+BC2=5AB2=5×12=5,故④正确.综上所述,正确的结论个数是4.故选:D.5如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90 °,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE= CF;④△ACN≅△ABM.其中正确的结论是()A.①③④B.①②③④C.①②③D.①②④【答案】A【分析】本题考查了两个全等三角形的判定及性质,根据已知条件判定两个三角形全等,可得到对应边及对应角相等,据此可判断①③,再结合条件证明两个三角形全等,可得到④,即可求得结果,灵活运用两个全等三角形的条件及性质是解题的关键.【详解】解:∵∠EAC=∠FAB,∴∠EAB=∠FAC,在△EAB 和△FAC 中,∠E =∠F =90 °AE =AF ∠EAB =∠FAC,∴△EAB ≌△FAC ASA ,∴∠B =∠C ,BE =CF ,AB =AC ,∴①③都正确,在△ACN 和△ABM 中,∠B =∠CAB =AC ∠CAN =∠BAM,∴△ACN ≌△ABM ASA ,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题6如图,在△ABC 中,AH 是高,AE ⎳BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC =.【答案】2.5【分析】过点E 作EF ⊥AB ,交BA 的延长线于点F ,先分别证明△ABH ≌△EAF ,Rt △ACH ≌Rt △EDF ,由此可得S △ABH =S △EAF ,S △ACH =S △EDF =S △EAF +S △ADE ,再结合S △ABC =S △ABH +S △ACH =5S △ADE 可得S △ACH S △ABH =32,由此可得CH BH=32,进而即可求得答案.【详解】解:如图,过点E 作EF ⊥AB ,交BA 的延长线于点F ,∵EF ⊥AB ,AH ⊥BC ,∴∠EFA =∠AHB =∠AHC =90°,∵AE⎳BC ,∴∠EAF =∠B ,在△ABH 与△EAF 中,∠AHB =∠EFA∠B =∠EAFAB =EA∴△ABH ≌△EAF (AAS ),∴AH =EF ,S △ABH =S △EAF ,在Rt△ACH与Rt△EDF中,AH=EF AC=DE∴Rt△ACH≌Rt△EDF(HL),∴S△ACH=S△EDF=S△EAF+S△ADE,∵S△ABC=S△ABH+S△ACH=5S△ADE,∴S△ABH+S△EAF+S△ADE=5S△ADE,∴2S△ABH+S△ADE=5S△ADE,解得:S△ABH=2S△ADE,∴S△ACH=5S△ADE-S△ABH=3S△ADE,∴S△ACHS△ABH=3S△ADE2S△ADE=32,∴12CH⋅AH12BH⋅AH=32,即CHBH=32,又∵BH=1,∴CH=1.5,∴BC=BH+CH=2.5,故答案为:2.5.【点睛】本题考查了全等三角形的判定与性质以及三角形的面积公式,作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的关键.7如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是.【答案】3【分析】过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG,同理Rt△ADF≌Rt△ABH,得S四边形DGBA=6,进而得到FG的长.【详解】解:过点A作AH⊥BC于H,如图所示:在△ABC 和△ADE 中,BC =DE∠C =∠E CA =EA,∴△ABC ≌△AED SAS∴AD =AB ,S △ABC =S △AED ,又∵AF ⊥DE ,∴12×DE ×AF =12×BC ×AH ,∴AF =AH ,∵AF ⊥DE ,AH ⊥BC ,∴∠AFG =∠AHG =90°,在Rt △AFG 和Rt △AHG 中,AG =AG AF =AH ,∴Rt △AFG ≌Rt △AHG HL ,同理:Rt △ADF ≌Rt △ABH HL ,∴S 四边形DGBA =S 四边形AFGH =12,∵Rt △AFG ≌Rt △AHG ,∴S Rt △AFG =6,∵AF =4,∴12×FG ×4=6,解得:FG =3;故答案为:3.【点睛】本题考查了全等三角形的判定与性质以及三角形面积等知识,解决问题的关键是作辅助线构造全等三角形,解题时注意:全等三角形的面积相等.8如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA=2a +2,CB =2a -3.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是,△ABD 的面积的最大值为.【答案】a >52454【分析】在△ABC 中,由三角形三边关系“在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边”可知AC +BC >AB ,代入数值即可确定a 的取值范围;延长AD 、CB交于点E ,首先利用“ASA ”证明△ACD ≌△ECD ,由全等三角形的性质可得AC =EC =2a +2,AD =ED ,进而可求得BE =5,结合三角形中线的性质易知S △ABD :S △ABE =1:2,确定△ABE 面积的最大值,即可获得答案.【详解】解:∵在△ABC 中,AC +BC >AB ,∴2a +2+2a -3>9,解得a >52;如下图,延长AD 、CB 交于点E ,∵CD 为∠ACB 的平分线,∴∠ACD =∠ECD ,在△ACD 和△ECD 中,∠ACD =∠ECDCD =CD ∠ADC =∠EDC =90°,∴△ACD ≌△ECD (ASA ),∴AC =EC =2a +2,AD =ED ,∵CB =2a -3,∴BE =2a +2-(2a -3)=5,∵AD =ED ,∴S △ABD :S △ABE =1:2,当BE ⊥AB 时,△ABE 的面积取最大值,即S △ABE max =12×9×5=452,∴S △ABD max =454.故答案为:a >52,454.【点睛】本题主要考查了三角形三边关系、解一元一次不等式、角平分线、全等三角形的判定与性质、三角形中线的性质等知识,熟练掌握相关知识,正确作出辅助线是解题关键.9如图,AB =AC ,AD=AE ,∠BAC =∠DAE =40°,BD 与CE 交于点F ,连接AF ,则∠AFB 的度数为.【答案】70°/70度【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,构造全等三角形是解答本题的关键.过点A作AM⊥BD于点M,AN⊥CE于点N,根据手拉手模型证明△BAD≌△CAE,得到∠ADM=∠AEN,然后证明△AMD≌△ANE,得到∠DAM=∠EAN,AM=AN,进一步推得∠MAN=∠DAE= 40°,再证明△AMF≌△ANF,可得∠FAM=20°,最后根据三角形内角和定理即得答案.【详解】过点A作AM⊥BD于点M,AN⊥CE于点N,∵∠BAC=∠DAE=40°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE SAS,∴∠ADM=∠AEN,∵∠AMD=∠ANE=90°,AD=AE,∴△AMD≌△ANE AAS,∴∠DAM=∠EAN,AM=AN,∴∠DAM+∠DAN=∠EAN+∠DAN,即∠MAN=∠DAE=40°,∵∠AMF=∠ANF=90°,AM=AN,AF=AF,∴△AMF≌△ANF HL,∴∠FAM=∠FAN=1∠MAN=20°,2∴∠AFB=180°-90°-∠FAM=70°.故答案为:70°.10如图所示,已知△ABC,∠BAC=90°,AB=AC,点D和点E分别是AB和AC边上的动点,满足AD=CE,连接DE,点F是DE的中点,则CDAF的最大值为.【答案】5+1/1+5【分析】作EM⊥ED,且EM=ED,连DM,MC,取ME中点N,连ND、NC、NF,可根据“SAS”证明△ADE≌△CEM,可得∠ECM=90°,再设AF=1,并表示DE,EM,及CN,然后根据勾股定理求出DN,最后根据三角形的三边关系ND+NC≥DC,求出CD最大值,可得答案.【详解】解:过E作EM⊥ED,且EM=ED,连DM,MC.取ME中点N,连ND、NC、NF.∵∠ADE+∠AED=90°,∠AED+∠MEC=90°,∴∠ADE=∠MEC.∵AD=CE,DE=EM,∴△ADE≌△CEM,∴∠ECM=∠DAE=90°.设AF=1,∵F为DE中点,∴DE=2AF=2,∴EM=2.∵N为EM中点,∴CN=EN=1.∴DN=DE2+EN2= 5.∵ND+NC≥DC,∴CD最大值5+1,=5+1.∴CDAF故答案为:5+1.【点睛】本题主要考查了全等三角形的性质和判定,勾股定理,根据三角形的三边关系求最大值,作出辅助线是解题的关键.三、解答题11数学兴趣小组在活动时,老师提出了这样,一个问题:如图1:在△ABC中,AB=3,AC=5,D是BC的中点,求BC边上的中线AD的取值范围.【问题初探】:第一小组经过合作交流,得到如下解决方法:如图2延长AD至E.使得DE=AD,连接BE.利用三角形全等将线段AC转移到线段BE,这样就把线段AB,AC,2AD集中到△ABE中.利用三角形三边的关系即可得到中线AD的取值范围,第二小组经过合作交流,得到另一种解决方法:如图3过点B作AC的平行线交AD的延长线于点F,利用三角形全等将线段AC转移到BF,同样就把线段AB,AC,2AD集中到△ABF中,利用三角形三边的关系即可得到中线AD的取值范围.(1)请你选择一个小组的解题思路.写出证明过程【方法感悟】当条件中出现“中点”“中线”等条件时,可考虑将中线延长一倍或者作一条边的平行线.构造出“平行八字型”全等三角形;这样就把分散的已知条件和所证的结论集中到一个三角形中,顺利解决问题【类比分析】(2)如图4:在△ABC中,∠B=90°,AB=6,AD是△ABC的中线,CE⊥BC,CE=10且∠ADE=90°.求AE的长度.【思维拓展】(3)如图5:在△ABC中,AF⊥BC于点F在AB右侧作AD⊥AB,且AD=AB,在AC的左侧作AE⊥AC,且AE=AC,连接DE,延长AF交DE于点O,证明O为DE中点.【答案】(1)见解析(2)16(3)见解析【分析】(1)选择第一个小组的解题思路:延长AD到点E,使DE=AD,证明△ADC≌△EDB(SAS),得到BE=AC=10,再根据在△ABE中,5-3<AE<5+3,即2<2AD<8,求解即可;选择第二个小组的解题思路:过点B作AC的平行线交AD的延长线于点F,先证明△BDF≌△CDA (AAS),得到DF=AD,BF=AC=5,则2AD=AF,再根据在△ABF中,5-3<AF<5+3,即2<2AD<8,求解即可;(2)延长AD到点F,使DF=AD,连接CF,先证明△ABD≌△FCD SAS,得到∠FCD=∠ABD=90°,CF=AB=6,再证明E、C、F三点共线,得到EF=EC+CF=10+6=16,然后证明△ADE≌△FDE SAS,得到AE=EF=16解决问题;(3)过点E作EM∥AD交AD延长线于M,先证明△AEM≌△CAB AAS,得到EM=AB,再证明△AOD≌△MOE AAS,得到OD=OE,即可得出结论.【详解】解:(1)选择第一个小组的解题思路:如图2,延长AD到点E,使DE=AD,∵D是BC的中点,∴BD=CD,∵∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=10,△ABE中,5-3<AE<5+3,∴2<2AD<8,∴1<AD<4;选择第二个小组的解题思路:如图3,过点B作AC的平行线交AD的延长线于点F,∵D是BC的中点,∴BD=CD,∵BF∥AC,∴∠FBD=∠C,∠F=∠CAD,∴△BDF≌△CDA(AAS),∴DF=AD,BF=AC=5,∴2AD=AF,在△ABF中,5-3<AF<5+3,∴2<2AD<8,(2)延长AD到点F,使DF=AD,连接CF,如图4,∵D是BC的中点,∴BD=CD,∵∠ADB=∠FDC,DF=AD,∴△ABD≌△FCD SAS,∴∠FCD=∠ABD=90°,CF=AB=6,∵CE⊥BC,∴∠BCD=90°,∴∠FCD+∠ECD=180°,∴E、C、F三点共线,∴EF=EC+CF=10+6=16,∵∠ADE=90°,∴∠FDE=∠ADE=90°,∵DE=DE,AD=DF,∴△ADE≌△FDE SAS,∴AE=EF=16;(3)证明:过点E作EM∥AD交AD延长线于M,如图4,∵AD⊥AB,AE⊥AC,∴∠3+∠2+∠CAD=∠3+∠2+∠BAE=90°,∴∠CAD=∠BAE,又∵AF⊥BC,∴∠3+∠2+∠CAD=∠3+∠BAE+∠B=90°,∴∠2=∠B,∵EM∥AD,∴∠2=∠M,∴∠B=∠M,∵AE⊥AC,AF⊥BC,∴∠3+∠CAM=∠C+∠CAM=90°,∴∠3=∠C,∵AE=AC,∴△AEM≌△CAB AAS,∵AB =AD ,∴EM =AD ,∵∠2=∠M ,∠AOD =∠EOM ,∴△AOD ≌△MOE AAS ,∴OD =OE ,∴O 为DE 中点.【点睛】本题考查三角形三边的关系,全等三角形的判定与性质,余角的性质,平行线的性质,熟练掌握倍长中线,构造出“平行八字型”全等三角形是解题的关键.12已知,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,点D 是线段BC 上一点,点D 不与点B ,点C 重合,连接AD ,以AD 为一边作△ADE ,AD =AE ,∠DAE =90°,且点E 与点D 在直线AC 两侧,DE 与AC 交于点H ,连接CE .(1)如图1,求证:△ABD ≌△ACE .(2)如图2,在CE 的延长线上取一点F ,当∠AEF =∠AFE 时,求证:CD =CF .(3)过点A 作直线CE 的垂线,垂足为G ,当CD =6EG 时,直接写出△CDH 与△CEH 的面积比.【答案】(1)见详解(2)见详解(3)32或34【分析】本题主要考查了全等三角形的判定与性质,涉及SAS 、AAS 以及HL 等判定方法,(1)利用“SAS ”证明△ABD ≌△ACE 即可作答;(2)结合(1)的结论,再利用“AAS ”证明△ACD ≌△ACF 即可作答;(3)分类讨论,第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,先证明△AOC ≌△AGC ,即有AO =AG ,CO =CG ,同理可证明:MH =NH ,再证明Rt △AOD ≌Rt △AGE HL ,可得OD =GE ,问题即可作答;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,按照第一种情况作答即可.【详解】(1)∵∠DAE =90°,∠BAC =90°,∴∠DAE -∠DAH =∠BAC -∠DAH ,∴∠CAE =∠BAD ,又∵AB =AC ,AD =AE ,∴△ABD ≌△ACE SAS ;(2)∵△ABD ≌△ACE SAS ,∴∠ADB =∠AEC ,∠ABD =∠ACE =45°,∴180°-∠ADB =180°-∠AEC ,∠ACB =∠ACE =45°,∴∠ADC =∠AEF ,∵∠AEF =∠AFE ,∴∠ADC =∠AFE ,在△ACD 和△ACF 中,∴∠ACD =∠ACF∠ADC =∠AFC AC =AC,∴△ACD ≌△ACF AAS ,∴CD =CF ;(3)分类讨论:第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,∵AO ⊥BC ,AG ⊥CE∴∠AOC =∠AGC =90°,又∵∠ACB =∠ACE =45°,AC =AC ,∴△AOC ≌△AGC ,∴AO =AG ,CO =CG ,同理可证明:MH =NH ,又∵AD =AE ,∴Rt △AOD ≌Rt △AGE HL ,∴OD =GE ,∵CD =6EG ,∴CO =CD -OD =5EG ,∴CG =CO =5EG ,∴CE =CG -EG =4EG ,∵S △CHD =12×CD ×MH ,S△CHE =12×CE ×NH ,MH =NH ,∴S △CHD S △CHE =12×CD ×MH 12×CE ×NH =CD ×MH CE ×NH ,∵CD =6EG ,CE =4EG ,MH =NH ,∴S △CHD S △CHE =CD ×MH CE ×NH=32;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,同理可得:OD =GE ,OC =CG ,MH =NH ,∵CD =6EG ,∴CO =CD +OD =7EG ,∴CG =CO =7EG ,∴CE =CG +EG =8EG ,∴S △CHD S △CHE =CD ×MH CE ×NH=34;综上:△CDH 与△CEH 的面积比为32或者34.13如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为A (0,m ),C (n ,0),B (-5,0),且m ,n 满足方程组m +2n =103m -n =9 ,点P 从点B 出发,以每秒2个单位长度的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A 、C 两点的坐标;(2)连接P A ,用含t 的代数式表示△AOP 的面积,并直接写出t 的取值范围;(3)当点P 在线段BO 上运动时,在y 轴上是否存在点Q ,使△POQ 与△AOC 全等?若存在,请求出t 的值并直接写出Q 点标;若不存在,请说明理由.【答案】(1)A (0,4),C (3,0);(2)0≤t <52,S △AOP =10-4t ;t >52,S △AOP =4t -10.(3)存在,Q (0,3)或(0,-3)或Q (0,4)或(0,-4).【分析】本题考查了全等三角形的性质和判定,二元一次方程组的解法,坐标与图形性质等知识点的综合运用,关键是利用分类讨论求出符合条件的所有情况.(1)解二元一次方程组求出m ,n 的值即可;(2)分为两种情况:当0≤t <52时,P 在线段OB 上,②当t >52时,P 在射线OC 上,求出OP 和OA ,根据三角形的面积公式求出即可;(3)分为四种情况:①当BP =1,OQ =3时,②当BP =2,OQ =4时,③④利用图形的对称性直接写出其余的点的坐标即可.【详解】(1)解方程组m +2n =103m -n =9 得m =4n =3 ,∴ A 的坐标是0,4 ,C 的坐标是3,0 ;(2)由已知,BP =2t ,OB =5.①0≤t <52,P 在线段OB 上.OP =OB -BP =5-2tS △AOP =12×OP ×OA 2=12×(5-2t )×4=10-4t .②t >52,P 在射线OC 上,OP =BP -OP =2t -5S △AOP =12×OA ×OP =12×4×(2t -5)=4t -10(3)在y 轴上存在点Q ,使△AOC 与△POQ 全等.①△POQ ≌△AOC 时,OQ =OC =3.OP =OA =4.t =5-42=12,Q (0,3)或Q (0,-3)②△POQ ≌△COA 时,OQ =OA =4,OP =OC =3.t =5-32=1 Q (0,4)或(0,-4)t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4);综上所述,t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4).14某校课后延时兴趣小组尝试用尺规来“作一条线段的三等分点”,请认真阅读下面的操作过程并完成相应的学习任务.如图1,①分别以点A ,B 为圆心,大于12AB 的长为半径在AB 两侧画弧,四段弧分别交于点C ,点D ;②连接AC ,BC ,AD ,作射线BD ;③以D 为圆心,BD 的长为半径画弧,交射线BD 于点E ;④连接CE ,交于AB 点F .点F 即为AB 的一个三等分点(即AF =13AB ).学习任务:(1)填空:四边形ADBC的形状是,你的依据是;(2)证明:AF=13AB;(3)如图2,若CE交AD于点H,∠CAD=60°,AC=6,将CH绕着点C旋转,当点H的对应点H 落在直线FD上时,求DH 的长.【答案】(1)菱形;四条边相等的四边形为菱形(2)见解析(3)DH′的长为33+32或33-32【分析】本题考查了菱形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定与性质、勾股定理,善于利用特殊叫以及直角三角形中的关系是解题的关键.(1)根据菱形的性质判定即可.(2)证明△AFC∽△BFE,得出AFFB =ACBE,再根据线段关系即可求出.(3)利用菱形及已知条件推出相关信息,证明△ACD为等边三角形,再根据AAS证明△AHC≌△DHE,求得CH ;然后证明△AKF∽△BDF,根据相似三角形的性质得出AK、CK;最后用勾股定理解三角形即可.CH绕着点C旋转,点H的对应点H 需要分情况讨论.【详解】(1)解:由图的作法可知:AC=AD=BC=BD,∴四边形ADBC的形状是菱形,依据是:四条边相等的四边形为菱形.故答案为:菱形;四条边相等的四边形为菱形;(2)证明:∵四边形ADBC的形状是菱形,∴AC∥BE,∴△AFC∽△BFE,∴AF FB =ACBE.∵AC=BD,BD=DE,∴BE=2AC,∴AF FB =12,∴FB=2AF,∴AB=3AF.∴AF=13AB.(3)解:①当点H 在线段FD上时,连接CD,如图,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴CD=AD=6,∠ADC=60°.∵AC∥BE∴∠ACF =∠DEC .在△AHC 和△DHE 中,∠AHC =∠DHE∠ACE =∠DEC AC =DE,∴△AHC ≌△DHE AAS ,∴AH =HD =3,∵△ACD 为等边三角形,∴CH ⊥AD ,∠ACH =∠DCH =30°,∴CH =33.∴CH =CH =33.设FD 与AC 交于点K ,∵AC ∥BE ,∴△AKF ∽△BDF ,∴AK BD =AF FB=12.同理:CK ED =AF FB=12,∴AK BD =CK ED.∵BD =ED ,∴AK =CK =3,∴HK ⊥AC ,∠CDK =12∠ADC =30°.∴H K =CH 2-CK 2=32,DK =33.∴DH =DK -H K =33-32.②当点H 在射线FD 上时,连接CD ,如图,由①知CH =CH =33,HK ⊥AC ,AK =KC =3,∴DK =AD 2-AK 2=33,∴H K =CH 2-CK 2=32.∴DH =H K +DK =33+32.综上,DH 的长为33+32或33-32.15(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线l 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.【答案】(1)见解析;(2)DE =BD +CE ,见解析;(3)见解析【分析】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【详解】解:(1)如图1,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,∠ABD =∠CAE∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE AAS ,∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)成立,理由如下:如图,证明如下:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ABD 和△CAE 中.∠BDA =∠AEC∠DBA =∠CAE AB =AC.∴△ABD ≌△CAE AAS∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N .∴∠EMI =∠EMA =∠GNA =90°,∠BAE =90°,∴∠EAM +BAH =90°,∵AH 是BC 边上的高,∴∠AHB =90°,∴∠BAH +∠ABH =90°,∴∠ABH =EAM ,∵AE =AB ,∴△ABH ≌△EAM ,∴EM =AH ,同理△ACH ≌△GAN ,∴AH =GN ,∴EM =GN ,在△EMI 和△GNI 中,∠EIM =∠GIN∠EMI =∠GNI EM =GN,∴△EMI ≌△GNI AAS ,∴EI =GI ,∴I 是EG 的中点.16如图,在△ABC 中,BC =5,高AD 、BE 相交于点O ,BD =2,且AE =BE.(1)请说明△AOE ≌△BCE 的理由;(2)动点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向终点A 运动,动点Q 从点B 出发沿射线BC 以每秒4个单位长度的速度运动,P 、Q 两点同时出发,当点P 到达A 点时,P 、Q 两点同时停止运动.设点P 的运动时间为t 秒,求当t 为何值时,△AOQ 的面积为3.(3)在(2)的条件下,点F 是直线AC 上的一点且CF =BO .当t 为何值时,以点B 、O 、P 为顶点的三角形与以点F 、C 、Q 为顶点的三角形全等?(请直接写出符合条件的t 值).【答案】(1)见解析(2)当t 为15或45时,△AOQ 的面积为3(3)t =1或53s 时,△BOP 与△FCQ 全等【分析】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,(1)首先推导出∠EAO =∠EBC ,通过ASA 即可证明△AOE ≌△BCE ;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD =2-4t ,②当点Q 在射线DC 上时,DQ =4t -2时;依据三角形面积计算公式解答即可;(3)分两种情形求解即可①如图2中,当OP =CQ 时,BOP ≌△FCQ .②如图3中,当OP =CQ 时,△BOP ≌△FCQ .【详解】(1)如图1中,∵AD 是高,∴∠ADC =90°,∵BE 是高,∴∠AEB =∠BEC =90°,∴∠EAO +∠ACD =90°,∠EBC +∠ECB =90°,∴∠EAO =∠EBC ,在△AOE 和△BCE 中,∠EAO =∠EBCAE =BE ∠AEO=∠BEC,∴△AOE ≌△BCE ASA ,(2)解:由(1)知△AOE ≌△BCE ,∴OA =BC =5,∵BD =2,∴CD =3,由题意OP =t ,BQ =4t ,①当点Q 在线段BD 上时,QD =2-4t ,∴S △AOQ =12OA ⋅QD =12×5×2-4t =3,解得:t =15;②当点Q 在BD 延长线上时,DQ =4t -2,∴S △AOQ =12OA ⋅DQ =12×5×4t -2 =3,解得:t =45,综上,当t 为15或45时,△AOQ 的面积为3;(3)存在.①如图2中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴5-4t =t ,解得t =1,②如图3中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴4t -5=t ,解得t =53.综上所述,t =1或53s 时,△BOP 与△FCQ 全等.17如图1,在△ABC 中,BD 为AC 边上的高,BF 是∠ABD 的角平分线,点E 为AF 上一点,连接AE ,∠AEF =45°.(1)求证:AE平分∠BAF(2)如图2,连接CE交BD于点G,若△BAE与△CAE的面积相等,求证:BG=CF【答案】(1)见解析;(2)见解析【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF是∠ABD的角平分线和,BD为AC边上的高,可得12∠BAD=45°-12∠ABD,由∠AEF=45°得∠BAE=45°-∠ABE=45°-12∠ABD,即可证明∠BAE=12∠BAD;(2)过点E作EM⊥AB于点M,EN⊥AC于点N,由角平分线性质可以得EM=EN,由△BAE与△CAE的面积相等可得AB=AC,证明△ABE≌△ACE(SAS),得出∠AEB=∠CEB=135°,BE=EC,即可得出∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,再根据垂直模型证明△BEG≌△CEF(ASA),即可得出结论.【详解】(1)证明:∵BD为AC边上的高,即∠ADB=90°,∴∠ABD+∠BAD=90°,∴12(∠ABD+∠BAD)=45°,∴1 2∠BAD=45°-12∠ABD∵∠AEF=∠ABF+∠BAE=45°,∴∠BAE=45°-∠ABF,∵∠ABF=12∠ABD,∴∠BAE=45°-12∠ABD,∴∠BAE=12∠BAF,即:AE平分∠BAF.(2)过点E作EM⊥AB于点M,EN⊥AC于点N,∵AE平分∠BAC,且EM⊥AB,EN⊥AC,∴EM=EN.∵S△ABE=S△ACE,∴AB=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,在△ABE和△ACE中,AB=BC∠BAE=∠CAE AE=AE∴△ABE≌△ACE(SAS),∴∠AEB=∠CEB,BE=EC,∵∠AEF=45°,∴∠AEB=∠AEC=135°,∴∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,∵BD为AC边上的高,∴∠ADB=90°,∴∠FBD+∠BFC=∠BFC+∠FCE,∴∠EBG=∠ECF.在△BEG和△CEF中,∠BEG=∠CEF BE=CE∠EBG=∠ECF∴△BEG≌△CEF(ASA).∴BG=CF .18如图,已知A a,0,B0,b,AB=AC且AB⊥AC,AC交y轴于E点.(1)如图1,若a2+b2-4a-8b+20=0,求C点坐标;(2)如图2,A,B两点分别在x轴,y轴正半轴上,E为AC的中点,BC交x轴于G点,连EG,若a=3,求G点的坐标;(3)如图3,A在x轴的负半轴上,以BC为边在BC的右侧作等边△BCD,连OD,当∠BOD=60°时,请探究线段OA、OB、OD之间的数量关系,并证明.【答案】(1)(-2,-2)(2)(-2,0)(3)OD=OB+2OA【分析】(1)利用完全平方公式将等式变形为两个数平方和的形式,即可求出a=2,b=4,如图1中,过点C作CH ⊥x轴于点H,证明△AHC≌△BOA,可得CH=OA=2,AH=OB=4,即可得到点C坐标.(2)根据(1)可得CH=OA=a,AH=OB=b,再由a=3,E为AC的中点,可得点C(-3,-3),AH=OB=6,再利用面积法求出AG =5,即可解题;(3)过点C 作CH ⊥x 轴于点H ,在OD 上取一点M ,使得OM =OB ,证明△OBM 是等边三角形,进而证明△MBD ≌△OBC ,得∠BMD =∠BOC =120°,MD =OC ,再证明∠COH =30°,得OC =2CH =2OA ,即可得出OD =OB +2OA .【详解】(1)解:∵a 2+b 2-4a -8b +20=0,∴(a 2-4a +4)+(b 2-8b +16)=0,即(a -2)2+(b -4)2=0,∴a =2,b =4,∴A 2,0 ,B 0,4如图1中,过点C 作CH ⊥x 轴于点H ,∵∠AHC =∠BOA =∠BAC =90°,∴∠CAH +∠BAO =90°,∠BAO +∠ABO =90°,∴∠CAH =∠ABO ,在△AHC 和△BOA 中,∠AHC =∠BOA∠CAH =∠ABO AC =BA,∴△AHC ≌△BOA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH -OA =4-2=2∴点C 坐标为(-2,-2);(2)如图2,同理(1)可证明:CH =OA =a ,AH =OB =b ,∵a =3,E 为AC 的中点,OE 平行于CH ,∴OA =OH =3,CH =3,∴点C (-3,-3),AH =OB =6,AB =AC =OA 2+OB 2=62+32=35,∵S △ABC =S △AGC +S △AGB ,即12×35×35=12×3⋅AG +12×6⋅AG ,∴AG =5,∴GO =AG -OA =5-3=2,∴点G 坐标为(-2,0);(3)结论:OD =OB +2OA ,如图3,过点C 作CH⊥x轴于点H ,同理可得:CH =OA ,AH =OB ,在OD 上取一点M ,使得OM =OB ,∵OM =OB ,∠BOD =60°,∴△OBM 是等边三角形,∴BO =BM ,∠OMB =60°,∴∠BMD =120°,∵△BCD 是等边三角形,∴BC =BD ,∠CBD =∠OBM =60°,∴∠DBM =∠CBO ,在△MBD 和△OBC 中,BM =OB∠DBM =∠CBO BD =BC,∴△MBD ≌△OBC (SAS ),∴∠BMD =∠BOC =120°,MD =OC ,∴∠COH =120°-90°=30°,∵CH ⊥x 轴,∴OC =2CH =2OA ,∵OD =OM +MD ,∴OD =OB +OC =OB +2OA【点睛】本题考查了等腰直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19已知△ABC 为等边三角形,D 是边AC 上的一点,连接BD ,E 为BD 上的一点,连接CE.(1)如图1,延长CE 交AB 于点G .若∠DCG =15°,BG =2,求BC 的长;(2)如图2,将△BEC 绕点B 逆时针旋转60°至△BFA ,延长CB 至点M ,使得BM =DC ,连接AM 交BF 于点N ,探究线段FN ,DE ,BE 之间的数量关系,并说明理由;(3)如图3,在(2)问的条件下,过点A 作AH ⊥BC 于点H ,过点B 作BK ∥AH 且BK =AH ,连接HK ,NK ,NH ,NC .若BC =4,当12BD +NK 的值最小时,请直接写出CD NH的值.【答案】(1)1+3(2)2FN +DE =BE .理由见解析(3)277【分析】(1)作CF⊥BC,解直角三角形BFG求得BF和FG,进而解直角三角形CFG求得CF,从而得出结果;(2)延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,证明△ABG≌△CBD,进而证明△ANG≌ΔMNB,△AFN≌△MHN,△BMH≌△DCE,进一步得出结论;BD+NK最小,此时BG⊥AG,即BD⊥AC,进一步得出(3)可得出当K、N、G共线且与AG垂直时,12结果.【详解】(1)解:如图1,作CF⊥BC于F,∴∠CFG=∠BFG=90°,∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,在Rt△BFG中,BG=2,∠ABC=60°,=1,∴BF=2cos60°=2×12=3,FG=2⋅sin60°=2×32在Rt△CFG中,FG=3,∠FCG=∠ACB-∠ACG=60°-15°=45°,∴CF=FG=3,tan∠FCG∴BC=BF+FC=1+3;(2)证明:如图2,延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,∴∠MHN=∠AFN,∠NMH=∠FAN,∴∠MHB=∠AFG∵△BEC绕点B逆时针旋转60°至△BFA,∴BF=BE,∠ABF=∠CBE,AB=BC,∴BG=BD,∴△ABG≌△CBD,∴AG=CD=BM,∠G=∠BDC=180°-∠CBE-∠ACB=120°-∠CBE,∵∠MBN=180°-∠ABC-∠ABF=120°-∠CBE,∴∠G=∠MBN,∴△ANG≌△MNB,∴AN=MN,∴△AFN≌△MHN,∴FN=NH,∵△ANG ≌△MNB ,∴NG =BN ,∵FN =NH ,∴BH =FG ,∵FG =DE∴BH =DE ,∵旋转,∴CE =AF ,∵△AFN ≌△MHN ,∴AF =MH ,∴MH =CE ,∵CD =BM ,∴△BMH ≌△DCE ,∴BH =DE ,∵FN +NH +BH =BF ,∴2FN +DE =BE ;(3)解:如图3,由(2)知:BD =BG =2BN ,∴12BD +NK =GN +NK ,∴当K 、N 、G 共线且与AG 垂直时,12BD +NK 最小,此时BG ⊥AG ,即BD ⊥AC ,如图4,连接NH ,∵AC =BC =4,∴CD =BH =2,BD =32BC =23,BN =GN =12BG =12BD =3,∵NH =BH 2+BN 2=2+(3)2=7,∴CD NH=277.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.。
第12章全等三角形(基础、常考、易错、压轴)分类专项训练【基础】一.全等图形(共2小题)1.(2022春•商水县期末)有下列说法,其中正确的有()①两个等边三角形一定能完全重合;②如果两个图形是全等图形,那么它们的形状和大小一定相同;③两个等腰三角形一定是全等图形;④面积相等的两个图形一定是全等图形.A.1个B.2个C.3个D.4个【分析】直接利用全等图形的性质分别分析得出答案.【解答】解:①两个等边三角形不一定能完全重合,故此选项不合题意;②如果两个图形是全等图形,那么它们的形状和大小一定相同,故此选项符合题意;③两个等腰三角形不一定是全等图形,故此选项不合题意;④面积相等的两个图形不一定是全等图形,故此选项不合题意.故选:A.【点评】此题主要考查了全等图形,正确掌握全等图形的性质是解题关键.2.(2022春•永春县期末)如图是由四个相同的小正方形组成的网格图,则∠1+∠2=180°.【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.【解答】】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故答案为:180°.【点评】本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.二.全等三角形的性质(共3小题)3.(2022春•淄博期末)如图,已知△ABD≌△ACE,AD=3,AB=7,BD=9,则AC的长为()A.3B.7C.9D.无法确定【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABD≌△ACE,AB=7,∴AB=AC=7,故选:B.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.4.(2022春•招远市期末)如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形性质是解题的关键.5.(2022春•元阳县期末)已知△ABC的三边长为x,3,6,△DEF的三边长为5,6,y.若△ABC与△DEF全等,则x+y的值为8.【分析】根据全等三角形对应边相等解答即可.【解答】解:因为△ABC与△DEF全等,所以x=5,y=3,所以x+y=8,故答案为:8.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质并准确识图是解题的关键.三.全等三角形的判定(共4小题)6.(2022春•温江区校级期末)下列说法正确的是()A.两个全等图形面积一定相等B.两个等边三角形一定是全等图形C.形状相同的两个图形一定全等D.两个正方形一定是全等图形【分析】直接利用全等图形的性质以及定义,分别分析得出答案.【解答】解:A.两个全等图形面积一定相等,故此选项合题意;B.两个等边三角形不一定是全等图形,故此选项不合题意;C.形状相同的两个图形不一定全等,故此选项不合题意;D.两个正方形不一定是全等图形,故此选项不符合题意;故选:A.【点评】此题主要考查了正方形的性质以及全等图形,正确掌握全等图形的性质是解题关键.7.(2022春•保定期末)如图三角形纸片被遮住了一部分,小明根据所学知识画出了一个与原三角形完全重合的三角形,他画图的依据是()A.SSS B.AAS C.ASA D.SAS【分析】根据全等三角形的判定定理ASA得出即可.【解答】解:他画图的依据是ASA,即有两角和它们的夹边对应相等的两个三角形全等,故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.8.(2022•连城县校级开学)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC≌△DEF,则这个条件是()A.∠ACB=∠DEF B.BE=CF C.AC=DF D.∠A=∠F【分析】根据全等三角形的判定方法即可确定.【解答】解:添加条件:BE=CF,理由如下:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故选:B.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.9.(2022春•榕城区期末)如图,已知AB=AD,AE=AC,∠DAB=∠EAC.求证:△ACD ≌△AEB.【分析】先证明∠DAC=∠BAE,然后根据“SAS”可判断△ACD≌△AEB.【解答】证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS).【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键,选用哪一种方法,取决于题目中的已知条件.四.全等三角形的判定与性质(共6小题)10.(2022春•凤翔县期末)如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°【分析】首先利用直角三角形可得∠BCD得度数,再根据“HL“可得△BEC≌△CDB,进而得到∠BCD=∠CBE,可得∠A.【解答】解:∵BD是高,∠CBD=20°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.【点评】本题考查直角三角形全等的判定和等腰三角形的性质,熟练的掌握全等的判定方法是解题关键.11.(2022春•永州期末)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA与点D,PE⊥OB与点E,若OD=4,OP=5,则PE的长为()A.3B.C.4D.【分析】利用勾股定理列式求出PD,再根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OD=4,OP=5,PD⊥OA,由勾股定理得,PD==3,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,是基础题,熟记性质是解题的关键.。
三角形全等实际应用专项训练(25题)一、解答题1.如图,有两个长度相等(BC=EF)的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求证:∠ABC+∠DFE=90°.2.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∠OH∠CD,相邻的平行线间的距离相等,AC,BD相交于O,OD∠CD.垂足为D,已知AB=18米,请根据上述信息求标语CD的长度.3.一次演习中,红军与蓝军在河边激战,蓝军在河北岸Q处,如图,因不知河宽,红军很难瞄准蓝军,聪明的红军指挥官站在南岸O处调整好自己的帽子,使视线恰好擦过帽舌边沿看到蓝军兵营Q处,然后后退到B点,这时他的视点恰好能落在O处,于是他下令测量他脚站的B处与O点之间的距离,并下令按这个距离炮轰蓝军兵营,红军能命中吗?说明理由.4.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?5.如图,A、B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A、B间距离的方案,并说明其中的道理.(1)测量方案:(2)理由:6.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB 为多少?请说明理由.7.如图,一根电线杆MN直立在水平地面上的点N处,分别用钢丝绳AB,AC将它加固,两根钢丝绳分别固定在地面上的点B,C处,点B,N,C在同一条直线上,小明测得BN=CN,两根钢丝绳相等吗?请说明理由.8.如图所示,A、B 两点分别位于一个池塘的两端,小明想用绳子测量A、B 间的距离,但绳子不够长,请你利用三角形全等的相关知识帮他设计一种方案测量出A、B间的距离,写出具体的方案,并解释其中的道理,9.图为人民公园的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB的长(要求画出草图,写出测量方案和理由).10.如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处挂两根彩线EC、FC.求证:EC=FC.11.已知如图,要测量水池的宽AB,可过点A作直线AC∠AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?12.如图,AD是一段斜坡,AB是水平线,现为了测斜坡上一点D的铅直高度(即垂线段DB的长度),小亮在D处立上一竹竿CD,并保证CD=AB,CD∠AD,然后在竿顶C处垂下一根细绳.(细绳末端挂一重锤,以使细绳与水平线垂直).细绳与斜坡AD交于点E,此时他测得DE=2米,求DB的长度.13.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?14.一块三角形玻璃损坏后,只剩下如图所示的残片,你对图中作哪些数据测量后就可到建材部门割取符合规格的三角形玻璃并说明理由.15.如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B 的距离(要求画出图形,写出测量方案和理由)16.如图所示,C、D分别位于路段A、B两点的正北处与正南处,现有两车分别从E、F两处出发,以相同的速度直线行驶,相同时间后分别到达C、D两地,休整一段时间后又以原来的速度直线行驶,最终同时到达A、B两点,那么CE与DF平行吗?为什么?17.如图,操场上有两根旗杆间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?18.某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC=BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.19.如图,两车从路段MN的两端同时出发,以相同的速度行驶,相同时间后分别到达A,B两地,两车行进的路线平行.那么A,B两地到路段MN的距离相等吗?为什么?20.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:∠ADC∠∠CEB.二、综合题(提升)21.解答题(1)问题发现如图1,∠ABC和∠ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,∠ABC和∠ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.22.解答题(1)如图1,以∠ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断∠ABC与∠AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.23.如图,∠ABC中,∠ACB=90°,AC=BC=1,将∠ABC绕点C逆时针旋转得到∠A1B1C,旋转角为ɑ(0°<ɑ<90°),连接BB1.设CB1交AB于点D,A1B1分别交AB,AC于点E,F.(1)求证:∠BCD∠∠A1CF;(2)若旋转角ɑ为30°,①请你判断∠BB1D的形状;②求CD的长.24.琪琪家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,(1)爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C,D,使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长。
全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.52.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?53.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.54.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.55.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.56.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.57.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.58.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.59.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.60.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.全等三角形证明题专项练习60题参考答案:1.∵△ABC≌△ADE 且∠B≠∠E,∴∠C=∠E,∠B=∠D;∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣20°=130°.2.∵AB∥CD,AD∥BC,∴∠ABD=∠CDB、∠ADB=∠CBD.又BD=DB,∴△ABD≌△CDB(ASA).3.△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.4.(1)∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90°∴∠DBH=∠HAE∵∠HAE=∠DAC∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.5.∵DE⊥AB,DF⊥AC,∴△DBE与△DCF是直角三角形,∵BD=CD,DE=DF,∴Rt△DBE≌Rt△DCF(HL),∴∠B=∠C,∴AB=AC.6.∵AE是∠BAC的平分线,∴∠BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠DAB=∠DAC;又∵AB=AC,AD=AD,∴在△ABD和△ACD中,∴△ABD≌△ACD(SAS)7.∵AE∥BC,∴∠B=∠C.∵AF=BD,AE=BC,∴△AEF≌△BCD(SAS).8.△ABE与△ACD全等.理由:∵AB=AC,∠A=∠A(公共角),AE=AD,∴△ABE≌△ACD.9.图中的全等三角形有:△ABD≌△ACD,△ABE≌△ACE,△BDE≌△CDE.理由:∵D是BC的中点,∴BD=DC,AB=AC,AD=AD∴△ABD≌△ACD(SSS);∵AE=AE,∠BAE=∠CAE,AB=AC,∴△ABE≌△ACE(SAS);∵BE=CE,BD=DC,DE=DE,∴△BDE≌△CDE(SSS).10.:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS)11. 增加AB=DF.在△ABC和△FDE 中,∴△ABC≌△FDE(SSS).12.∵AB=AC,BD=CE,∴AD=AE.又∵∠A=∠A,∴△ABE≌△ACD(SAS).13.△CBD≌△CA1F证明如下:∵AC=BC,∴∠A=∠ABC.∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C1,∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.∴∠A1=∠ABC(1分),A1C=BC.∴△CBD≌△CA1F(ASA)14.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠F=∠ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ABC≌△DEF (ASA).15.∵AB=AC,AD=AE,∠DAB=∠EAC,∴∠DAC=∠AEB,∴△ACD≌△ABE,∴∠D=∠E,又AD=AE,∠DAB=∠EAC,∴△ADM≌△AEN16.∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90,即∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD17.答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC为例)∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC﹣CD=AC﹣CE,∴BD=AE,又∵EF=AE,∴BD=FE,在△BDE与△FEC中,∵,∴△BDE≌△FEC(SAS).18.(1)证明如下:∵∠ABD=∠1+∠EBC,∠CBE=∠2+∠EBC,∠1=∠2.∴∠ABD=∠CBE.在△ABD和△EBC中∴△ABD≌△EBC(AAS);(2)从中还可得到AB=BC,∠BAD=∠BEC19.(1)∵AB=8,AD=2∴BD=AB﹣AD=6在Rt△BDE中∠BDE=90°﹣∠B=30°∴BE=BD=3∴CE=BC﹣BE=5在Rt△CFE中∠CEF=90°﹣∠C=30°∴CF=CE=∴AF=AC﹣FC=;(2)在△BDE和△EFC中,∴△BDE≌△CFE(AAS)∴BE=CF∴BE=CF=EC∴BE=BC=∴BD=2BE=∴AD=AB﹣BD=∴AD=时,DE=EF20.(1)图中全等的三角形有四对,分别为:①△DBG≌△EGC,②△ADG≌△AEG,③△ABG≌△ACG,④△ABE≌△ACD;(4分)(Ⅱ)∵AB=AC,AD=AE,∠A是公共角,∴△ABE≌△ACD(SAS)④;∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE;由④得∠B=∠C,又∵∠DGB=∠EGC(对顶角相等),BD=CE(已证),∴△DBG≌△EGC(AAS)①;由①得BG=CG,由④得∠B=∠C,又∵AB=AC,∴△ABG≌△ACG(SAS)③;由①得BG=CG,且AD=AE,AG为公共边,∴△ADG≌△AEG(SSS)②;21.(1)△ABC≌△DCB.证明:∵AB=CD,AC=BD,BC=CB,∴△ABC≌△DCB.(SSS)(2)EF平分∠DEC.理由:∵EF∥BC,∴∠DEF=∠EBC,∠FEC=∠ECB;由(1)知:∠EBC=∠ECB;∴∠DEF=∠FEC;∴FE平分∠DEC22.△ABC≌△DCB.理由如下:∵∠ABC=∠DCB,∠1=∠2,∴∠DBC=∠ACB.∵BC=CB,∴△ABC≌△DCB23.(1)∵BF=DE,∴BF+EF=DE+EF.即BE=DF.在△DFC和△BEA中,∵,∴△DFC≌△BEA(SAS).(2)∵△DFC≌△BEA,∴CF=AE,∠CFD=∠AEB.∵在△AFE与△CEF中,∵,∴△AFE≌△CEF(SAS)24.△ABF与△DFG中,∠BAF=∠BGD,∠BFA=∠DFG,∴∠B=∠D,∵∠BAF=∠EAC,∴∠BAE=∠DAC,∵AC=AE,∠BAE=∠DAC,∠B=∠D,∴△BAE≌△DAC.答案:有.△BAE≌△DAC25.∵CE∥AB,∴∠ABD=∠ECD.在△ABD和△ECD中,,∴△ABD≌△ECD(ASA)26.(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°27.1)证明:∵AB∥DE,∴∠A=∠D.∵AB=DE,AF=DC,∴△ABF≌△DEC.(2)解:全等三角形有:△ABC和△DEF;△CBF和△FEC28.证明:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义),∴∠ACG=∠DBA(同角的余角相等),又∵BD=CA,AB=GC,∴△ABD≌△GCA;(2)连接DG,则△ADG是等腰三角形.证明如下:∵△ABD≌△GCA,∴AG=AD,∴△ADG是等腰三角形.29.解:∵∠4+∠6=180°﹣∠3,∠5+∠6=180°﹣∠2,∠3=∠2,∴∠4+∠6=∠5+∠6,∴∠4=∠5,∵在△ADE和△CFD中,,∴△ADE≌△CFD(AAS).30.①DF∥BC.证明:∵BE⊥AC,∴∠BEC=90°,∴∠C+∠CBE=90°,∵∠ABC=90°,∴∠ABF+∠CBE=90°,∴∠C=∠ABF,∵DF∥BC,∴∠C=∠ADF,∴∠ABF=∠ADF,在△AFD和△AFB中∴△AFD≌△AFB(AAS).31.在△BEA和△BDC中:,故△BEA≌△BDC(SSS).32.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°(垂直的意义),同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°(三角形的内角和等于180°),∴∠1+∠2=90°(等式的性质).∵∠ACB=90°(已知),∴∠3+∠2=90°,∴∠1=∠3(同角的余角相等).在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.(1)△ABF≌△DEC,△ABC≌△DEF,△BCF≌△EFC;(2分)(2)△ABF≌△DEC,证明:∵AB∥DE,∴∠A=∠D,(3分)在△ABF和△DEC中,(4分)∴△ABF≌△DEC.(5分)34.(1)△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠C=∠E;(2)∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,又∠C=∠E,∴△ABC≌△ADE.35.∵AE⊥CD,∴∠AEC=90°,∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ACE+∠BCF=90°,∴∠CAE=∠BCF,(等角的余角相等)∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,在△ACE与△CBF中,∠CAE=∠BCF,∠AEC=∠BFC,AC=BC,36.当动点P运动到AC边上中点位置时,△APE≌△EDB,∵DE∥CA,∴△BED∽△BAC,∴=,∵D是BC的中点,∴=,∴=,∴E是AB中点,∴DE=AC,BE=AE,∵DE∥AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=AC,∴P必须是AC中点.37.(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.38.△ACE≌△BCD.∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD(都是∠ACD的余角),在△ACE和△BCD中,∵,∴△ACE≌△BCD.39.∵∠BAC=∠DAE,即∠BAD=∠EAC,在△ABD和△ACE中,∴△ABD≌△ACE.40.证明:延长FD到M使MD=DF,连接BM,EM.∵D为BC中点,∴BD=DC.∵∠FDC=∠BDM,∴△BDM≌△CDF.∴BM=FC.∵ED⊥DF,∴EM=EF.∵BE+BM>EM,∴BE+FC>EF.41.PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△MPQ和△NHQ中,,∴△MPQ≌△NHQ(ASA),∴MP=NH.42.(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.43.∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm)44.∵AB=CD,BC=AD,又∵BD=DB,在△ABD和△CDB中,∴△ABD≌△CDB,∴∠A=∠C.45.∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中,∴△BFD≌△CED(AAS).∴CE=BF46.∵AD∥BC,∴∠E=∠ENB,∵∠ENB=∠CNF,∴∠E=∠CNF,∵AB∥CD,∴∠A=∠B,∵∠C=∠B,∴∠EAB=∠DCB,∵AM=CF,∴AE=CN.47.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠A TC+∠CA T=90°,∵AT平分∠BAC,∴∠DAM=∠CA T,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.48.∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE即∠BAC=∠DAE又∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS)∴∠B=∠D(全等三角形的对应角相等)49.∵DE=EF,AE=CE,∠AED=∠FEC,∴△AED≌△FEC.∴∠ADE=∠CFE.∴AD∥FC.∵D是AB上一点,∴AB∥CF50.∵BE∥CF,∴∠CMF=∠BME,∠FCM=∠EBM.∴△CFM≌△BEM.∴CM=BM.即AM是△ABC的中线51.∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF﹣CE=CF﹣AF52.解:(1)证明:由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,则△ABD与△CEA是直角三角形,∠DAB=∠ECA,在△ABD与△CEA中,∵,∴△ABD≌△CEA,∴BD=AE;(2)若将MN绕点A旋转,与BC相交于点O,则BD,CE与MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与AE边仍相等;(3)∵△ABD≌△CEA,∴BD=AE,AD=EC,∴DE=BD+EC或DE=CE﹣BD或DE=BD﹣CE.53.∵AB=AC,∴∠ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠BEC=∠BDC=90°,∴在△BEC和△CDB中,∴△BEC≌△CDB,∴∠1=∠2,∴OB=OC解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF∵DE与CF平行且相等∴∠EDA=∠DAC∴∠EDA=∠DCF在△AED和△CFD中CD=AD,∠EDA=∠DCF,DE=CF∴△AED≌△CFD∴AE=DF.55.∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵∴△ADE≌△ADC(SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△AEB与△ADC中,.∴△AEB≌△ADC(AAS).∴AB=AC(全等三角形,对应边相等)57.(1)证明:在△BCE和△DCE中∴△BCE≌△DCE(SSS).(2)解:∵AD=DE,∴∠A=∠AED;∴∠EDC=∠A+∠AED=2∠A,设∠A=x,根据题意得,5x=180°,解得x=36°∴∠EDC=2∠A=72°证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.又AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF,∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.有BE=BE,∴△BCE≌△BFE,∴CE=EF,∴CE=BD,∴BD=2CE.59.(1)证明:在△ABD和△CDB中∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∴DE∥BF.∴∠E=∠F.(2)答:当O是BD中点时,OE=OF.证明如下:∵O是BD中点,∴OB=OD.又∵∠ADB=∠DBC,∠E=∠F,∴△ODE≌△OBF(AAS).∴OE=OF.(当AE=CF时也可证得60.∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°.∵AD平分∠EAC,∴DE=DF.在Rt△DBE和Rt△DCF中,∴Rt△DBE≌Rt△CDF(HL).∴BE=CF.。
八年级上册数学《第十二章全等三角形》专题全等三角形压轴题训练(30题)1.(2022秋•忠县期末)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.【分析】(1)在BC上截取BM=BD,连接FM,证明△BFD≌△BFM,△ECF≌△MCF,进而可以解决问题;(2)根据已知条件证明△BDF≌△CDA,进而可以解决问题.【解答】证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2,BF=BF∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC,∠3=∠4∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD,∠1=∠3∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.【点评】本题属于三角形的综合题,考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握全等三角形的判定与性质.2.如图,△ABC中,AB=AC,D为AC边上一点,E为AB延长线上一点,且CD=BE,DE与BC相交于点F.(1)求证:DF=EF.=5,求EG的长.(2)过点F作FG⊥DE,交线段CE于点G,若CE⊥AC,CD=4,S△EFG【分析】(1)过点D作DH∥AB交BC于点H,根据等腰三角形的性质及平行线的性质得到∠BEF=∠HDF,∠DHC=∠DCH,则DH=CD,结合∠BFE=∠HFD,即可利用AAS判定△BEF≌△HDF,根据全等三角形的性质即可得解;(2)根据三角形的面积公式求解即可.【解答】(1)过点D作DH∥AB交BC于点H,∵AB=AC,∴∠ABC=∠ACB,∵DH∥AB,∴∠DHC=∠ABC,∴∠DHC=∠ACB=∠DCH,∴DH=CD,∵CD=BE,∴DH=BE,∵DH∥AB,∴∠BEF=∠HDF,在△BEF和△HDF中,∠BFE=∠HFD∠BEF=∠HDFBE=DH,∴△BEF≌△HDF(AAS),∴DF=EF;(2)连接DG,∵DF=EF,FG⊥DE,∴S△DFG =S△EFG=5,∴S△DEG=10,∵CE⊥AC,CD=4,∴S△DEG =12EG•CD=12EG×4,∴12EG×4=10,∴EG=5.【点评】此题考查了全等三角形的判定与性质,利用AAS判定△BEF≌△HDF是解题的关键.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD.(1)当点P在线段BC上时(不与点B重合),求证:△BAP≌△CAD;(2)当点P在线段BC的延长线上时(如图2),试猜想线段BP和CD的数量关系与位置关系分别是什么?请给予证明.【分析】(1)证得∠BAP=∠CAD,根据SAS可证明△BAP≌△CAD;(2)可得∠BAP=∠CAD,由SAS可证明△BAP≌△CAD,可得BP=CD,∠B=∠ACD,则结论得证.【解答】(1)证明:∵∠BAC=∠PAD=90°,∴∠BAC﹣∠PAC=∠PAD﹣∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS);(2)猜想:BP=CD,BP⊥CD.证明:∵∠BAC=∠PAD=90°,∴∠BAC+∠PAC=∠PAD+∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS),∴BP=CD(全等三角形的对应边相等),∠B=∠ACD(全等三角形的对应角相等),∵∠B+∠ACB=90°,∴∠ACD+∠ACB=90°,即:BP⊥CD.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.4.在△ABC中,∠ABC=90°.点G在直线BC上,点E在直线AB上,且AG与CE相交于点F,过点A 作边AB的垂线AD,且CD∥AG,EB=AD,AE=BC.(1)如图①,当点E在△ABC的边AB上时,求∠DCE的度数;(2)如图②,当点E在线段BA的延长线上时,求证:AB=BG.【分析】(1)如图①,连接ED,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED=∠BCE,ED=CE,于是得到结论;(2)如图②,连接DE,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED =∠BCE,ED=CE,根据等腰三角形的性质得到∠EDC=∠ECD,推出AF平分∠DAE,于是得到结论.【解答】解:(1)如图①连接ED,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠AED=∠BCE,ED=CE,∴∠AED+∠BEC=∠BCE+∠BEC;∴∠AED+∠CEB=90°,∴∠DEC=90°,∴∠DCE=45°;(2)如图②,连接DE,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∴∠DAE=∠ABC,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠ADE=∠BEC,ED=CE,∵ED=CE,∴∠EDC=∠ECD,即∠ADE+∠ADC=∠ECD,∴∠BEC+∠DAF=∠AFC,∵∠BEC+∠EAF=∠AFC,∴∠DAF=∠EAF,∴AF平分∠DAE,∵∠DAE=90°,∴∠EAF=45°,∵∠EAF=∠BAG,∴∠BAG=45°,∵∠ABC=90°,∴∠ABG=90°,∴∠BGA=∠BAG,∴AB=BG.【点评】本题考查了平行线的性质,全等三角形的判定和性质,角平分线的定义,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.5.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△BMK≌△BGK.6.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.7.(2022秋•新市区校级期中)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【分析】(1)由△BCD和△BEA为等腰三角形,∠ABD=∠EBC,得出∠BCD=∠BEA,由△ABD≌△EBC可得∠BCE=∠BDA,由∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA得出∠BCD+∠DCE=∠DAE+∠BEA,进而得出∠DCE=∠DAE,即可证明AE=EC;(2)过点E作EG⊥BC交BC的延长线于点G,由“HL”得出Rt△BFE≌Rt△BGE和Rt△BFE≌Rt△BGE,从而得出BF=BG,FA=CG,再通过等量代换即可得出结论.【解答】(1)证明:∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD与△EBC中,AB=EB∠ABD=∠EBD,BD=BC∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠BCD+∠DCE=∠DAE+∠BEA,∵BD=BC,BE=BA,∴△BCD和△BEA为等腰三角形,∵∠ABD=∠EBC,∴∠BCD=∠BEA,∴∠DCE=∠DAE,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE;(2)证明:如图,过点E作EG⊥BC交BC的延长线于点G,∵BE平分∠ABC,EF⊥AB,EG⊥BG,∴EF=EG,在Rt△BFE与Rt△BGE中,EF=EGBE=BE,∴Rt△BFE≌Rt△BGE(HL),∴BF=BG,在Rt△AFE与Rt△CGE中,EF=EGEA=EC,∴Rt△AFE≌Rt△CGE(HL),∴FA=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.【点评】本题考查了全等三角形的判定与性质,掌握三角形全等的判定方法是解决问题的关键.8.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为 cm.(3)猜想AE与BD的位置关系,并说明理由.【分析】(1)根据SAS证明△CBD≌△CAE即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质和垂直的定义解答即可.【解答】解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,BC=AC∠BCD=∠ACE,DC=EC∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:AE与CD相交于点O,在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.【点评】此题考查全等三角形的判定和性质,关键是根据SAS得出△CBD与△CAE全等解答.9.已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.【分析】(1)根据等腰三角形的性质得到∠B=45°,根据角平分线的性质得到CE=EH=BH,根据全等三角形的性质得到AH=AC,于是得到结论;(2)先连接AD,依据AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,进而得到BG=BE.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠B=45°,∵AE平分∠BAC时,EH⊥AB于H,∴CE=EH=BH,在Rt△ACE与Rt△AHE中,CE=EH AE=AE,∴Rt△ACE与Rt△AHE(HL),∴AH=AC,∴AH=BC,∵△EHB的周长为10m,∴AB=AH+BH=BC+BH=10m;(2)如图所示,连接AD,线段AE绕点A顺时针旋转90°得线段AF,则AE=AF,∠EAF=90°,∵AC⊥BD,DC=BC,∴AD=AB,∠ABE=∠ADC=45°,∴∠BAD=90°=∠EAF,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴DF=BE,∠ADF=∠ABE=45°,∴∠FDC=90°,∵BG⊥BC,∴∠CBG=∠CDF=90°,又∵BC=DC,∠BCG=∠DCF,∴△BCG≌△DCF(ASA),∴DF=BG,∴BG=BE.【点评】本题主要考查了旋转的性质,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形的对应边相等得出结论.10.在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图②,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)利用SAS即可证明△BMD≌△AMC.(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠CEF.【解答】(1)证明:∵∠ABM=45°,AM⊥BM,在△BMD和△AMC中,DM=CM∠BMD=∠AMC BM=AM,∴△BMD≌△AMC(SAS);(2)证明:延长EF到点G,使得FG=EF,连接BG.如图所示:∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,BF=FC∠BFG=∠EFC FG=FE,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF.【点评】本题主要考查全等三角形的判定与性质,等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.11.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE =AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,∠BAE=∠FAE∠ABE=∠AFE,AE=AE∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=12(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.12.(2022秋•渝北区校级期末)已在等腰Rt△ABC中,∠ABC=90°,AB=CB,D为直线AB上一点,连接CD,过点C作CE⊥CD,且CE=CD,连接DE,交AC于点F.(1)如图1,当点D在线段AB上,且∠DCB=30°时,请探究DF,EF,CF之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,在FC上任取一点G,连接DG,作射线GP使∠DGP=60°,交∠DFG 的平分线于点Q,求证:FD+FG=FQ.【分析】(1)在EF上找到G点使得FG=CF,易证△CFG是等边三角形,可得CG=CF=GF,即可求得∠ECG=∠ACD,即可证明△ECG≌△CDF,可得DF=EG,即可解题;(2)在FP上找到H点,使得FH=FG,易证△FGH是等边三角形,可得∠GHF=∠FGH=60°,GH =FG=FH,即可求得∠FGD=∠QGH,即可证明△DFG≌△QHG,可得DF=QH,即可解题.【解答】(1)解:EF=DF+CF;在EF上找到G点使得FG=CF,如图2,∵∠BCD=30°,∠ACB=45°,∴∠ACD=15°,∴∠CFG=∠CDE+∠ACD=60°,∵FG=CF,∴△CFG是等边三角形,∴CG=CF=GF,∠FCG=60°,∴∠GCE=90°﹣15°﹣60°=15°,在△ECG和△CDF中,CG=CF∠ECG=∠ACD,CE=CD∴△ECG≌△CDF,(SAS)∴DF=EG,∵EF=EG+GF,∴EF=DF+CF;(2)证明:在FQ上找到H点,使得FH=FG,如图3,∵FQ平分∠DFG,∴∠QFG=60°,∵FG=FH,∴△FGH是等边三角形,∴∠GHF=∠FGH=60°,GH=FG=FH,∵∠AFD=∠CDE+∠ACD=60°,∴∠GHQ=∠DFG=120°,∵∠FGD+∠DGH=60°,∠DGH+∠QGH=60°,∠QGH=∠DGF,∴∠FGD=∠QGH,在△DFG和△QHG中,∠DFG=∠QHG=120°FG=HG,∠FGD=∠QGH∴△DFG≌△QHG,(ASA)∴DF=QH,∵FQ=FH+QH,∴FQ=FG+FD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ECG≌△CDF和△DFG≌△QHG是解题的关键.13.(2022春•运城期末)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠AEC=∠ADB,结合平角的定义可得∠DAE+∠DFE=180°,根据∠BFC+∠DFE=180°,可求得∠BFC=∠DAE,即可求解;(3)连接AF,过点A作AJ⊥CF于点J.结合全等三角形的性质利用HL证明Rt△AFJ≌Rt△AFH,Rt△AJE≌Rt△AHD可得FJ=FH,EJ=DH,进而可证明结论.【解答】(1)证明:∵∠BAC=∠DAE.∴∠CAE=∠BAD.在△ACE和△ABD中,AC=AB∠CAE=∠BAD,AE=AD∴△ACE ≌△ABD (SAS );(2)解:∵△ACE ≌△ABD ,∴∠AEC =∠ADB ,∴∠AEF +∠AEC =∠AEF +∠ADB =180°.∴∠DAE +∠DFE =180°,∵∠BFC +∠DFE =180°,∴∠BFC =∠DAE =∠BAC =50°;(3)证明:如图,连接AF ,过点A 作AJ ⊥CF 于点J .∵△ACE ≌△ABD ,∴S △ACE =S △ABD ,CE =BD ,∵AJ ⊥CE ,AH ⊥BD .∴12CE ⋅AJ =12BD ⋅AH ,∴AJ =AH .在Rt △AFJ 和Rt △AFH 中,AF =AF AJ =AH ,∴Rt △AFJ ≌Rt △AFH (HL ),∴FJ =FH .在Rt △AJE 和Rt △AHD 中,AE =AD AJ =AH ,∴Rt △AJE ≌Rt △AHD (HL ),∴EJ =DH ,∴EF +DH =EF +EJ =FJ =FH .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定条件是解题的关键.14.(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)方法一:先求∠ABC 和∠ACB 的和为100°,再根据角平分线求∠DBC +∠DCB =50°,再根据外角即可解决问题;方法二:在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°−12∠ABC ﹣∠DMB =180°−12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF ≌△DMF (SAS ),可得GF =MF ,进而可以解决问题.【解答】(1)解:方法一:∵∠A =80°,∴∠ABC +∠ACB =100°,∵BE 平分∠ABC 、CD 平分∠ACB ,∴∠DBC +∠DCB =50°,∴∠EDC =∠DBC +∠DCB =50°;方法二:如图,在BC 上取点M ,使CM =CE ,∵CD 平分∠ACB ,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°−12∠ABC﹣∠DMB=180°−12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解决本题的关键是根据题意准确作出辅助线得到△DGF≌△DMF.15.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长.【分析】(1)证△ACD≌△AED(AAS),即可得出结论;(2)设∠DAC=∠DAE=α,在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得∠DME=∠B,然后证∠FDB=90°+90°﹣2α=180°﹣2α,即可得出结论;(3)求出MB=AB﹣AM=8,由全等三角形的性质得ME=BE,即可求解.【解答】(1)证明:∵AD平分∠BAC,∴∠DAC=∠DAE,∵DE⊥BA,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD和△AED中,∠C=∠DEA∠DAC=∠DAE,AD=AD∴△ACD≌△AED(AAS),∴AC=AE;(2)证明:设∠DAC=∠DAE=α,∵∠C=∠DEA=90°,∴∠ADC=90°﹣α,∠ADE=90°﹣α,则∠FDB=∠FCD+∠DFC=90°+∠DFC,在AB上截取AM=AF,连接MD,如图所示:在△FAD和△MAD中,AF=AM∠DAF=∠DAM,AD=AD∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,MD=BDDE=DE∴Rt△MDE≌Rt△BDE(HL),∴∠DME=∠B,∵∠DAC=∠DAE=α,∴∠DAC+∠ADF=∠ADM+∠ADM,在△FAD中,∠DAC+∠ADF=∠DFC,在△AMD中,∠DAE+∠ADM=∠DME,∴∠DFC=∠DME,∴∠DFC=∠B,∵∠C=90°,在△ABC中,∠B=90°﹣2α,∴∠DFC=90°﹣2α,∴∠FDB=90°+90°﹣2α=180°﹣2α,∵∠BAC=∠DAC+∠DAE=2α,∴∠FDB+∠BAC=180°﹣2α+2α=180°;(3)解:∵AF=AM,且AF=1.5,∴AM=1.5,∵AB=9.5,∴MB=AB﹣AM=9.5﹣1.5=8,由(2)得:Rt△MDE≌Rt△BDE,∴ME=BE,∴BE=12BM=4,即BM的长为4.【点评】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接DE,CE.(1)如图,当点D在BC延长线上移动时,求证:BD=CE.(2)设∠BAC=α,∠DCE=β.①当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由.②当点D分别在线段BC上、线段BC的反向延长线上移动时,α与β之间有什么数量关系?请说明理由.【分析】(1)根据SAS证△BAD≌△CAE,可得结论;(2)①由△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),(2)解:①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:由(1)知△BAD≌△CAE,∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:i)当D在线段BC上时,如图2,α+β=180°,理由是:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°,ii)当点D在线段BC反向延长线上时,如图3,α=β.如图3,同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;ii)当点D在线段BC的延长线上时,如图1,α=β.综上,当点D在BC上移动时,α=β或α+β=180°.【点评】本题是三角形的综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(2022春•南海区校级月考)如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应的图形并说明理由;(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF与BD 的位置关系.【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形的性质及等腰直角三角形的性质求解即可;②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF 和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF ⊥BD.【解答】解:(1)①CF=BD,CF⊥BD,理由如下:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠CAF+∠CAD=90°,∠BAD+∠CAD=90°,∠B=∠ACB=45°,∴∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B=45°,∵∠ACB=45°,∴∠FCB=45°+45°=90°,∴CF⊥BD;②①中的结论成立,理由如下:如图②:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠BAC=∠DAF=90°,∠B=∠ACB=45°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(3)如图③,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,AC=AE∠CAF=∠EAD,AF=AD∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BC.【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,作出合理的辅助线根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.18.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)△ABC≌△ADE吗?为什么?(2)求∠FAE的度数;(3)延长BF到G,使得FG=FB,试说明CD=2BF+DE.【分析】(1)由“SAS”可证△ABC≌△ADE;(2)由等腰直角三角形的性质可得∠AEC=∠ACE=45°,由全等三角形的性质可得∠ACB=∠AED=45°,即可求解;(3)由全等三角形的性质可得∠ABC=∠ADE,BC=DE,由线段垂直平分线的性质和等腰三角形的性质可得AB=AG=AD,∠ABG=∠AGB=∠ADC,由“AAS”可证△ACD≌△ACG,可得CD=CG,可得结论.【解答】证明:(1)△ABC≌△ADE,理由如下:∵∠BAD=∠CAE=90°,∴∠EAD=∠CAB,在△ABC和△ADE中,AB=AD∠BAC=∠DAE,AC=AE∴△ABC≌△ADE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠AEC=∠ACE=45°,∵△ABC≌△ADE,∴∠ACB=∠AED=45°,∵AF⊥CB,∴∠FAC=45°,∴∠FAE=135°;(3)∵△ABC≌△ADE,∴∠ABC=∠ADE,BC=DE,∴∠ADC=∠ABG,∵AF⊥BF,BF=FG,∴AB=AG,∴AG=AD,∠ABG=∠AGB=∠ADC,又∵∠ACG=∠ACD=45°,∴△ACD≌△ACG(AAS),∴CD=CG,∴CD=BG+CB=2BF+DE.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的性质等知识,证明△ACD≌△ACG是解题的关键.19.Rt△ABC中,∠C=90°,点D在直线AC上,点E在直线AB上,∠ADE=∠ABC.(1)如图1,当点D、E分别在边AC、AB上时,求证:DE⊥AB;(2)如图2,当点D在CA延长线上,点E在BA延长线上时,DE、BC延长线交于点F,作∠EAC的角平分线AG交DF于点G,求证:∠D+2∠DGA=90°;(3)如图3,在(2)的条件下,连接BG交CD于点H,若∠DGH=∠DHG,∠AGB=3∠CBH,求∠DGA的度数.【分析】(1)根据直角三角形的两锐角互余得到∠ABC+∠A=90°,等量代换得出∠ADE+∠A=90°,进而得出∠AED=90°,根据垂直的定义即可得解;(2)过点G作GN∥FB交CD于点N,根据平行线的性质及垂直的定义推出∠AEG=∠ANG=90°,根据角平分线定义得出∠EAG=∠NAG,利用AAS证明△EAG≌△NAG,根据全等三角形的性质及直角三角形的性质即可得解;(3)根据直角三角形的性质及对顶角相等得出∠DGH=90°−13∠AGB,根据等腰三角形的性质推出∠DGH=90°−12∠D,则90°−13∠AGB=90°−12∠D,进而推出∠AGB=32∠D,则∠DGA+32∠D=90°−12∠D,结合(2)求解即可.【解答】(1)证明:∵∠C=90°,∴∠ABC+∠A=90°,∵∠ADE=∠ABC,∴∠ADE+∠A=90°,∴∠AED=90°,∴DE⊥AB;(2)证明:如图2,过点G作GN∥FB交CD于点N,则∠GNC=∠ACB=90°,∴GN⊥CD,∵∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ADE=∠ABC,∠BAC=∠DAE,∴∠ADE+∠DAE=90°,∴∠DEA=90°,∴BE⊥DF,∴∠AEG=∠ANG=90°,∵AG平分∠EAC,∴∠EAG=∠NAG,在△EAG和△NAG中,∠AEG=∠ANG∠EAG=∠NAGAG=AG,∴△EAG≌△NAG(AAS),∴∠DGA=∠NGA,∴∠DGN=2∠DGA,∵∠D+∠DGN=90°,∴∠D+2∠DGA=90°;(3)解:∵∠AGB=3∠CBH,∴∠CBH=13∠AGB,∵∠DHG=∠CHB=90°﹣∠CBH,∴∠DGH=90°−13∠AGB,∵∠DGH=∠DHG,∴∠DGH=12(180°﹣∠D)=90°−12∠D,∴90°−13∠AGB=90°−12∠D,∴∠AGB=32∠D,∵∠DGH=∠DGA+∠AGB,∴∠DGA+∠AGB=90°−12∠D,∴∠DGA+32∠D=90°−12∠D,∴2∠D+∠DGA=90°,由(2)知,∠D+2∠DGA=90°,∴∠D=∠DGA,∴3∠DGA=90°,∴∠DGA=30°.【点评】此题是三角形综合题,考查了直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质并作出合理的辅助线是解题的关键.20.(2023春•新市区期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明;(3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.(3)过D作DH⊥CB交CB的延长线于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC.理由如下:过D作DH⊥CB于H,∴∠DHC=∠DHB=90°,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠EFC=∠DHC=90°∠FCE=∠DCH,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠ACB=90°,AC=BC,∴∠B=45°,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CB+HB,∴AC=FC+EF;(2)依题意补全图形,结论:AC=EF﹣CF,理由如下:过D作DH⊥CB交BC的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠FCE=∠DCH∠EFC=∠DHC=90°,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=HB﹣CH,∴AC=EF﹣CF;(3)AC=CF﹣EF.如图3,过D作DH⊥CB交CB的延长线于H,同理可证△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CH﹣BH,∴AC=CF﹣EF.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(1)如图1,∠B=∠D=90°,E是BD的中点,AE平分∠BAC,求证:CE平分∠ACD.(2)如图2,AM∥CN,∠BAC和∠ACD的平分线并于点E,过点E作BD⊥AM,分别交AM、CN于B、D,请猜想AB、CD、AC三者之间的数量关系,请直接写出结论,不要求证明.(3)如图3,AM∥CN,∠BAC和∠ACD的平分线交于点E,过点E作不垂直于AM的线段BD,分别交AM、CN于B、D点,且B、D两点都在AC的同侧,(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)过点E作EF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)如图2,过E作EF⊥AC于F,根据平行线的性质得到BD⊥CD,由角平分线的性质得到BE=EF,证得Rt△AEF≌Rt△ABE,根据全等三角形到现在得到AF=AB,同理CF=CD,等量代换得到结论;(3)成立,如图3,在AC上截取AF=AB,根据角平分线的定义得到∠BAE=∠FAE,推出△ABE≌△AFE,根据全等三角形的性质得到∠AFE=∠ABE,根据角平行线的性质得到∠ABE+∠CDE=180°,求得∠CFE=∠CDE,证得△CEF≌△CDE,根据全等三角形的性质即可得到结论.【解答】解:(1)如图1,过E作EF⊥AC于F,∵∠B=90°,AE平分∠BAC,∴EF=BE,∵E是BD的中点,∴BE=DE,∴EF=DE,∵∠D=90°,∴CE平分∠ACD;(2)如图2,过E作EF⊥AC于F,∵AM∥CN,BD⊥AM,∴BD⊥CD,∵AE平分∠BAC,∴BE=EF,在Rt△AEF与Rt△ABE中,BE=EF AE=AE,∴Rt△AEF≌Rt△ABE,∴AF=AB,同理CF=CD,∵AC=AF+CF,∴AC=AB+CD;(3)成立,如图3,在AC上截取AF=AB,∵AE平分∠BAC,∴∠BAE=∠FAE,在△ABE与△AFE中,AB=AF∠BAE=∠FAEAE=AE,∴△ABE≌△AFE,∴∠AFE=∠ABE,∵AM∥CN,∴∠ABE+∠CDE=180°,∵∠AFE+∠EFC=180°,∴∠CFE=∠CDE,∵CE平分∠ACD,∴∠FCE=∠DCE,在△CEF与△CDE中,∠CFE=∠CDE ∠FCE=∠DCE CE=CE,∴△CEF≌△CDE,∴CF=CD,∵AC=AF+CF,∴AC=AB+CD.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,角平分线的定义,平行线的性质,正确的作出辅助线构造全等三角形是解题的关键.23.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)结论不成立.结论:AF=DE+EF.同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.结论:AF=DE+EF.。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形拔高训练
姓名: 班级:
1、 如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,
且AF=BD ,连结BF 。
(1) 求证:BD=CD ;
(2) 如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论。
2、 如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,.
(1)求证:BED CFD △≌△;
(2)若90A ∠=°,求证:四边形DFAE 是正方形.
3、 如图10,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .
(1)求证:△ABE ≌△ACE
(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.
4、 如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,
AD 与BE 相交于点F .
(1)求证:ABE ∆≌△CAD ;
(2)求∠BFD 的度数.
D C B
E
A
F
5、 如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.
求证:(1) △ABC ≌△AED ;
(2) OB =OE .
6、 如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.
7、 如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.
求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ .
8、 已知:如图,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .
(1) 求证:AE =BE ;
(2) 若∠AEC =45°,AC =1,求CE 的长.
A
C B
D P
Q
E E D C B A
9、 已知:如图, AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF , AF
相交于P ,M .
(1)求证:AB =CD ;
(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD
的数量关系,并说明理由.
10、 已知:如图,在ABCD
中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.
(1)求证:BE DG =;
(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.
11、如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .
(1)求证:△ABC ≌△DCB ;
(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证
明你的结论.
F M P
E D C B A A D G C B
F E 第3题图 B C
A D M N。