最新冠层反射率模型辐射传输专业知识讲座
- 格式:ppt
- 大小:188.00 KB
- 文档页数:47
利用辐射度模型实现冠层光合有效辐射分布段辉丽;王晶晶;王芳洁【摘要】提出基于辐射度模型模拟单株虚拟植物冠层光合有效辐射分布的技术流程,采用半立方体算法计算辐射度模型的形状因子,逐步求精迭代法解辐射度线性方程组,计算虚拟植物模型任意空间位置的辐射度值和能量值.通过对比基于光线跟踪模型和辐射度模型模拟冠层太阳直射光合有效辐射,不仅发现基于两种模型的模拟结果具有较好的一致性,而且基于辐射度模型的模拟更具合理性.最后,分析冠层净光合速率进一步验证基于辐射度模型模拟冠层光合有效辐射的有效性.%This paper proposes a method, which is based on radiosity simulating the 3D distribution of photosynthetic active radiation of virtual plant canopy. Firstly, the radiosity model is obtained by using the semi-cube algorithm of form factor. Then, linear equations are solved by incremental refinement radiosity iterative solution method. Finally, the value of radiosity and energy of virtual plant model at any spatial location are calculated. Compared with ray tracing model simulating direct sun canopy PAR, the results of the radiation model are not only good and consistent, but also more reasonable. Analysis on canopy net photosynthetic rate further validates the effectiveness of the proposed method.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)023【总页数】6页(P184-189)【关键词】光合有效辐射;虚拟植物;辐射度模型;三维空间分布;三维可视化【作者】段辉丽;王晶晶;王芳洁【作者单位】宜昌市测绘大队,湖北宜昌 443000;军事经济学院襄阳士官学校基础部,湖北襄阳 441118;宜昌市测绘大队,湖北宜昌 443000【正文语种】中文【中图分类】TP391.9随着虚拟植物解释功能越来越强大,光合有效辐射(Photosynthetic Active Radiation,PAR)已成为植物生理生态学研究的热点。
作业目标:建立农作物冠层反射与农作物生长参数关系的冠层反射模型对给定生育期或不同生育期的农作物建模可能采用的模型与模型的基本参数说明冠层反射模型用于解释遥感数据时候需要考虑的因素建立模型的基本步骤:1.建立概念模型2.转化为数学模型3.编写为程序4.进行数据测试5.评价模型不断修改使其输出值更接近实际观测值我的理解是在这里我们不需要重新建立模型,而可以直接利用别人已经建立好的模型可能用到的模型及参数1)在辐射传输模型:如果我们将suits模型用于农作物上,对于给定生育期的农作物,需要不断纠正的值有h、H、V等参量,但由于其缺点(只考虑叶片在水平与垂直方向的投影)并不能解释热点效应,因此,我们再来看看sail模型sail模型sail模型是考虑了任意叶倾角影响来进行纠正suits的的问题的。
在模型中,用叶倾角分布函数来对冠层的叶片倾角进行模拟。
SAIL模型的基本植被冠层参数包括:叶面积指数LAI,叶倾角分布系数叶片反射率,叶片透射率,土壤反射率,天空漫反射光比例,通过这些系数,我们可以很好的建立起农作物冠层反射模型但在sail模型中,也有方向性的缺陷,在对这个模型进行改进之后,得到的是sailh模型。
该模型需要7 个输入参数,分别是:叶面积指数(LAI)、平均叶倾角(ALA)、叶长-冠层高度比(SL)、叶片半球反射率(LR)和透过率(LT)、土壤反射率(SR)、水平能见度(VIS)。
该模型能较好的体现出农作物的热点效应KUUSK模型该模型将连续植被冠层视为若干水平均匀薄层的叠加,建立了入射方向与观察方向间隙率之间的的相关概率。
该模型中所需要的参数很多,其中与植被相关的主要有:冠层厚度、单面叶面积的密度、叶面积体密度、冠层中叶子的尺寸、分层的叶面积密度、叶倾角分布函数。
该模型被长期验证后广泛采纳,我们可以看出该模型可以很好的解释方向性问题,通过模拟不同的入射与观测方向,模拟不同的冠层情况,解释了热点效应与碗边效应。
基于ProSAIL模型的作物叶面积指数反演方法一、引言作物叶面积指数(Leaf Area Index, LAI)是衡量作物生长状态和生产力的重要指标之一。
准确地估计作物的叶面积指数对于作物生长监测、农业管理和粮食生产预测具有重要意义。
然而,传统的基于实地测量或遥感数据分析的LAI估算方法存在成本高、工作量大和时间耗费长等问题。
为了克服这些问题,基于反射率模型的LAI估算方法被广泛研究和应用。
本文将探讨基于ProSAIL模型并在冠层覆盖度参与优化下的作物叶面积指数反演方法。
二、ProSAIL模型基本原理ProSAIL模型是植被反射率模型的一种,它基于能量守恒和光传输原理模拟植被光谱响应。
该模型考虑了植被结构对光的吸收、散射和透射的影响,可以通过输入植被参数如叶面积指数、叶片角度分布和冠层覆盖度等来模拟不同植被类型的光谱响应。
三、冠层覆盖度参与优化的作物LAI反演3.1 数据采集和处理进行作物LAI反演需要获取多光谱遥感数据,如Landsat、MODIS等。
同时,还需要获取作物生长期间的实地LAI观测数据作为参考。
将遥感数据进行预处理,包括大气校正、几何校正和辐射校正等。
3.2 ProSAIL模型参数化ProSAIL模型的参数化是指根据实地观测数据或遥感数据来确定模型的输入参数,如叶面积指数、叶片角度分布和冠层覆盖度等。
通过对接触到的光的比例和各种辐射的比例进行测量与建模,可以获取作物的生物物理参数。
3.3 冠层覆盖度的优化传统的作物LAI反演方法往往忽略了冠层覆盖度的影响,将其视为一个固定的参数。
然而,作物的生长过程中,冠层覆盖度会发生变化,对LAI的估计产生影响。
因此,本方法引入冠层覆盖度作为优化参数,使用优化算法对LAI进行反演。
3.4 优化算法冠层覆盖度的优化可以使用多种优化算法,如遗传算法、粒子群算法等。
这些算法可以通过迭代计算,不断优化冠层覆盖度参数,使得ProSAIL模型得到的光谱响应与实际观测数据拟合最优。