DT_声波测井的探测深度问题Ⅱ
- 格式:pdf
- 大小:460.59 KB
- 文档页数:5
第八章声波测井声波测井的物理基础1.名词解释:<1>滑行波:<2>周波跳跃:<3>stoneley 波:<4>伪瑞利波:<5>声耦合率:<6>相速度:<7>声阻抗:<8>群速度:<9>频散:<10>衰减:<儿>截止频率:<12>声压:<13>模式波:<14>泊松比:<15>第一临界角:<16>第二临界角:2.说明弹性系数K 和切变弹性系数μ的意义.他们与杨氏模量E 与泊松比σ有怎样 的关系?3.介质质点弹性机械振动的过程是的外力作用下,与的互相交替作用的过程,而声波传播,则是这种过程作用于使之的过程.4.声波是介质质点的振动在介质中的传播过程.声纵波是变波,横波是变波,它们均与此物理量<介质的>有关.5.某灰岩的V p =5500m/s,密度ρb =2.73g /cm 3,横波速度V s 按V p =1.73V .给出.试 求杨氏模量E,泊松比σ,体弹性模量K,切变弹性模量μ与拉梅常数λ.6.声纵波的质点振动方向与能量传播方向,它可在态介质中传播;声横波的质点振动方向与能量传播方向,它能在态介质中传达播,但不能在态介质中传播.7.声纵波的速度为p V =s V =,故V P /V S =.根据岩石的泊松比为0.155—0.4,于是V p /V s ;=.这表明在岩石中,V p V S ,所以在声波测井记录上,波总先于波出现.8.在相介质中,由于μ=0,即切应力,故.9.瑞利<Rayleigh>波发生在钻井的界面上,其速度v R 很接近V S ,约为,此波随离开界面距离的加大而迅速;斯通利〔Stoneley 〕波产生在中,并在泥浆中传播,它以低和低形式传传播,其速度于泥浆的声速.10.到达接收器的各声波中,全反射波因路径处在中,波速,直达波行程,但波速,滑行波行程但波速.故以波最早到达接收器.11.声波沿井壁岩石传播的条件是:声入射角临界角,此时,沿井壁传播的波将按方向泥浆中辐射声能量.12.在井壁上,入射的声波将诱导出反射纵波,折射纵波和折射横波.由于岩石的速度大于泥浆的速度,前两种诱导波的角度.又由于V s<V p,折射横波的角度折射横波的角度折射纵波的角度.13.写出均匀各向同性介质中虎克定律的表达式.14.什么是费马时间最小原理?惠更斯原理的内容是什么?15.什么是压电效应?什么是逆压电效应?制作声波发射探头时利用的是何种效应?16.声波测井中探头的振动模式有几种?它们分别激发什么样的波?17.阐明介质中声波的传播机制.18.说明声波形成过程可以用哪些物理量描述.19.讨论平面波的反射和折射有何重要意义?20.为什么固体介质中,P波折射角总大于S波折射角,而且它们都大于入射角?21.用物理概念说明侧面波的产生条件.22.分析声测井中T至冗的各种声波特性.23.要实现V s测量,应主要考虑什么问题,采取什么措施?声速测井1.井径变化对单发双收声系的影响只表现在.①井径变化地层的上界面;②井径变化地层的下界面;⑧井径变化地层的上、下界面;④井径变化地层.2.声波速度测井曲线上钙质层的声波时差比疏松地层的声波时差值.①很大;②大;③相等;④小3.地层埋藏越深,声波时差值.①越大;②越小;③不变;④变大.4.在声波时差曲线上,读数增大,表明地层孔隙度.①增大;②减小;③不变;④很大5.声波时差曲线上井径缩小的上界面出现声波时差值.①增大;②减小;③不变;④较大6.利用声波时差值计算孔隙度时会因泥含量增加孔隙度值.①很小;②减小;③不变;④增大7.只有当井内泥浆的声速岩石的声速时,才能产生沿井壁在地层中传播的滑行波.①大于;②小于;③等于;④约等于.8.地层的声速随泥质含量增加而.①趋于零;②增大;③不变;④减小9.声波时差值和孔隙度有关系.①正比;②反比;③不变;④相等10.裂缝性地层在声波时差曲线上数值.①减小;②增大;③不变;④变为零11.相同岩性的地层,老地层的时差值新地层的时差值.①小于;②大于;③等于;④相似于12.气层的声波时差值油水层的声波时差值.①小于;②大于;③等于;④相似于13.对未固结的含油砂岩层,用声波测并资料计算的孔隙度.①偏小;②偏大;③不变;④很小14.声波速度测井采用声速测井仪.①单发一双收;②单发一单收;③双发一双收;④双发一单收15.地层埋藏越浅,声速.①越大;②越小;③不变;④趋于零16.声波速度随着地层孔隙度增大而.①增大;②趋于无穷大;③不变;④减小17.以临界角入射到界面上,折射波在第二种介质传播的波叫.①直达波;②折射波;③反射波;④滑行波18.在渗透性岩层处,声波速度值减小表明.①孔隙度增大;②孔隙度减小;③孔隙度不变;④孔隙度相等19.在岩石中纵波传播的速度比横波传播速度.①快;②慢;③极大;④极小;20.气层在声波时差曲线上数值.①零;②低;③中等;④高;21.将下列岩石按声速的大小排列顺序,泥浆、石灰岩、钙质砂岩、砂岩、粉砂岩.22.声波纵波速度测井的应用主要有、和.23.纯砂岩的Δt测值为200μm/s,若求得之Ф为25.3%,则Δf=,这表明孔隙中可能是<①水②油⑧气>.24.在孔隙性灰岩上,时差测值为214μs/m.泥岩上的时差为272μs/m.已知灰岩骨架的时差为156μs/m,孔隙中流体时差为620μs/m.则纯岩的孔隙度为.若灰岩含10%泥质,则该灰岩的孔隙度为.25.欠压实的岩石,由声波测井计算出孔隙度比<①有效②总>孔隙度<①高②低>.26.没有压实的地层,Δt值<①特别低②特别高>,Ф计算值<①小②大>,因而要做校正.经验的校正.经验的校正公式为100t asht Cφφ=∆⋅.式中100ash RCtφφ=∆.这里,Rφ由算出;C值在到之间.27.孔隙性地层中,含泥一般使Δt 因而Ф值;充有油气的地层Δt.28.实验测量结果表明:对于纯岩层,声横波时差与纵波时差的对比值为.例如,纯砂岩、灰岩、白云岩比值分别为<①1.9,1.8,1.6②1.6,1.8,1.9>.据此,可利用地层的横、纵波时差比,确定.29.在砂泥岩岩剖面上,砂岩显示的时差值,泥岩显示的时差值.页岩则.30.碳酸盐剖面上,岩盐时差,含有泥质时,时差.31.膏盐剖面上,岩盐时差,无水石膏的时差显示为.32.声波时差曲线出现"周波跳跃〞,常对应于、和等地段.33.仪器处于井轴条件下,单发单收声波仪的岩层时差值受<①井径V 井,井壁行程②井壁行程,V 岩>改变的影响;单发双收仪则受<①井径,V 井②井壁行程,③V 岩,井壁行程>改变的影响.双发双收仪,即使<①仪器倾斜或井径改变②仪器偏心或贴壁>也平均地不影响时差值.34.单发双收声速测井仪所测量的声波时差曲线,在井径缩小的井段上,上界会出现 Δt 的,下界会出现Δt 的.35.声波时差曲线出现"周波跳跃〞是由于的原因造成.36.用()()/ma f ma t t t t φ=∆-∆∆-∆式计算孔隙度,实际上适用于:①泥岩地层②均匀粒间孔隙地层③有次生孔隙地层④裂缝型地层,请选择正确者.37.对未固结的含油气砂岩,用上题公式计算出的孔隙度是<①偏高②偏低⑧正确>.38.在界面处,产生滑行波的条件是什么?39.声波速度理论值的影响因素有哪些?40.井径扩大的界面处,声波时差值有什么变化?41.声波时差值随泥质含量增加会有什么变化?42.声速测井中的误差有几种?如何消除?43.某储层的声波时差值Δt=310μs/m,骨架声波时差值Δt ma = 190μs/m,流体声波时 差值Δt f =590μs/m,求该储层的孔隙度是多少?44.试述声波速度测井的原理?45.用声波时差测井曲线求孔隙度时,为什么要对泥质含量,未固结砂岩含气砂岩进 行校正?46.声速测井时,先后到达接收器的有几种波?如何保证滑行波最先到达接收器?47.画出单发双收声系在渗透性孔隙性很好的砂岩层<围岩为页岩>的时差曲线异常示意图.48.如何考虑声速测井源距和间距的选择?49.比较各种声测井方法的特性.50.声速测井与密度测井均与岩石密度有关.试比较两者的不同点和优缺点.51.声波压实校正系数可有哪几种方法?试简述之.52.一单发双收声波仪的源距为1cm 间距为0.5m,泥浆声速设为1600m /s,泥岩为 1850m /s,井径27cm 时,页岩上首波至R l 、R 2的时间为:<①490μs ,760μs ②625μs ,895μs>.53.设泥浆中声波时差为189μs /ft,地层中为120μs /ft,井径为16".问发射和接收器间距离至少应选多大才能保证最先至达接收器的是首波?在页岩中<设150μs /ft>最小距离是多少?54.单发双收声波仪的源距为1m,间距为0.5m,泥浆声速设为1600m/s,泥岩为1850m/s.问泥岩处井径扩大到多少,所测的初至波不再是滑行波?55.简述补偿声波测井的原理.它能否实现完全补偿?56.下图是某一膏岩剖面的测井曲线,<岩性仅有盐岩和硬石膏>,试划出岩性,并说明理由.57.声速测井测量的是哪种波?它的传播速度<或时差>与哪些因素有关?58.单发双收声系有什么缺点?双发双收声系是如何克服这些缺点的?59.声波时差测井资料有什么用途?60.气层在声波时差测井曲线上有什么特点?61.采用什么形式的声速测井仪可以消除井眼的影响?62.阐明均匀无限各向同性介质中,声波传播的物理过程.63.如何利用测井曲线判断气层和裂缝带.64.比较单发双收声系和双发双收声系的优缺点.65.致密地层与疏松地层在声波时差曲线上显示如何?套管井中的声波测井、声波全波列测井1.裂缝性地层,声幅值.①增大;②减小;③不变;④无穷大2.水泥胶结测井曲线上,泥浆的等距离低值异常尖峰显示为.①泥浆;②套管;③套管接箍④地层3.水泥胶结好时,声幅相对幅度值.①大于20%;②小于20%;③在20-40% ④大于40%4.声阻抗指的是介质的与的乘积.①电阻率与岩性;②时差与岩性;③层厚与岩性;④密度与速度5.在裸眼井中,接收换能器可以接收到声波全波列的成分,包括有、、、和.6.声幅测井仪使用、测井仪.①单发,双收;②单发,单收;③双发,双收;④双发,单收7.长源距声波全波列测井下声系为R10.6 R22.24 T10.61T2.由于源距,探测X围,有利于测量地层,并从并从时间上易于区分波与其它类型的后续波.声系频率为1lkHz,于普通声系频率,讯号衰减,可补偿源距引起的衰减.8.长源距声波测井是采用法进行井眼补偿的.用和两组源距测量的.9.介质的特征声阻抗是声波速度和介质密度的乘积,即z=Vρ.若有两种介质,其z1=z2,则声耦合<好,不存在反射波;不好,存在反射波;好,存在反射波>,声波能很好透射过分界面,声阻抗差明显时,则.10.长源距声波仪可以:<1>分别测量条单发单收时差曲线;<2>测量T1至时差和至R2时差两者的平均值可以得出经井眼补偿的纵波时差曲线;<3>可按一定的深度间隔进行补偿方法得出横波时差曲线,还可以记录波列.11.从全波列声波记录上识别横波,可以从横波的两个基本特点来考虑,即,各.12.声全波的记录方式可有与两种.13.水泥胶结测井曲线的影响因素是什么?14.简述声幅测井检查固井质量的原理.为什么固井声幅测井不用单发双声系而仅用单发单收井下装置?15.固井质量变差,水泥胶结测井的胶结指数<BI>曲线值将发生怎样的变化?16.如何利用声波变密度测井判断固井质量?17.如何利用水泥胶结测井判断固并质量?18.水泥胶结测井<CBL>与变密度测井<VDL>的定性解释规则是:①套管未胶结,Δt 不是套管值,幅度低,VDL无套管信号,显示规律为反差明显的条带;②套管胶结良好时,Δt小,幅度大,VDL己套管信号强,地层波强;③套管胶结好但地层耦合不好时,幅度低, VDL仅有地层波至.上述规则是否正确?如不正确,请予更正.19.列述长源距声系的方法特点.20.简述全波列测井的应用.21.为从声波记录图上区分纵波和横波,至少需采用多大源距?22.根据如图所示的测井曲线判断储层中流体性质并说明理由.23.声全波列记录有哪几种方式,其特点如何?24.下图是某一碳酸盐岩剖面的测井曲线划分出该剖面的裂缝带,并说明理由.25.计算声全波记录上横波继纵波之后到达的时间.设仪器处于Δt P=200μs/m的砂岩上,σ=0.25,声探头频率为20kHz,源距分别为1m与3m两种情况.26.简述声波全波列测井中所记录到的全波列各种波型成份的特点.27.讨论声波在传播过程中发生能量衰减的原因.28.计算声速的体积模型有几种?试比较其优点.29.什么叫套管波?它有什么特点?30.影响套管波幅度的因素有哪些?。
第七章声波测井岩石中声速的差异与岩石致密程度,构造和孔隙充填物等有关。
声波测井是运用声波在岩层中的各种传播规律在钻孔中争论岩层特点的一类方法。
声波测井分类:声波速度、声波幅度、声波全波、声波成像等。
第一节声波测井的物理根底一、声波物理性质简述对于声波测井来说,声源能量很小,岩石可看作是弹性体,因此可利用弹性波在介质中传播的规律来争论声波在岩石中的传播过程。
1〕描述固体弹性的几个参数①杨氏模量 E 〔纵向伸长系数〕;②体积弹性模量 K ;③切变模量μ;④泊松比σ。
2〕声波在岩石中的传播特性①纵波与横波〔压缩波与剪切波〕②波的能量与振幅的平方或正比③声波幅度随传播距离按指数规律衰减④波在两种不同介质分界面处的转换—反射与折射,遵循斯耐尔定律。
首波—滑行波在第一种介质中造成的波称为首波,习惯上称为折射波。
二、钻孔内的声波其次节声波速度测井一、单放射双接收声波速度测井原理测量沿井壁传播的滑行波的速度。
二、井眼补偿式声波速度测井原理目的在于抑制井径变化或仪器在井中倾斜时所造成的声速误差。
三、长源距声波测井目的在于更好地区分纵、横波和低速波,增加探测深度,抑制井壁四周低速带的影响。
源距加大到 2.5m 左右可满足上述要求。
全波测井源距较长,以提高各种波的区分力量。
四、阵列声波测井及分波速度提取五、偶极横波测井1.单极源及偶极源。
2.挠曲涉及其与横波的关系。
软地层中,单极源不能产生横波,偶极源的波列中,在纵波之后亦无横波,但有明显的挠曲波,在低频时,挠曲波的速度与横波速度相近,高频时则低于横波的速度,可依据挠曲波的速度来求取横波速度。
第三节声波速度测井的解释与应用一、影响声波速度测井曲线外形的因素1 〕周期跳动引起声皮跳动的岩性因素:①裂缝层,裂开带;②含气水胶结纯砂岩;③高速层〔波阻抗大,能量不易传递〕;④井径扩大或泥浆中溶有气体。
2 〕源距与间距的影响源距—要保证抑制盲区的影响,使折射波首先到达接收器〔1m 即可,长源距可达 2.5m 〕。
测井专业技术习题100题1.电流是由电荷有规则的定向运动形成的,其方向规定为正电荷运动的方向。
2.电压的方向规定为电位降低的方向。
3.在判别电路元件是电源还是负载的方法中,若电流和电压的实际方向相同,电流从高电位端流向低电位端,则说明电路元件是负载。
4.在泥浆滤液电阻率大于地层水电阻率的渗透层段,自然电位测井曲线显示为负异常。
5.在泥浆滤液电阻率小于地层水电阻率的渗透层段,自然电位测井曲线显示为正异常。
6.在油井中的自然电场一般是由地层和泥浆间发生的扩散电位,扩散吸附电位,过滤电位产生的。
电化学作用,动电学作用7.在泥浆滤液电阻率小于地层水电阻率的渗透层段,自然电位曲线显示为正异常。
8.标准测井曲线是指在一口井中用标准电极系测得的视电阻率曲线和 SP、井径测量曲线组合在一起(按深度对齐)的曲线图。
9.在外加电场作用下,岩石具有两种导电机理:即电子导电和离子导电。
10.电阻率聚焦测井与普通电极系测井相比,其优点是减小了供电电流分流和围岩的影响,提高了纵向分辨能力。
11.感应测井是利用交变电磁场的特性反映地层介质的电导率的测井方法。
12.三侧向测井采用了中心电极向地层集中供电流的技术,它的中心主电极的极性与两边屏蔽电极的极性相同,且主、屏电极的强度相同。
13.当声波的传播方向和质点的振动方向一致时,称为纵波。
14.纵波传播过程中,介质发生压缩或扩张的体积形变,因而纵波也叫做压缩波。
15.横波传播中,介质产生剪切变形,所以横波也叫做切变波。
剪切16.电极系根据电极间相对位置的不同,可以分为梯度电极系和电位电极系。
17.716格式最初是阿特拉斯公司的一种磁带记录格式,由标题块和若干个数据块组成,其中一个数据块包含若干个逻辑记录。
18.按照产状分类,裂缝可以分为高角度裂缝、低角度裂缝和网状裂缝。
19.岩石介电常数随含水饱和度增加而增大,其变化又与频率、岩性等参数有关。
泥质含量、孔隙度20.国外测井公司一般运用 GR 曲线作为深度控制曲线进行深度校正。
声波测井的探测深度问题Ⅱ
沈建国;杨志高;胡昌旭
【期刊名称】《测井技术》
【年(卷),期】2004(028)001
【摘要】从波动声学的角度讨论声波测井的探测深度问题.通过改变井外固体层的厚度发现,随着层厚的减小,声波测井波形中以地层的纵波速度传播的声波的二维谱最先受到影响,其次是以地层的横波速度传播的声波和伪瑞利波开始受到影响,最后是沿井壁表面附近传播的Stoneley波的幅度和速度逐渐开始变化.当固体层的厚度接近于自由套管时,声波测井测量的模式波同样具有频率选择特征,在16 kHz以下有一个速度稳定(不随频率的改变而改变)的模式波,该模式波就是套管波,与平板状的声波波形的二维谱差别相当大.所以,在普通声波测井的频率范围内,自由套管井的测井响应不能够用展开的平板来讨论.
【总页数】5页(P16-19,33)
【作者】沈建国;杨志高;胡昌旭
【作者单位】天津大学药学院检测中心,天津,300072;中油集团测井有限公司,陕西,西安,710054;西安石油勘探仪器总厂,陕西,西安,710061
【正文语种】中文
【中图分类】P631.814
【相关文献】
1.对瞬变电磁测深几个问题的思考(四)——从不同角度看瞬变电磁场法的探测深度[J], 陈明生;石显新
2.关于频率电磁测深几个问题的探讨(二)——频率电磁测深探测深度的几个问题分析 [J], 陈明生
3.声波测井的探测深度问题Ⅰ [J], 沈建国
4.声波测井中首波的径向探测深度 [J], 余寿绵;余恬
5.声波测井的探测深度及侵蚀作用对声波时差测量的影响 [J], 魏长江
因版权原因,仅展示原文概要,查看原文内容请购买。