高中数学人教版 直线与方程
- 格式:ppt
- 大小:5.94 MB
- 文档页数:133
直线与方程知识梳理:1.倾斜角的定义(1)当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°. 3.直线的斜率直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α. 4.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°5.直线的斜率公式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).6.两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:7.8.直线方程的五种形式(1)直线的点斜式方程: y -y 0=k(x -x 0). 由直线上一定点P 0(x 0,y 0)及斜率k 确定. (2)直线的斜截式方程:y =kx +b. 由直线的斜率k 和它在y 轴上的截距b 确定. (3)直线的两点式方程:y -y 1y 2-y 1=x -x 1x 2-x 1. 由直线上两点P 1(x 1,y 1),P 2(x 2,y 2)确定. (4)直线的截距式方程:x a +yb=1 . 由直线分别在x ,y 轴上的截距a ,b 确定.(5)直线的一般式方程: Ax +By +C =0. 当B≠0时,其斜率是-A B ,在y 轴上的截距是-CB 当B =0时,这条直线垂直于x 轴. 9.两条直线的位置关系已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2.(1) l 1∥l 2⇔k 1=k 2且b 1≠b 2. (2) l 1⊥l 2⇔k 1·k 2=-1. 10.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1)、(x 2,y 2),设P(x ,y)是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.11.两条直线的交点已知两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有惟一解⎩⎪⎨⎪⎧x =x 0,y =y 0,则两直线相交,交点坐标为(x 0,y 0).12.两点间的距离公式(1)已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)则它们的距离|P 1P 2|=x 2-x 12+y 2-y 12.(2)两点间距离的特殊情况①原点O(0,0)与任一点P(x ,y)的距离|OP|=x 2+y 2. ②当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. ③当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|. 13.点到直线的距离公式点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. 14.两条平行直线间的距离公式两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B2.巩固练习:1.如图,直线l 的倾斜角为( )A .45°B .135°C .0°D .不存在2.已知直线l的倾斜角为30°,则直线l的斜率为__________.3.已知A(2,3)、B(-1,4),则直线AB的斜率是________.4.已知三点A(a,2),B(3,7),C(-2,-9a)在同一条直线上,则实数a的值为_______.5.已知直线l1∥l2,直线l1的斜率k1=2,则直线l2的斜率k2=________.6.已知直线l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜率为________.7.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=________,y =________.8.若直线l1,l2的倾斜角分别为α1,α2,且l1⊥l2,则( )A.α1-α2=90° B.α2-α1=90° C.|α1-α2|=90° D.α1+α2=180°9.直线l过点A(-1,2),斜率为3,则直线l的方程为___________________.10.已知直线l的点斜式方程为y-1=x-1,那么直线l的斜率为________,倾斜角为________,在y 轴上的截距为________.11.(1)斜率为2,在y轴上的截距是5的直线方程为____________________;(2)倾斜角为150°,在y轴上的截距是-2的直线方程为_____________________;12.(1)经过点(1,1)且与直线y=2x+7平行的直线方程为_____________________;(2)经过点(-1,1)且与直线y=-2x+7垂直的直线方程为_________________.13.过P1(2,0),P2(0,3)两点的直线方程是_________________.14.直线2x+3y+1=0的斜率为________;在x轴上的截距为________;在y轴上的截距为________.15.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=516.若直线ax+by+c=0经过第一、二、三象限,则( )A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<017.在下列各种情况下,直线Ax+By+C=0(A,B不同时为零)的系数A,B,C之间各有什么关系:(1)直线与x轴平行时:_____________; (2)直线与y轴平行时:_________________;(3)直线过原点时:_________________; (4)直线过点(1,-1)时:_______________.18.直线x+2y-2=0与直线2x+y-3=0的交点坐标是______________.19.已知M(2,1),N(-1,5),则|MN|=_____________. 20.直线x -2y +1=0与2x +y -1=0的位置关系是( )A .平行B .相交且垂直C .相交但不垂直D .重合 21.原点到直线x +2y -5=0的距离为___________.22.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0的距离为________________. 23.若点(1,a)到直线y =x +1的距离是322,则实数a 为___________.24.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是_________. 25.当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2 (1)平行; (2)垂直26.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.。
3.2.2 直线的两点式方程1.直线的两点式方程(1)条件:P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2. (2)图形:(3)方程:y -y 1y 2-y 1 =x -x 1x 2-x 1.(1)什么样的直线的方程不能用两点式表示? 提示:与x 轴、y 轴平行的直线,x 轴,y 轴.(2)过点(1,3)和(1,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢? 提示:不能,因为1-1=0,而0不能做分母.过点(2,3),(5,3)的直线也不能用两点式表示.2.直线的截距式方程(1)条件:在x 轴,y 轴上的截距分别为a ,b 且a ≠0,b ≠0. (2)图形:(3)方程:x a +yb=1.方程x 2 -y 3 =1和x 2 +y3=-1都是直线的截距式方程吗?提示:都不是截距式方程.截距式方程的特点有两个,一是中间必须用“+”连接,二是等号右边为1.3.两点的中点坐标公式点P(x ,y)是线段P 1P 2的中点,其中P 1(x 1,y 1),P 2(x 2,y 2),则x =x 1+x 22 ,y =y 1+y 22.如果已知点P(a ,b)是线段P 1P 2的中点,其中P 1(x 1,y 1),那么点P 2的坐标是什么? 提示:设点P 2(x 2,y 2),由中点坐标公式:a =x 1+x 22 ,b =y 1+y 22,所以x 2=2a -x 1,y 2=2b -y 1,则点P 2(2a -x 1,2b -y 1).1.辨析记忆(对的打“√”,错的打“×”) (1)过点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程y -y 1y 2-y 1 =x -x 1x 2-x 1表示.( × ) 提示:当x 1=x 2或y 1=y 2时,直线不能用方程y -y 1y 2-y 1 =x -x 1x 2-x 1表示. (2)在x 轴,y 轴上的截距分别为a ,b 的直线方程为x a +yb=1.( × )提示:当a =0或b =0时,在x 轴,y 轴上的截距分别为a ,b 的直线不能用方程x a +yb =1表示.(3)任何一条直线都有在x 轴,y 轴上的截距.( × ) 提示:例如与x 轴平行的直线只有在y 轴上的截距.2.(教材习题改编)过点A(5,6)和点B(-1,2)的直线的两点式方程是( ) A .y -5x -6 =y +1x -2B .y -62-6 =x -5-1-5 C .2-6y -6 =-1-5x -5D .x -62-6 =y -5-1-5【解析】选B.根据直线的两点式方程得y -62-6 =x -5-1-5.3.已知M(-1,2),N(3,-4),线段MN 的中点坐标为(a ,b),则a =__________,b =__________. 【解析】由中点坐标公式可得⎩⎪⎨⎪⎧a =-1+32,b =2-42,即⎩⎨⎧a =1,b =-1. 答案:1 -1类型一 直线的两点式方程(数学抽象、数学运算)1.已知点P(3,m)在过点M(2,-1)和N(-3,4)的直线上,则m 的值是( ) A .5 B .2 C .-2 D .-6 【解析】选C.由两点式方程,得直线MN 的方程为y -(-1)4-(-1) =x -2-3-2 ,化简,得x +y -1=0.又点P(3,m)在此直线上,代入得3+m -1=0, 解得m =-2.2.光线从A(-3,4)点射出,到x 轴上的B 点后,被x 轴反射,这时反射光线恰好过点C(1,6),则BC 所在直线的方程为( ) A .5x -2y +7=0 B .2x -5y +7=0 C .5x +2y -7=0 D .2x +5y -7=0【解析】选A.点A(-3,4)关于x 轴的对称点A ′(-3,-4)在反射光线所在的直线上,所以所求直线为x -(-3)1-(-3) =y -(-4)6-(-4),即5x -2y +7=0.3.在平面直角坐标系xOy 中,已知直线l 经过点(-1,0),(1,4),则直线l 的两点式方程是________.【解析】根据两点式方程可得y -04-0 =x +11+1. 答案:y -04-0 =x +11+14.已知在△ABC 中,点A(-1,0),B(0, 3 ),C(1,-2),则AB 边中线所在直线的两点式方程为________.【解析】点A(-1,0),B(0, 3 ),中点D ⎝ ⎛⎭⎪⎫-12,32 ,所以AB 边中线所在直线的方程为y +232+2 =x -1-12-1 .答案:y +232+2 =x -1-12-1求直线的两点式方程的策略以及注意点(1)适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)差的顺序性:常会将x ,y 或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.提醒:已知两点坐标,求过这两点的直线方程也可以先求斜率,再代入点斜式得到直线的方程.【补偿训练】1.经过点A(2,5),B(-3,6)的直线在x 轴上的截距为( ) A .2 B .-3 C .-27 D .27 【解析】选D.由两点式得直线方程为y -65-6 =x +32+3,即x +5y -27=0.令y =0,得x =27. 2.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A .-32 B .-23 C .25D .2【解析】选A.直线方程为y-91-9=x-3-1-3,令y=0,得x=-32,则在x轴上的截距为-32.3.已知△ABC三顶点坐标为A(1,2),B(3,6),C(5,2),M为AB的中点,N为AC的中点,则中位线MN所在直线的两点式方程为________.【解析】由中点坐标公式可得M(2,4),N(3,2),再由两点式可得直线MN的方程为y-42-4=x-23-2.答案:y-42-4=x-23-2类型二直线的截距式方程(数学抽象、数学运算)1.直线xa2-yb2=1在y轴上的截距是( )A.|b| B.-b2 C.b2 D.±b【解析】选B.令x=0,得y=-b2.2.过点P(2,3),并且在两坐标轴上的截距互为相反数的直线方程为( )A.x-y+1=0或3x-2y=0B.x+y-5=0C.x-y+1=0D.x+y-5=0或3x-2y=0【解析】选A.过点P(2,3),且在两坐标轴上的截距互为相反数,当横截距a=0时,纵截距b=0,直线过点P(2,3),(0,0),所以直线方程为yx=32,即3x-2y=0.当横截距a≠0时,纵截距b=-a,直线方程为xa+y-a=1,代入(2,3)解得a=-1,所以直线方程为-x+y=1,即x-y+1=0.综上,所求直线方程为x-y+1=0或3x-2y=0. 3.过点M(1,2)且在两坐标轴上的截距相等的直线方程为________.【解析】①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y-3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所设的方程得:k=2,则所求直线的方程为y=2x即2x-y=0.综上,所求直线的方程为:2x-y=0或x+y-3=0.答案:x+y-3=0或2x-y=04.直线l过点(1,2)和第一、二、四象限,若l的两截距之和为6,求直线l的方程.【解析】设直线l的横截距为a,则纵截距为6-a,l的方程为xa+y6-a=1,因为点(1,2)在直线l上,所以1a+26-a=1,即a2-5a+6=0.解得a1=2,a2=3.当a=2时,直线的方程为x2+y4=1,当a=3时,直线的方程为x3+y3=1,直线l都经过第一、二、四象限,符合题意,综上知,直线l的方程为x2+y4=1或x3+y3=1.直线的截距式方程在解题中的应用(1)在解决直线与坐标轴围成的三角形面积、周长的问题中,常设直线的截距式方程.(2)当直线与x轴、y轴平行,过原点时不能设截距式方程,可以利用点斜式等形式解题.【补偿训练】求过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程.【解析】设直线方程的截距式为xa+1+ya=1.则6a+1+-2a=1,解得a=2或a=1,则直线方程是x2+1+y2=1或x1+1+y1=1,即2x+3y-6=0或x+2y-2=0.类型三直线方程的简单应用(数学运算、逻辑推理) 角度1 图象辨析【典例】两条直线l1:xa-yb=1和l2:xb-ya=1(a≠b,且a+b≠0)在同一直角坐标系中的图象可以是( )【思路导引】根据图形中l 1,l 2的位置,确定截距的关系、符号,判断是否符合. 【解析】选A.由截距式方程可得直线l 1的横、纵截距分别为a ,-b ,直线l 2的横、纵截距分别为b ,-a ,选项A ,由l 1的图象可得a <0,b >0,可得直线l 2的截距均为正数,故正确;选项B ,因为a ≠b ,且a +b ≠0,所以l 1与l 2不平行,故错误;选项C ,只有当a =b 时,才有直线的纵截距相等,故错误;选项D ,由l 1的图象可得a >0,b >0,可得直线l 2的横截距为正数,纵截距为负数,图象不对应,故错误.若将本例中的条件变为“直线x a +yb =1的图象如图所示”,则关于截距a ,b 的关系中一定正确的是________.①|a|>|b|;②-a > b ;③(b -a)(b +a)<0;④1a >1b.【解析】由题图可知,a <0,b >0,且|a|>|b|,①正确;-a >b >0,所以-a > b ,②正确;b -a >0,b +a <0,所以(b -a)(b +a)<0,③正确;1a <0<1b ,④错误.答案:①②③角度2 在图形中的综合应用 【典例】已知直线l :x m +y4-m =1.(1)若直线l 的斜率等于2,求实数m 的值.(2)若直线l分别与x轴、y轴的正半轴交于A,B两点,O是坐标原点,求△AOB面积的最大值及此时直线l的方程.【思路导引】(1)可在直线上取两个点,利用两点的坐标与直线的斜率求m的值;(2)△AOB 为直角三角形,该直线在两坐标轴上的截距即为OA,OB的长.【解析】(1)直线l过点(m,0),(0,4-m),则k=4-m-m=2,则m=-4.(2)由m>0,4-m>0,得0<m<4,则S=m(4-m)2=-(m-2)2+42,易知当m=2时,S有最大值2,此时直线l的方程为x+y-2=0.求直线方程时方程形式的选择技巧(1)已知一点的坐标,求过该点的直线方程时,通常选用点斜式方程.(2)已知直线的斜率,通常选用点斜式或斜截式,再由其他条件确定一个定点的坐标或在y轴上的截距.(3)已知直线在两坐标轴上的截距时,通常选用截距式方程.(4)已知直线上两点时,通常选用两点式方程.1.如图所示,直线l的截距式方程是xa+yb=1,则有( )A.a>0,b>0 B.a>0,b<0C.a<0,b>0 D.a<0,b<0【解析】选B.很明显M(a,0),N(0,b),由图知M在x轴正半轴上,N在y轴负半轴上,则a>0,b<0.2.已知△ABC 的三个顶点A(-2,4),B(-3,-1),C(1,3). (1)求BC 边上高AD(D 为垂足)所在直线的方程;(2)求BC 边上的中线AE (E 为BC 的中点)所在直线方程. 【解析】(1)因为k BC =3-()-11-()-3 =1,直线BC 垂直于直线AD ,所以k AD =-1,所以AD 所在直线的方程为y -4=-1()x +2 ,整理得x +y -2=0, 所以BC 边上高AD(D 为垂足)所在直线的方程为x +y -2=0; (2)由中点坐标公式得E ()-1,1 ,所以根据两点式方程得中线AE 的方程为:y -4x +2 =1-4-1-(-2) ,整理得3x +y +2=0.所以BC 边上的中线AE (E 为BC 的中点)所在直线方程为3x +y +2=0.【补偿训练】1.已知点M(1,-2),N(m ,2),若线段MN 的垂直平分线的方程是x2 +y =1,则实数m 的值是( )A .-2B .-7C .3D .1【解析】选C.由中点坐标公式,得线段MN 的中点是⎝ ⎛⎭⎪⎫1+m 2,0 . 又点⎝ ⎛⎭⎪⎫1+m 2,0 在线段MN 的垂直平分线上,所以1+m 4 +0=1,所以m =3.2.已知在△ABC 中,A(1,-4),B(6,6),C(-2,0).求:(1)在△ABC 中平行于BC 边的中位线所在直线的方程并化为截距式方程. (2)BC 边的中线所在直线的方程并化为截距式方程.【解析】(1)平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1 ,⎝ ⎛⎭⎪⎫-12,-2 , 所以这条直线的方程为y +21+2 =x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x136+y-138=1.(2)因为BC边上的中点为(2,3),所以BC边上的中线所在直线的方程为y+43+4=x-12-1,即7x-y-11=0,化为截距式方程为x117+y-11=1.3.已知△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别为x=0,y=x.(1)求直线BC的方程.(2)求直线AB的方程.【解析】(1)因为∠B,∠C的平分线分别是x=0,y=x,所以AB与BC关于x=0对称,AC 与BC关于y=x对称.A(3,-1)关于x=0的对称点A′(-3,-1)在直线BC上,A关于y =x的对称点A″(-1,3)也在直线BC上.由两点式,所求直线BC的方程:y=2x+5.(2)因为直线AB与直线BC关于x=0对称,所以直线AB与BC的斜率互为相反数,由(1)知直线BC的斜率为2,所以直线AB的斜率为-2,又因为点A的坐标为(3,-1),所以直线AB的方程为y-(-1)=-2(x-3),即2x+y-5=0.。
整合提升知识网络知识回顾1.直线的倾斜角与斜率(1)倾斜角:取x 轴为基准,x 轴的正方向与直线l 向上方向之间所夹角α,叫做直线l 的倾斜角,其范围为[0°,180°).(2)斜率:①直线的斜率是直线倾斜角的正切值,即k=tanα.任何一条直线都有倾斜角,但并不是任何一条直线都有斜率,当其倾斜角等于90°时,其斜率不存在,∴k=⎩⎨⎧︒≠︒=90,tan 90k ,αα不存在. ②斜率的范围与倾斜角的范围有关:当0°≤θ<90°时,k >0;当θ=90°时,k 不存在;当90°<θ<180°时,k <0.在通过斜率范围求倾斜角范围时,应特别注意,否则容易出错误.③用两点坐标求直线斜率时,必须要注意分类讨论.当两点横坐标相同时,其斜率不存在.当两点横坐标不相同时,可用两点坐标求其斜率.即k=⎪⎩⎪⎨⎧=≠--.,,21211212x ,x x x x x y y 不存在 2.直线方程的确定(1)确定直线方程时,要注意各种形式的适用范围.如点斜式和斜截式都适用于斜率存在时;两点式方程适用于直线不垂直于两条坐标轴的情况;截距式方程则适用于不过原点及不与坐标轴垂直的直线.(2)直线的斜率是求直线的关键,若不能断定直线有斜率,必须分两种情况讨论.(3)在直线的斜截式与截距式中,要注意其“截距”不等于“距离”.3.判断两直线的位置关系(1)若l 1,l 2的斜率分别为k 1,k 2,则l 1∥l 2⇔k 1=k 2.(2)若l 1,l 2的斜率分别为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1.上述判断平行与垂直的两个等价条件都是在两直线斜率都存在的前提下才成立,但实际做题过程中要考虑两条直线中一条无斜率或都无斜率的情况.4.两直线的交点两直线的交点坐标即为两直线方程组成的二元一次方程组的解.若方程组有唯一解,则两直线相交;若方程组无解,则两直线平行;若方程组有无数组解,则两直线重合.5.距离(1)两点间距离:若P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=212212)()(y y x x -+-.(2)点到直线的距离:若点P(x 0,y 0),l:Ax+By+C=0,则点P 到直线l 的距离d=2200||B A C By Ax +++.要注意将直线方程化为一般式.(3)两平行直线间的距离:若l 1:Ax+By+C 1=0,l 2:Ax+By+C 2=0,则两平行直线间的距离d=2221||B A C C +-要注意将两直线方程中x,y 项对应项的系数化为相同.6.对称问题对称问题分为两类:点对称和轴对称.(1)点对称:其中包括点关于点的对称点和直线关于点的对称直线,解决这类问题主要借助中点坐标公式.(2)轴对称:其中包括点关于直线的对称点和直线关于直线的对称直线,解决这类问题的关键是抓住两点:①对称点的连线被对称轴平分;②对称点的连线和对称轴垂直.典例精讲【例1】 一光线经过点M(-3,2)反射到x 轴上点P 处,经x 轴反射后又射到y 轴上的点Q 处,再经过y 轴反射后,光线恰好经过点N(-1,6),求P,Q 两点坐标及直线MP,PQ,NQ 的方程.解:如图所示,由光学性质可知,M 点关于x 轴的对称点M′(-3,-2)必在PQ 上,同理,N 点关于y 轴的对称点N′(1,6)也必在直线PQ 上,故直线PQ 的方程可由M′、N′两点确定. ∴43)2(6)2(+=----x y ,即2x-y+4=0. 令y=0,则x=-2,∴P(-2,0).令x=0,则y=4,∴Q(0,4).由题可知,k PM =k QN =-k PQ =-2.∴直线PM 、QN 的方程分别为y=-2x-4和y=-2x+4,即2x+y+4=0和2x+y-4=0;直线PQ 的方程为y=2(x+2),即2x-y+4=0.【例2】 某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x-4y-10=0.问要完成任务,至少需要多长的电线?思路分析:本题实质是考查点到直线的距离问题.解:根据题意可知点(15,20)到直线3x-4y-10=0的距离即为所求.∴d=545169|10204315|=+-⨯-⨯=9(千米). ∴至少需9千米长的电线.【例3】 已知点A(-3,5),B(2,15),试在直线l:x-y=0上找一点P,使|PA|+|PB|最小,并求出最小值. 思路分析:画出草图,通过数形结合加以分析,会使问题简单化.解:如右图所示,A 点关于直线x-y=0对称的点的坐标为A′(5,-3).由图可知,|PA|+|PB|=|PA′|+|PB|≥|A′B|.当且仅当B 、P 、A′三点共线时“=”成立.所以|PA|+|PB|的最小值 d=333)153()25(22=--+-.直线A′B 的方程为6x+y-27=0,与x-y=0联立得⎩⎨⎧=-=-+.0,0276y x y x . 解之,得P (727,727). 所以|PA|+|PB|的最小值为333,此时P 点坐标为(727,727).。
直线的方程的综合应用一.直线方程的五种形式直线方程常见有点斜式、斜截式、截距式、两点式和一般式五种形式,除了一般式每一种形式既有它的优越性又有局限性(比如点斜式、斜截式、截距式、两点式不能表示斜率不存在的直线,两点式也不能表示斜率为0的直线,截距式同时还不能表示过原点和斜率为0的直线等),故应在不同的题设下灵活的运用不同的形式,同时要特别注意不能遗漏。
下面举例说明:例1.当直线l 经过点)2,3(P 且与y x ,轴正半轴交于A 、B 两点,当OAB ∆面积最小时求直线l 的方程.解法一:设直线l 的方程为2(3)y k x -=-令0,23x y k ==-得 又令20,3y x k ==-得,由已知显然0k < ()11223322AOB S OA OB k k ⎛⎫∴==-- ⎪⎝⎭ ()141412912922k k k k ⎡⎤⎛⎫⎛⎫=--=+-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1122⎛≥+ ⎝ 12=(当且仅当429,3k k k -=-=-即时取等号) 所以所求直线方程为22(3)3y x -=--即01232=-+y x 解法二:设直线l 的方程为)0,0(1>>=+b a by a x , 直线l 过)2,3(P , 02,03,0,0.123>>∴>>=+∴b a b a b a . 由均值不等式得,41223232=⎪⎪⎪⎪⎭⎫ ⎝⎛+≤⨯b a b a 当且仅当2123==b a ,即4,6==b a 时,OAB ∆的面积ab S 21=最小. ∴所求直线的方程为146=+y x ,即01232=-+y x .点评:解法一是注意到直线过一点因此设直线方程的点斜式求解;解法二是注意到直线与两坐标轴的截距,因此设为截距式.例2 求 经过点(-5,2)且横、纵截距相等的直线方程.解:当直线过原点时可设y kx =,将点(-5,2)代入解得直线为:y=52-x . 当直线不过原点时可设直线方程为:1x y a a+=,将点代入解得直线为:03=++y x 综上,所求直线的方程为y=52-x 或03=++y x . 二.直线系方程 具有某种共同特征的一系列直线合在一起组成直线系,常见的直线系有如下三类:① 平行直线系以斜率为0k (常数)的直线系:b x k y +=0(b 为参数);平行于已知直线00000,(0B A C y B x A =++是不全为0的常数)的直线系:000=++C y B x A (C 为参数)。
教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
3.2直线的方程3.2.1直线的点斜式方程点斜式、斜截式[提出问题]如图,过点A(1,1)作直线l.问题1:试想直线l确定吗?提示:不确定.因为过一点可画无数条直线.问题2:若直线l的倾斜角为45°,直线确定吗?提示:确定.问题3:若直线l的斜率为2,直线确定吗?提示:确定.[导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l过定点P(x0,y0),斜率为k,则把方程y-y0=k(x-x0)叫做直线l的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P(x0,y0),倾斜角是90°的直线没有点斜式,其方程为x-x0=0,或x=x0.2.直线的斜截式方程(1)定义:如图所示,直线l的斜率为k,且与y轴的交点为(0,b),则方程y=kx+b叫做直线l的斜截式方程,简称斜截式.(2)说明:一条直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线.2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b 不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.直线的点斜式方程[例1] (1)经过点(-5,2)且平行于y 轴的直线方程为________________.(2)直线y =x +1绕着其上一点P (3,4)逆时针旋转90°后得直线l ,则直线l 的点斜式方程为________________.(3)求过点P (1,2)且与直线y =2x +1平行的直线方程为________________. [答案] (1)x =-5 (2)y -4=-(x -3) (3)2x -y =0 [类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x =x 0.[活学活用]若直线l 过点(2,1),分别求l 满足下列条件时的直线方程:(1)倾斜角为135°;(2)平行于x 轴;(3)平行于y 轴;(4)过原点.解:(1)直线的斜率为k =tan 135°=-1, 所以由点斜式方程得y -1=-1×(x -2), 即方程为x +y -3=0.(2)平行于x 轴的直线的斜率k =0,故所求的直线方程为y =1. (3)过点(2,1)且平行于y 轴的直线方程为x =2. (4)过点(2,1)与点(0,0)的直线的斜率k =12,故所求的直线方程为y =12x .直线的斜截式方程[例2] (1)倾斜角为________________.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解] (1)y =-33x -3 (2)由斜截式方程知直线l 1的斜率k 1=-2,又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]写出下列直线的斜截式方程:(1)直线斜率是3,在y 轴上的截距是-3; (2)直线倾斜角是60°,在y 轴上的截距是5; (3)直线在x 轴上的截距为4,在y 轴上的截距为-2. 解:(1)y =3x -3.(2)∵k =tan 60°=3,∴y =3x +5.(3)∵直线在x 轴上的截距为4,在y 轴上的截距为-2,∴直线过点(4,0)和(0,-2), ∴k =-2-00-4=12,∴y =12x -2.两直线平行与垂直的应用[例3] 当a (1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直,∴k 1k 2=a (a +2)=-1,解得a =-1. 故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4,则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]1.若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. 答案:382.若直线ax +2y +3a =0与直线3x +(a -1)y =-7+a 平行,则实数a 的值为________. 答案:37.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)·x +3y +2m =0,当l 1∥l 2时,求m 的值. [解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m .由l 1∥l 2,得⎩⎪⎨⎪⎧-m -23=-1m,-23m ≠-6m,解得m =-1. ∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线的点斜式方程y -y 1=k (x -x 1)( ) A .可以表示任何一条直线 B .不能表示过原点的直线 C .不能表示与坐标轴垂直的直线 D .不能表示与x 轴垂直的直线 答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3 D .y -2=x +3答案:A3.直线y =3x -2在y 轴上的截距为________. 答案:-24.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________________. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)2x -y -1=0 (2)x +3y +8=0[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1 答案:C2.直线y =ax +b 和y =bx +a 在同一直角坐标系中的图形可能是( )答案:D3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4B .y =2x +4C .y =-2x +4D .y =-12x +4答案:D4.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A .2x +y -1=0 B .2x +y -5=0 C .x +2y -5=0 D .x -2y +7=0 答案:A5.直线y =2x +3与y -2=2(x +3)的位置关系是( ) A .平行 B .垂直 C .重合 D .无法判断 答案:A 二、填空题6.过点(-3,2)且与直线y -1=23(x +5)平行的直线的点斜式方程是________________.答案:y -2=23(x +3)7.直线y =ax -3a +2(a ∈R)必过定点____________. 答案:(3,2)8.已知斜率为2的直线的方程为5ax -5y -a +3=0,此直线在y 轴上的截距为________.答案:15三、解答题9.已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在直线的方程.解:直线AB 的斜率k AB =-3-03-?-5?=-38,过点A (-5,0),由点斜式得直线AB 的方程为y =-38(x +5),即3x +8y +15=0;同理,k BC =2+30-3=-53,k AC =2-00+5=25,直线BC ,AC 的方程分别为5x +3y -6=0,2x -5y +10=0.10.已知直线l 的斜率与直线3x -2y =6的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的方程.解:由题意知,直线l 的斜率为32,故设直线l 的方程为y =32x +b ,l 在x 轴上的截距为-23b ,在y 轴上的截距为b ,所以-23b -b =1,b =-35,直线l 的方程为y =32x -35,即15x -10y -6=0.。
人教版高中必修2《直线与方程》单元复习教案《人教版高中必修2《直线与方程》单元复习教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材的地位与作用:在平面几何和立体几何里,我们直接依据几何图形中点、直线、平面的关系研究几何图形的性质。
现在采用另外一种研究方法:坐标法。
坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法。
初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
解析几何是17世纪法国数学家笛卡儿和费马创立的。
解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。
解析几何由此成为近代数学的基础之一。
二、教材分析:(一)、新课程知识结构:从几何直观到代数表示(建立直线的方程)从代数表示到几何直观(通过方程研究几何性质和度量)1.“直线的倾斜角与斜率”首先探索平面直角坐标系中确定直线位置的几何要素--点和倾斜角。
给出斜率的概念,并用代数方法表示它,导出用两点坐标表示斜率的公式,并根据直线的斜率判断两条直线平行与垂直。
2.“直线的方程”首先在直角坐标系中建立直线的方程,然后介绍直线方程的点斜式、两点式、一般式,最后得出结论:在平面直角坐标系中,一切直线的方程都是二元一次方程,二元一次方程表示直线。
3.“直线的交点坐标与距离公式”通过直线的方程研究两条直线的交点,并由此判断两条直线的位置关系:相交、平行及重合。
通过点的坐标和直线的方程,导出两点间的距离、点到直线的距离以及两平行线间的距离。
(二)、教材的重点与难点:1、重点:(1)、斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
(2)、根据斜率判定两条直线平行与垂直。
(3)、直线的点斜式方程和一般式方程。
(4)、两条直线的交点坐标。
2、难点:(1)、直线的斜率与它的倾斜角之间的关系,根据斜率判定两条直线互相垂直。
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
3.2 直线的方程 3.2.1 直线的点斜式方程1.直线的点斜式方程(1)条件:直线过点P(x 0,y 0),斜率为k. (2)图形:(3)方程:y -y 0=k(x -x 0).(1)利用点斜式表示直线方程的前提是什么? 提示:直线的斜率存在.(2)直线l 过点P 0(x 0,y 0),且斜率为k =0,则直线的点斜式方程是什么? 提示:直线的点斜式方程为y -y 0=0或y =y 0.(3)直线l 经过点P 0(x 0,y 0),且斜率不存在,则直线的方程是什么? 提示:x -x 0=0或x =x 0. 2.直线的斜截式方程(1)条件:直线斜率k ,在y 轴上的截距b .(2)图形:(3)方程:y=kx+b.(1)直线的斜截式方程y=kx+b中,k和b的几何意义是什么?提示:k是直线的斜率;b是直线在y轴上的截距.(2)截距是距离吗?提示:不是,直线在y轴上的截距是直线与y轴交点的纵坐标,截距是实数而不是距离.1.辨析记忆(对的打“√”,错的打“×”)(1)任何一条直线的方程都可以写成点斜式y-y0=k(x-x)( ×)提示:斜率不存在的直线不能用点斜式表示.(2)x轴所在的直线方程为x=0.( ×)提示:x轴所在的直线方程为y=0.(3)直线在y轴上的截距不能等于0.( ×) 提示:当直线过原点时,在y轴上的截距等于0. 2.直线y= 3 x+1的倾斜角是( )A.π6B.π3C.2π3D.5π6【解析】选B.因为y= 3 x+1,所以k= 3 .由于k=tan θ,则tan θ= 3 ,即θ=π3 .3.已知直线的倾斜角为60°,在y轴上的截距为-2,则该直线的方程为( )A.y= 3 x+2 B.y=- 3 x+2C.y=- 3 x-2 D.y= 3 x-2【解析】选D.直线的倾斜角为60°,则斜率为tan 60°= 3 ,利用斜截式直接写出方程,即y= 3 x-2.类型一求直线的点斜式方程(数学抽象、数学运算)1.已知直线的方程是y+2=-x-1,则( )A.直线经过点(-1,2),斜率为-1B.直线经过点(2,-1),斜率为-1C.直线经过点(-1,-2),斜率为-1D.直线经过点(-2,-1),斜率为1【解析】选C.直线方程y+2=-x-1可化为y-(-2)=-[]x-(-1),故直线经过点(-1,-2),斜率为-1.2.过点P(2 3 ,3)且倾斜角为30°的直线方程为( )A.y+4 3 =3x B.y=x- 3C.3y-3= 3 x D.y- 3 = 3 x【解析】选C.因为直线的倾斜角为30°,所以其斜率为tan 30°=33,由直线过点(2 3 ,3),所以直线方程为y-3=33(x-2 3 ),即3y-3= 3 x.3.直线y=k(x-1)+2恒过定点( )A.(-1,2) B.(1,2)C.(2,-1) D.(2,1)【解析】选B.根据直线点斜式的定义可知,直线y-2=k(x-1)恒过定点(1,2).4.经过点(-1,1),斜率是直线y=22x-2的斜率的2倍的直线的点斜式方程是________.【解析】由题意得:所求直线的斜率是k= 2 ,故所求直线方程是:y-1= 2 (x+1). 答案:y-1= 2 (x+1)求直线的点斜式方程的步骤【补偿训练】1.过点P( 3 ,-2 3 )且倾斜角为135°的直线方程为( )A.y+4 3 =3xB.y=x- 3C.x+y= 3D.y+2 3 =(-1)×(x- 3 )【解析】选D.因为直线的倾斜角为135°,所以斜率k=tan 135°=-1,又直线过点P( 3 ,-2 3 ),所以直线的点斜式为y+2 3 =(-1)×(x- 3 ).2.过点(1,0)且与直线x-2y-2=0垂直的直线方程为( )A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0【解析】选C.因为x-2y-2=0的斜率为12,由题意得,所求直线的斜率为-2,由点斜式得y-0=-2(x-1),即2x+y-2=0.类型二求直线的斜截式方程(数学抽象、数学运算)1.斜率为-1,且在y轴上的截距为1的直线方程是( )A.x-y+1=0 B.x+y-1=0C.x-y-1=0 D.x+y+1=0【解析】选B.直线的斜截式方程为y=-x+1,即x+y-1=0.2.与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是( )A.y=12x+4 B.y=2x+4C.y=-2x+4 D.y=-12x+4【解析】选D.直线y=2x+1的斜率k=2,则与直线y=2x+1垂直的直线斜率k=-12,因为y轴上的截距为4,所以直线方程为y=-12x+4.3.在y轴上的截距为-6,且与y轴相交成60°角的直线的斜截式方程是________.【解析】与y轴相交成60°角的直线倾斜角为30°或150°,可得斜率为tan 30°或tan150°,即±33,可得方程为:y=±33x-6.答案:y=±33x-64.直线l过点(2,2),且与x轴和直线y=x围成的三角形的面积为2,求直线l的方程.【解析】当直线l的斜率不存在时,l的方程为x=2,经检验符合题目的要求.当直线l的斜率存在时,设直线l的方程为y-2=k(x-2),即y=kx-2k+2.令y=0得x=2k-2k.由三角形的面积为2,得12×⎪⎪⎪⎪⎪⎪2k-2k×2=2.解得k=12.可得直线l的方程为y-2=12(x-2),即y=12x+1,综上可知,直线l的方程为x=2或y=12x+1.求直线的斜截式方程的策略(1)直线的斜截式方程是点斜式方程的特殊形式,其适用前提是直线的斜率存在,只要已知直线斜率,与y轴交点,就可以直接用斜截式表示.(2)直线的斜截式方程y=kx+b中只有两个参数,因此要确定直线方程,只需知道参数k,b 的值即可.(3)利用直线的斜截式求方程务必灵活,如果已知斜率k,只需引入参数b;同理,如果已知截距b,只需引入斜率k.【补偿训练】1.若直线l 的倾斜角为45°,且经过点(2,0),则直线l 的斜截式方程是( ) A .y =x +2B .y =x -2C .y =33 x -233D .y = 3 x -2 3【解析】选B.因为直线l 的倾斜角为45°,所以直线的斜率为1,又由直线经过点(2,0)可得y -0=x -2即y =x -2.2.已知点(1,-4)和(-1,0)是直线y =kx +b 上的两点,则k =______,b =______. 【解析】由题意,得⎩⎨⎧-4=k +b ,0=-k +b , 解得k =-2,b =-2.答案:-2 -23.已知直线y =2x +b 过点(1,2),则b =______. 【解析】将(1,2)代入y =2x +b ,得2=2+b ,解得:b =0. 答案:04.若直线l 的方程为y -a =(a -1)(x +2),且l 在y 轴上的截距为6,则a =________. 【解析】令x =0得y =(a -1)×2+a =6,得a =83 .答案:83类型三 两种方程的应用(数学运算、逻辑推理)角度1 图象的判断【典例】如图,直线y =ax +1a的图象可能是( )【思路导引】分a >0,a <0两种情况辨析.【解析】选B.由已知得a ≠0.若a >0,则直线y =ax +1a 的斜率与在y 轴上的截距都大于0,则A ,B ,C ,D 都不符合.若a <0,则直线y =ax +1a 的斜率与在y 轴上的截距都小于0,只有B 符合.若本例中的直线方程变为y =ax -1a,则其图象是下列中的( )【解析】选C.由已知得a ≠0,当a >0时,斜率k =a >0,在y 轴上的截距-1a <0,都不符合此条件;当a <0时,斜率k =a <0,在y 轴上的截距-1a >0,只有C 符合此条件.角度2 直线平行、垂直的判断的应用【典例】已知直线l 经过点P(-2,3),且与两坐标轴围成的三角形的面积为4,求直线l 的方程.【思路导引】首先确定直线的斜率是否存在,再得出直线的点斜式方程,最后利用面积求直线方程.【解析】显然,直线l 与两坐标轴不垂直,否则不构成三角形,设其斜率为k(k ≠0),则直线l 的方程为y -3=k(x +2),令x =0得y =2k +3;令y =0得x =-3k -2,于是直线与两坐标轴围成的三角形的面积为 12 ⎪⎪⎪⎪⎪⎪(2k +3)⎝ ⎛⎭⎪⎫-3k -2 =4, 即(2k +3)⎝ ⎛⎭⎪⎫3k +2 =±8,若(2k +3)⎝ ⎛⎭⎪⎫3k +2 =8,则整理得4k 2+4k +9=0,无解.若(2k +3)⎝ ⎛⎭⎪⎫3k +2 =-8,则整理得4k 2+20k +9=0,解得k =-12 或k =-92,所以直线l 的方程为x +2y -4=0或9x +2y +12=0.两条直线平行和垂直的判定(1)平行的判定.(2)垂直的判定.1.设点A(-1,0),B(1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是______________.【解析】b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A(-1,0)和点B(1,0)时,b 分别取得最小值和最大值. 所以b 的取值范围是[-2,2].答案:[-2,2]2.已知直线l :3ax -5y -a +2=0,求证:不论a 为何值,直线l 总过第一象限. 【证明】方程3ax -5y -a +2=0可化为 5y -2=a(3x -1), 即y =35 a ⎝ ⎛⎭⎪⎫x -13 +25,所以它表示恒过点⎝ ⎛⎭⎪⎫13,25 的直线.因为点⎝ ⎛⎭⎪⎫13,25 在第一象限,所以直线l 不论a 取何值,总过第一象限.3.已知斜率为2的直线l 不过第四象限,且和两坐标轴围成面积为4的三角形,求直线l 的方程.【解析】依题意,设直线l 的方程为y =2x +b ,又直线l 不过第四象限,所以b ≥0. 对于直线l ,令x =0,则y =b ;令y =0, 则x =-b2.由已知,可得12 ·|b|·⎪⎪⎪⎪⎪⎪-b 2 =4,即|b|2=16,所以b =4(负值舍去).故直线l 的方程为y =2x +4.【补偿训练】1.直线y -2m =m(x -1)与y =x -1垂直,则直线y -2m =m(x -1)过定点( ) A .(-1,2) B .(2,1) C .(1,-2) D .(1,2)【解析】选C.由两直线垂直得m =-1,把m =-1代入y -2m =m(x -1)得y =-x -1,则该直线过定点(1,-2).2.直线y =kx +2(k ∈R )不过第三象限,则斜率k 的取值范围是________. 【解析】当k =0时,直线y =2不过第三象限; 当k >0时,直线过第三象限; 当k <0时,直线不过第三象限. 答案:(-∞,0]3.等腰△ABC 的顶点A(-1,2),AC 的斜率为 3 ,点B(-3,2),求直线AC ,BC 及∠A 的平分线所在的直线方程. 【解析】AC :y = 3 x +2+ 3 . 因为AB ∥x 轴,AC 的倾斜角为60°, 所以BC 的倾斜角α为30°或120°.当α=30°时,BC 的方程为y =33 x +2+ 3 ,∠A 的平分线的倾斜角为120°,即其所在直线方程为y =- 3 x +2- 3 .当α=120°时,BC 的方程为y =- 3 x +2-3 3 , ∠A 的平分线的倾斜角为30°,3 3 x+2+33.即其所在直线方程为y=。
§3.1直线的倾斜角与斜率学习目标1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.学习过程一、课前准备(预习教材P90~ P91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※学习探究新知1:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angle of inclination).关键:①直线向上方向;②x轴的正方向;③小于平角的正角.注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度..试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tankα=.试试:已知各直线倾斜角,则其斜率的值为⑴当0oα=时,则k;⑵当090o oα<<时,则k;⑶当90oα=时,则k;⑷当090180oα<<时,则k.新知3:已知直线上两点111222(,),(,)P x y P x y12()x x≠的直线的斜率公式:2121y ykx x-=-.探究任务三:1.已知直线上两点1212(,),(,),A a aB b b运用上述公式计算直线的斜率时,与,A B两点坐标的顺序有关吗?2.当直线平行于y轴时,或与y轴重合时,上述公式还需要适用吗?为什么?※典型例题例1 已知直线的倾斜角,求直线的斜率:⑴30οα=;⑵135οα=;⑶60οα=;⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴0k=;⑵1k=;⑶3k=-;⑷k不存在.例 2 求经过两点(2,3),(4,7)A B的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.※ 动手试试练 1. 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. ⑴(2,3),(1,4)A B -; ⑵(5,0),(4,2)A B -.练2.画出斜率为0,1,1-且经过点(1,0)的直线.练3.判断(2,12),(1,3),(4,6)A B C --三点的位置关系,并说明理由.三、总结提升※ 学习小结 1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒. 2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为0o 或90οD .若直线的倾斜角为α,则直线的斜率为tan α 2. 经过(2,0),(5,3)A B --两点的直线的倾斜角( ).A .45οB .135οC .90οD .60ο 3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为().A.1B.4C.1或3D.1或4 4. 直线经过二、三、四象限,l 的倾斜角为α,斜率为k ,则α为 角;k 的取值范围 . 5. 已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角2α为________. 1. 已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.2. 已知直线l 过2211(2,()),(2,())A t B t t t-+-两点,求此直线的斜率和倾斜角.§ 3.2两直线平行与垂直的判定1. 熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系;2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力;3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣. 一、课前准备:(预习教材P 95~ P 98,找出疑惑之处) 复习1:1.已知直线的倾斜角(90)οαα≠,则直线的斜率为 ;已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率为 .2.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为 ,倾斜角为 .3.斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值分别为 . 4.已知12,l l 的斜率都不存在且12,l l 不重合,则两直线的位置关系 . 5.已知一直线经过两点(,2),(,21)A m B m m --,且直线的倾斜角为60ο,则m = .复习2:两直线平行(垂直)时它们的倾斜角之间有何关系?二、新课导学:※ 学习探究问题1:特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角为 ,两直线位置关系是 . (2)当另一条直线的斜率为0时,一条直线的倾斜角为 ,另一条直线的倾斜角为 ,两直线的位置关系是 .问题2:斜率存在时两直线的平行与垂直.设直线1l 和2l 的斜率为1k 和2k .⑴两条直线平行的情形.如果21//l l ,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知1:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. ⑵两条直线垂直的情形.如果12l l ⊥,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知2:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-※ 典型例题例1 已知(2,3),(4,0),(3,1),(1,2)A B P Q ---,试判断直线BA 与PQ 的位置关系, 并证明你的结论.例2 已知(1,1),(2,2),(3,0)A B C -三点,求点D 的坐标,使直线CD AB ⊥,且//CB AD .变式:已知(5,1),(1,1),(2,3)A B C -,试判断三角形ABC 的形状.※ 动手试试练 1. 试确定m 的值,使过点(,1),(1,)A m B m -的直线与过点(1,2),(5,0)P Q -的直线 ⑴平行; ⑵垂直练 2. 已知点(3,4)A ,在坐标轴上有一点B ,若2AB k =,求B 点的坐标.三、总结提升: ※ 学习小结:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合. 2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ). A .若12l l ⊥,则121k k =-B .若直线12//l l ,则两直线的斜率相等C .若直线1l 、2l 的斜率均不存在,则12l l ⊥D .若两直线的斜率不相等,则两直线不平行 2. 过点(1,2)A 和点(3,2)B -的直线与直线1y =的位置关系是( ).A .相交 B.平行 C.重合 D.以上都不对3. 经过(,3)m 与(2,)m 的直线l 与斜率为4-的直线互助垂直,则m 值为( ).A .75-B .75C .145-D .1454. 已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为 . 5. 顺次连结(4,3),(2,5),(6,3),(3,0)A B C D --,所组成的图形是 .1. 若已知直线1l 上的点满足260ax y ++=,直线2l 上的点满足2(1)10(1)x a y a a +-+-=≠,试求a 为何值时,⑴12//l l ;⑵12l l ⊥.2. 已知定点(1,3),(4,2)A B -,以,A B 为直径的端点,作圆与x 轴有交点C ,求交点C 的坐标.§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围; 2.能正确利用直线的点斜式、斜截式公式求直线方程; 3.体会直线的斜截式方程与一次函数的关系.一、课前准备: (预习教材P 101~ P 104,找出疑惑之处) 复习1.已知直线12,l l 都有斜率,如果12//l l ,则 ;如果12l l ⊥,则 . 2.若三点(3,1),(2,),(8,11)A B k C -在同一直线上,则k 的值为 .3.已知长方形ABCD 的三个顶点的坐标分别为(0,1),(1,0),(3,2)A B C ,则第四个顶点D 的坐标 .4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学: ※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 .⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 . ⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 .问题4:已知直线l 的斜率为k ,且与y 轴的交点为(0,)b ,求直线l 的方程.新知2:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程. 注意:截距b 就是函数图象与y 轴交点的纵坐标. 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题 例1 直线过点(1,2)-,且倾斜角为135ο,求直线l 的点斜式和斜截式方程,并画出直线l .变式:⑴直线过点(1,2)-,且平行于x 轴的直线方程 ;⑵直线过点(1,2)-,且平行于x 轴的直线方程 ;⑶直线过点(1,2)-,且过原点的直线方程 . 例2 写出下列直线的斜截式方程,并画出图形: ⑴,在y 轴上的距截是-2; ⑵ 斜角是0135,在y 轴上的距截是0变式:已知直线的方程3260x y +-=,求直线的斜率及纵截距.※ 动手试试练1. 求经过点(1,2),且与直线23y x =-平行的直线方程.练2. 求直线48y x =+与坐标轴所围成的三角形的面积.三、总结提升:※ 学习小结1.直线的方程:⑴点斜式00()y y k x x -=-;⑵斜截式y kx b =+;这两个公式都只能在斜率存在的前提※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 过点(4,2)-,倾斜角为135ο的直线方程是(). A20y ++-=B360y +++C.40x -=D .40x += 2. 已知直线的方程是21y x +=--,则( ). A .直线经过点(2,1)-,斜率为1- B .直线经过点(2,1)--,斜率为1 C .直线经过点(1,2)--,斜率为1- D .直线经过点(1,2)-,斜率为1-3. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点( ). A .(0,0)B .(3,1)C .(1,3)D .(1,3)-- 4. 直线l 的倾斜角比直线12y 的倾斜角大45ο,且直线l 的纵截距为3,则直线的方程 . 5. 已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程. 1. 已知三角形的三个顶点(2,2),(3,2),(3,0)A B C -,求这个三角形的三边所在的直线方程.2. 直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.105106,找出疑惑之处)复习1:直线过点(2,3)-,斜率是1,则直线方程为 ;直线的倾斜角为60ο,纵截距为3-,则直线方程为 . 2.与直线21y x =+垂直且过点(1,2)的直线方程为 .3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线.4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.二、新课导学:※ 学习探究新知1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).问题1:哪些直线不能用两点式表示?例 已知直线过(1,0),(0,2)A B -,求直线的方程并画出图象.新知2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+bya x 叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.问题3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※ 典型例题例1 求过下列两点的直线的两点式方程,再化为截距式方程.⑴(2,1),(0,3)A B -; ⑵(4,5),(0,0)A B --.例2 已知三角形的三个顶点(5,0),(3,3)A B --, (0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程.※动手试试练1.求出下列直线的方程,并画出图形.⑴倾斜角为045,在y轴上的截距为0;⑵在x轴上的截距为-5,在y轴上的截距为6;⑶在x轴上截距是-3,与y轴平行;⑷在y轴上的截距是4,与x轴平行.三、总结提升:※学习小结1.直线方程的各种形式总结为如下表格:1122中点(,)M x y,则2121,22x x y yx y++==.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 直线l过点(1,1),(2,5)--两点,点(1002,)b在l 上,则b的值为().A.2003 B.2004 C.2005 D.20062. 若直线0Ax By C++=通过第二、三、四象限,则系数,,A B C需满足条件( )A. ,,A B C同号 B. 0,0AC BC<<C. 0,0C AB=< D. 0,0A BC=<3. 直线y ax b=+(0a b+=)的图象是( )4. 在x轴上的截距为2,在y轴上的截距为3-的直线方程.5. 直线21y x=-关于x轴对称的直线方程,关于y轴对称的直线方程关于原点对称的方程.1. 过点P(2,1)作直线l交,x y正半轴于AB两点,当||||PA PB⋅取到最小值时,求直线l的方程.2. 已知一直线被两直线1:460l x y++=,2l:3x 560y--=截得的线段的中点恰好是坐标原点,求该直线方程.§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.107109,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程.⑵在x轴上截距为1-,在y轴上的截距为3的直线方程.⑶已知点(1,2),(3,1)A B,则线段AB的垂直平分线方程是.复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y的二元一次方程表示吗?二、新课导学:※学习探究新知:关于,x y的二元一次方程0Ax By C++=(A,B不同时为0)叫做直线的一般式方程,简称一般式(general form).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程0Ax By C++=中,,,A B C为何值时,方程表示的直线⑴平行于x轴;⑵平行于y轴;⑶与x轴重合;⑷与y重合. ※典型例题例1 已知直线经过点(6,4)A-,斜率为12,求直线的点斜式和一般式方程.例2 把直线l的一般式方程260x y-+=化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形.变式:求下列直线的斜率和在y轴上的截距,并画出图形⑴350x y+-=;⑵145x y-=;⑶20x y+=;⑷7640x y-+=;⑸270y-=.※ 动手试试练 1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是12-,经过点(8,2)A -;⑵ 经过点(4,2)B ,平行于x 轴;⑶ 在x 轴和y 轴上的截距分别是3,32-;⑷ 经过两点12(3,2),(5,4)P P --.练2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为10x y -+=,求直线PB 的方程三、总结提升:※ 学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:0Ax By C ++=(A 、B 不全为0); 2.点00(,)x y 在直线0Ax By C ++=上⇔00Ax By + 0C +=学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1 斜率为3-,在x 轴上截距为2的直线的一般式方程是( ).A .360x y ++=B .320x y -+=C .360x y +-=D .320x y --= 2. 若方程0Ax By C ++=表示一条直线,则( ). A .1A ≠ B .0B ≠C .0AB ≠D .220A B +≠ 3. 已知直线1l 和2l 的夹角的平分线为y x =,如果1l 的方程是0(0)ax by c ab ++=>,那么2l 的方程为( ).A .0bx ay c ++=B .0ax by c -+=C .0bx ay c +-=D .0bx ay c -+= 4. 直线270x y ++=在x 轴上的截距为a ,在y 轴上的截距为b ,则a b += . 5. 直线1:2(1)40l x m y +++=与直线2:3l mx y + 20-=平行,则m = .课后作业1. 菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程.2.光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程.§ 3.1两条直线的交点坐标学习目标1.掌握判断两直线相交的方法;会求两直线交点坐标;2.体会判断两直线相交中的数形结合思想.学习过程一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点(1,2)A -,且与直线210x y +-+垂直的直线 .2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※ 学习探究问题1:已知两直线方程1111:0l A x B y C ++=,222:l A x B y +20C +=,如何判断这两条直线的位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线1:3420l x y +-=,2:22l x y ++ 0=的交点坐标.变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴1:0l x y -=,2:33100l x y +-=; ⑵1:30l x y -=,2:630l x y -=;⑶1:3450l x y +-=,2:68100l x y +-=.例2 求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=平行的直线方程.变式:求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=垂直的直线方程.例3 已知两点(2,1),(4,3)A B -,求经过两直线2310x y -+=和3210x y +-=的交点和线段AB 中点的直线l 的方程.※ 动手试试练 1. 求直线20x y --=关于直线330x y -+=对称的直线方程.练2. 已知直线1l 的方程为30Ax y C ++=,直线2l 的方程为2340x y -+=,若12,l l 的交点在y 轴上,求C 的值.三、总结提升:※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行. 2.直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 两直线12:210,:220l x y l x y ++=-++=的交点坐标为( ).A .13(,)24B .13(,)24-C .13(,)24--D .13(,)24-2. 两条直线320x y n ++=和2310x y -+=的位置关系是( ).A .平行B .相交且垂直C .相交但不垂直D .与n 的值有关 3. 与直线2360x y +-=关于点(1,1)-对称的直线方程是( ).A .3220x y -+=B .2370x y ++=C .32120x y --=D .2380x y ++= 4. 光线从(2,3)M -射到x 轴上的一点(1,0)P 后被x 轴反射,则反射光线所在的直线方程 . 5. 已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 .1. 直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.2. 已知a 为实数,两直线1l :10ax y ++=,2l :0x y a +-=相交于一点,求证交点不可能在第一象限及x 轴上.§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线0mx y m +-=,无论m 取任意实数,它都过点 . 2.若直线111:1l a x b y +=与直线222:1l a x b y +=的交点为(2,1)-,则112a b -= .3.当k 为何值时,直线3y kx =+过直线2x y - 10+=与5y x =+的交点?二、新课导学:※ 学习探究 问题1:已知数轴上两点,A B ,怎么求,A B 的距离?问题2:怎么求坐标平面上,A B 两点的距离?及,A B 的中点坐标?新知:已知平面上两点111222(,),(,)P x y P x y,则12PP 特殊地:(,)Px y 与原点的距离为OP =※ 典型例题例 1 已知点(8,10),(4,4)A B -求线段AB 的长及中点坐标.变式:已知点(1,2),A B -,在x 轴上求一点,使PA PB =,并求PA 的值.例 2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.※动手试试练1.已知点(1,2),(3,4),(5,0)A B C,求证:ABC∆是等腰三角形.练2.已知点(4,12)A,在x轴上的点P与点A的距离等于13,求点P的坐标.三、总结提升:※学习小结1.坐标法的步骤:①建立适当的平面直角坐标系,用坐标表示有关的量;②进行有关的代数运算;③把代数运算结果“翻译”成几何关系.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 两点(1,3),(2,5)A B-之间的距离为().A.BC D.32. 以点(3,0),(3,2),(1,2)A B C---为顶点的三角形是()三角形.A.等腰B.等边C.直角D.以上都不是3. 直线a x+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值().A.2-B.2C.1D.1-4.已知点(1,2),A B-,在x轴上存在一点P,使PA PB=,则PA=. 5. 光线从点M(-2,3)射到x轴上一点P(1,0)后被x轴反射,则反射光线所在的直线的方程.1. 经过直线23y x=+和320x y-+=3的交点,且垂直于第一条直线.2. 已知a为实数,两直线1l:01=++yax,2l:0=-+ayx相交于一点,求证交点不可能在第一象限及x轴上.§ 3.3点到直线的距离及两平行线距离学习目标1.理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;2.会用点到直线距离公式求解两平行线距离 3.认识事物之间在一定条件下的转化.用联系的观点看问题学习过程一、课前准备:(预习教材P 117~ P 119,找出疑惑之处)复习1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为 ,AB 间的长度为 .复习2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?二、新课导学:※ 学习探究新知1:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:0022Ax By Cd A B++=+.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离;⑵在运用公式时,直线的方程要先化为一般式.问题2:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来.例 分别求出点(0,2),(1,0)A B -到直线341x y -- 0=的距离.问题3:求两平行线1l :2380x y +-=,2l :23x y + 10-=的距离.新知2:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为1222C C d A B -=+注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.※ 典型例题例1 已知点(1,3),(3,1),(1,0)A B C -,求三角形ABC 的面积.例2 求两平行线1l :2380x y +-=,2l :46x y + 10-=的距离.※ 动手试试练1. 求过点(1,2)A -的直线方程.练2.求与直线:51260l x y -+=平行且到l 的距离为2的直线方程.三、总结提升:※ 学习小结1.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 求点(5,7)P -到直线12530x y +-=的距离( )A .1B .0C .1413D .28132. 过点(1,2)且与原点距离最大的直线方程是( ). A.250x y +-= B.240x y +-= C.370x y +-= D.350x y +-=3. 到两坐标轴距离相等的点的轨迹方程是( ). A .0x y -= B .0x y += C .0x y -= D .0x y -=4. 两条平行线3x -2y -1=0和3x -2y +1=0的距离5. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有条. 1.已知正方形的中心为(1,0)G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.2.,A B 两个厂距一条河分别为400m 和100m ,,A B 两厂之间距离500m ,把小河看作一条直线,今在小河边上建一座提水站,供,A B 两厂用水,要使提水站到,A B 两厂铺设的水管长度之和最短,问提水站应建在什么地方?§ 3.3.3章未复习提高1. 掌握直线的倾斜角的概念、斜率公式; 2. 掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用; 3. 掌握两直线位置关系的判定,点到直线的距离公式及其公式的运用.一、课前准备:复习知识点:一.直线的倾斜角与斜率1.倾斜角的定义 , 倾斜角α的范围 , 斜率公式k = ,或 . 二.直线的方程1. 点斜式:00()y y k x x -=-2. 斜截式:y kx b =+3. 两点式:112121y y x x y y x x --=-- 4. 截距式:1x y a b+=5. 一般式:0Ax By C ++=三.两直线的位置关系1. 两直线平行 2. 两直线相交.⑴两直线垂直,⑵两直线相交 3. 两直线重合 四.距离 1. 两点之间的距离公式 , 2. 点线之间的距离公式 , 3. 两平行直线之间的距离公式 .二、新课导学: ※ 典例分析例1 如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.例2 已知在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例3 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4 已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例5 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.※ 动手试试练1. 设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.⑴l 在x 轴上的截距为2-; ⑵斜率为1-.练2.已知直线l 经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.三、总结提升: ※ 学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( ).A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-2.方程(1)210()a x y a a R --++=∈所表示的直线( ).A .恒过定点(2,3)-B .恒过定点(2,3)C .恒过点(2,3)-和(2,3)D .都是平行直线 3.已知点(3,)m到直线40x-=的距离等于1,则m =().AB .C . D4.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .5. 将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是. 1.已知直线12:220,:1l x ay a l ax y +--=+-a - 0=.⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值2.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围.。
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k tan k α=当[) 90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。