(845)函数值专项练习30题(有答案)14页 ok
- 格式:pdf
- 大小:331.75 KB
- 文档页数:14
反比例函数和一次函数专项练习30题(有答案)1.如图,已知一次函数与反比例函数的图象交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)根据正比例函数与反比例函数的性质直接写出B点坐标;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.2.正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.3.反比例函数与一次函数y=2x+1的图象都过点(1,a).(1)确定a的值以及反比例函数解析式;(2)求反比例函数和一次函数的图象的另一个交点坐标.4.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,﹣3a)(a>0),且点B在反比例函数的图象上,求a的值和一次函数的解析式.5.如图正比例函数与反比例函数的图象在第一象限内的交点A的横坐标为4.(1)求k值;(2)求它们另一个交点B的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.6.已知一次函数y=kx+b与反比例函数的图象交于点(﹣1,﹣1),求这两个函数的解析式及它们图象的另一个交点的坐标.7.如图所示,一次函数y=kx+b的图象与反比例函数的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x为何值时一次函数的值大于反比例函数的值.8.如图,已知反比例函数的图象与一次函数y2=k2x+b的图象交于A,B两点,且A(2,n),B(﹣1,﹣2).(1)求反比例函数和一次函数的关系式;(2)利用图象直接写出当x在什么范围时,y1>y2.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为(1,2).(1)分别求出这两个函数的表达式;(2)请你观察图象,写出y1>y2时,x的取值范围;(3)在y轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.已知反比例函数y=﹣和一次函数y=kx﹣2都经过点A(m,﹣3).(1)求m的值和一次函数的关系式.(2)若点M(a,y1)和N(a+2,y2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的图象性质比较y1与y2的大小.11.如图,函数y=3x的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上.(1)求反比例函数的解析式;(2)求n的值;(3)若P是y轴上一点,且满足△POB的面积为6,求P点的坐标.12.如图,已知反比例函数的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.(3)根据图象写出使y1>y2的x的取值范围.13.直线y1=2x﹣7与反比例函数的图象相交于点P(m,﹣3).(1)求反比例函数的解析式.(2)试判断点Q是否在这个反比例函数的图象上?14.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,a)、B(﹣2,1)两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.15.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出反比例函数的解析式;(3)求出线段AB的长度.16.如图,已知A(n,2),B(2,﹣4)是一次函数y1=kx+b的图象和反比例函数y2=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)当x取何值时,y1<y2?17.已知反比例函数的图象,经过一次函数y=x+1与的交点,求反比例函数的解析式.18.如图,一次函数y=kx+2与x轴交于点A(﹣4,0),与反比例函数y=的图象的一个交点为B(2,a).(1)分别求出一次函数与反比例函数的解析式;(2)作BC⊥x轴,垂足为C,求S△ABC.19.如图,一次函数y1=kx+b与反比例函数.(m、k≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求m、n的值及反比例函数的表达式;(2)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.20.一次函数y1=kx+b与反比例函数的图象相交于点A(﹣1,4)、B(﹣4,n),(1)求n的值;(2)连接OA、OB,求△OAB的面积;(3)利用图象直接写出y1>y2时x的取值范围.21.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.22.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;(3)你能求出图中△AOB的面积吗?若不能,请说明理由;若能,请写出求解过程.23.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=交于点A、C,其中点A在第一象限,点C在第三象限.(1)求点B的坐标;(2)若,求点A的坐标.24.已知一次函数与反比例函数y=﹣的图象交于点P(﹣3,m),Q(2,﹣3).求一次函数的解析式.25.已知正比例函数y=k1x(k1≠0)的图象经过A(2,﹣4)、B(m,2)两点.(1)求m的值;(2)如果点B在反比例函数(k2≠0)的图象上,求反比例函数的解析式.26.如图,已知正比例函数y=﹣3x与反比例函数的图象相交于A和B两点,如果有一个交点A的横坐标为2.(1)求k的值;(2)求A,B两点的坐标;(3)当_________时,.27.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比列函数的图象的两个交点.(1)求m、n的值;(2)求一次函数的关系式;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.28.如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.29.如图,已知反比例函数的图象与一次函数y=k2+b的图象交于A、B两点,A(2,n),B(﹣l,﹣2).(1)求反比例函数和一次函数的关系式;(2)试证明线段AB分别与x轴、y轴分成三等分;(3)利用图象直接写出不等式的解集.30.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=,求该反比例函数和一次函数的解析式.参考答案:1.(1)由x=4,得y=2;则k=xy=4×2=8;(2)∵A,B两点是正比例函数和反比例函数的交点,点A(4,2),∴B(﹣4,﹣2);(3)由图象可得在两个交点的左边,一次函数的值小于反比例函数的值,∴x<﹣4或0<x<42.(1)∵正比例函数y=kx 与反比例函数,的图象都过点A(1,3),则k=3,∴正比例函数是y=3x ,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.3.(1)由题意得,2+1=a,解得,a=3,(1分)由题意得,,解得,k=3.(2分)反比例函数解析式为.(3分)(2)由题意得,,(4分)解得,,∴反比例函数和一次函数图象的另一个交点坐标是(﹣4.∵点B(a,﹣3a)在反比例函数图象上,∴﹣=﹣3a,解得a=1,a=﹣1(舍去),∴点B的坐标为(1,﹣3),∵一次函数y=kx+b图象经过点A(0,1),B(1,﹣3),∴,解得,∴一次函数解析式为y=﹣4x+1.5.(1)将A的横坐标4代入y1=x,得y1=×4=2,由题意可得A点坐标为(4,2),由于反比例函数y=的图象经过点A,∴k=2×4=8.(5分)(2)将两个函数的解析式组成方程组得:,解得,.所以A(4,2),B(﹣4,﹣2).所以B点坐标为B(﹣4,﹣2).(3分)(3)由于A点横坐标4,B点横坐标为﹣4,由图可知:当x>4或﹣4<x<0时,y1>y2.6.由已知得,(2分)解得.(4分)∴一次函数的解析式为y=2x+1,(5分)反比例函数的解析式为.(6分)由,解得x=﹣1或.(7分)当时,y=2.∴函数图象的另一个交点的坐标为()∴m=6,a=﹣6即N(﹣1,﹣6)且,解得∴反比例函数和一次函数的解析式的解析式分别为y=.y=2x﹣4.(2)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.8.(1)∵双曲线过点(﹣1,﹣2),∴k1=﹣1×(﹣2)=2.∵双曲线y1=,过点(2,n),∴n=1.由直线y2=k2x+b过点A,B 得,解得.∴反比例函数关系式为y1=,一次函数关系式为y2=x﹣1.(2)当x<﹣1或0<x<2时,y1>y2.9.(1)解:∵y1=k1x过点A(1,2),∴k1=2.(2分)∴正比例函数的表达式为y1=2x.(3分)∵反比例函数过点A(1,2),∴k2=2.(5分)∴反比例函数的表达式为y=.(6分)(2)﹣1<x<0或x>1.(8分)(3)∵点A的坐标为(1,2),∴OA=,当OA为腰时,OA=OP2=,P2点坐标为(0,4),当AP1=OA=,可知P1坐标为(0,),当OA=OP3=时,可得P3坐标为(0,﹣)由图可知,P1(0,),P2(0,﹣),P3(0,4),当OA为底时,OP4==,故P1(0,),P2(0,﹣),P3(0,4),P4(0,).10.(1)∵反比例函数y=﹣经过点A(m,﹣3).∴﹣3m=﹣6,∴m=2;∵一次函数y=kx﹣2经过点A(m,﹣3).∴2k﹣2=﹣3,∴k=﹣,∴一次函数的关系式为y=﹣x﹣2.(2)当a>0时,则a<a+2,∵反比例函数y=﹣的图象在第四象限内是增函数,∴y1<y2;当﹣2<a<0时,则a+2>0,由图象知y1>y2;当a<﹣2时,则a<a+2,∵反比例函数y=﹣的图象在第二象限内是增函数,∴y1<y211.(1)∵函数y=3x的图象过点A(1,m),∴m=3,∴A(1,3);∵点A(1,3)在反比例函数的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;(2)∵点B(n,1)在反比例函数的图象上,(3)依题意得PO•3=6∴OP=4,∴P点坐标为(0,4)或(0,﹣4).12.(1)∵点A(﹣2,1)在反比例函数y1=mx的图象上,∴1=m﹣2,即m=﹣2,又A(﹣2,1),C(0,3)在一次函数y2=kx+b图象上,∴即k=1,b=3,∴反比例函数与一次函数解析式分别为:y=与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1,∴点B的坐标为(﹣1,2).(3)当x<﹣2或﹣1<x<0时,反比例函数在一次函数图象的上方,即y1>y2…13.(1)把(m,﹣3)分别代入和y1=2x﹣7,得,解得m=2,k=﹣6,∴反比例函数的解析式.(2)把点Q代入反比例函数的解析式中,即=﹣=.故点Q在反比例函数的图象上14.(1)把B(﹣2,1)代入得:m=﹣2×1=﹣2,∴y=﹣,把A(1,a)代入得:a=﹣2,∴A(1,﹣2),把A(1,﹣2),B(﹣2,1)代入得:,解得:k=﹣1,b=﹣1,∴y=﹣x﹣1,答:一次函数和反比例函数的解析式分别是y=﹣,y=﹣x﹣1.(2)令y=0,则0=﹣x﹣1,∴x=﹣1,∴C(﹣1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC =×1×2+×1×1=1.5 15.(1)A点坐标为(﹣6,﹣2),B点坐标为(4,3);(2)把B(4,3)代入y=得m=3×4=12,所以反比例函数的解析式为y=;(3)分别过点A、点B作y轴、x轴的垂线,两线交于点C,即AC⊥BC,如图,则点C的坐标为C(4,﹣2),在Rt△ACB中,AC=10,BC=5,∵AB2=BC2+AC2,∴AB==5.16.(1)∵B(2,﹣4)在函数y2=的图象上,∴m=﹣8.∴反比例函数的解析式为:y2=﹣.∵点A(n,2)在函数y2=﹣的图象上∴n=﹣4∴A(﹣4,2)∵y1=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为:y1=﹣x﹣2(2)由交点坐标和图象可知,当﹣4<x<0或x>2取何值时,y1<y217.把y=x+1代入得:x+1=x+,解得:x=1,把x=1代入y=x+1得:y=2,把(1,2)代入y=得:k=2,即反比例函数的解析式是y=18.(1)将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,即k=0.5,∴一次函数解析式为y=0.5x+2,将B(2,a)代入一次函数解析式得:a=1+2=3,即B (2,3),将B(2,3)代入反比例解析式得:m=2×3=6,则反比例解析式为y=;(2)∵OC=2,OA=4,∴AC=OC+OA=2+4=6,∵BC=3,∴S△ABC =AC•BC=919.(1)∵A(﹣4,2)在上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n )在上,∴n=﹣4.(2)当x<﹣4或0<x<2时,y1>y2;当x=﹣4或x=2时,y1=y2;当﹣4<x<0或x>2时,y1<y2.20.(1)根据题意,反比例函数y2=的图象过(﹣1,4),(﹣4,n),易得m=﹣4,n=1;则y1=kx+b的图象也过点(﹣1、4),(﹣4,1);代入解析式可得k=1,b=5;∴y1=x+5;(2)设直线AB交x轴于C点,由y1=x+5得,∴C(﹣5,0),∵S△AOC =×5×4=10,S△BOC =×5×1=2.5,∴S△AOB=S△AOC﹣S△BOC=10﹣2.5=7.5;(3)根据图象,两个图象只有两个交点,根据题意,找一次函数的图象在反比例函数图象上方的部分;易得当x>0或﹣4<x<﹣1时,有y1>y2,故当y1>y2时,x的取值范围是x>0或﹣4<x<﹣1 21.(1)∵点B(﹣4,﹣2)在反比例函数的图象上,∴,k=8.∴反比例函数的解析式为.﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵点A(m,4)在反比例函数的图象上,∴,m=2.∵点A(2,4)和点B(﹣4,﹣2)在一次函数y=ax+b 的图象上,∴解得∴一次函数的解析式为y=x+2.(2)设一次函数y=x+2的图象与y轴交于点C,分别作AD⊥y轴,BE⊥y轴,垂足分别为点D,E.(如图)∵一次函数y=x+2,当x=0时,y=2,∴点C的坐标为(0,2).∴S△AOB=S△AOC+S△BOC ===6(3)﹣4<x<0或x>2.阅卷说明:第(3)问两个范围各(1分)22.(1)设反比例函数的解析式是y=(a≠0),把A(﹣2,1)代入得:k=﹣2,即反比例函数的解析式是y=﹣;把B(1,n)代入反比例函数的解析式得:n=﹣2,即B的坐标是(1,﹣2),把A(﹣2,1)和B(1,﹣2)代入y=kx+b得:,解得:k=﹣1,b=﹣1.即一次函数的解析式是y=﹣x﹣1;(2)根据图象可知:一次函数的值大于反比例函数的值的x的取值范围是x<﹣2或0<x<1;(3)能求出△AOB的面积,把y=0代入y=﹣x﹣1得:0=﹣x﹣1,x=﹣1,即C的坐标是(﹣1,0),OC=1,∵A(﹣2,1),B(1,﹣2),∴△AOB的面积S=S△AOC+S△BOC=×1×1+×1×|﹣2|=1.523.(1)当y=0时,则kx+2k=0,又∵k≠0∴x=﹣2,∴点B坐标为(﹣2,0);(2)设点A的坐标为(x、y),∴S△AOB =•|﹣2|•|y|=,∴y=±,∵点A在第一象限,∴y=,把y=代入y=得x=,∴点A 的坐标为(,)24.∵把P(﹣3,m)代入反比例函数y=﹣得:m=2,∴点P的坐标为(﹣3,2),设一次函数的关系式为y=kx+b,∴把Q和P 的坐标代入得:,解得:k=﹣1,b=﹣1.故所求一次函数的关系式为y=﹣x﹣125.(1)因为函数图象经过点A(2,﹣4),所以2k1=﹣4,得k1=﹣2.(2分)所以,正比例函数解析式:y=﹣2x.(1分)(2)根据题意,当y=2时,﹣2m=2,得m=﹣1.(1分)于是,由点B 在反比例函数的图象上,得,解得k2=﹣2.所以,反比例函数的解析式是.26.(1)把x=2代入y=﹣3x得:y=﹣6,即A的坐标是(2,﹣6),把A的坐标代入y=得:﹣6=,解得:k=﹣13;(2)解方程组得:,,即A的坐标是(2,﹣6),B的坐标是(﹣2,6);(3)当﹣2<x<0或x>2时,>﹣3x,故答案为:﹣2<x<0或x>227.(1)把A(﹣4,2)代入y=得:m=﹣8,即反比例函数的解析式为y=﹣,把B(n,﹣4)代入得:n=2,即B(2,﹣4),即m=﹣8,n=2;(2)把A、B的坐标代入一次函数的解析式得:解得:k=﹣1,b=﹣2,即一次函数的解析式是y=﹣x﹣2;(3)一次函数的值小于反比例函数的值的x的取值范围是x>2或﹣4<x<028.解方程组得或,∴C点坐标为(1,4),∵CD⊥x轴,∴D点坐标为(1,0)对y=x+3,令x=0,y=3,∴B点坐标为(0,3),∴四边形OBCD的面积=(OB+CD)•OD=(3+4)×1=29.1)解:把B(﹣1,﹣2)分别代入反比例函数∴k1=﹣1×(﹣2)=2,∴反比例函数的解析式为y=;把A(2,n)代入上式,得n=1,∴A点坐标为(2,1),把A(2,1)和B(﹣l,﹣2)分别代入一次函数y=k2x+b 得,2k2+b=1,﹣k2+b=﹣2,解得k2=1,b=﹣1,∴一次函数的关系式为y=x﹣1;(2)证明:过A作AE⊥x轴于E,BF⊥y轴与F,AB 与坐标轴相交于C、D,如图,对于y=x﹣1,令x=0,y=﹣1;令y=0,x=1,∴C(1,0),D(0,﹣1),AC===,CD===,BD===,∴AC=CD=BD,∴线段AB分别与x轴、y轴分成三等分;(3)解:x<﹣1或0<x<230.过点A作AC⊥x轴于点C.∵sin∠AOE=,OA=5,∴AC=OA•sin∠AOE=4,由勾股定理得:CO==3,∴A(﹣3,4),把A(﹣3,4)代入到中得m=﹣12,∴反比例函数解析式为,∴6n=﹣12,∴n=﹣2,∴B(6,﹣2),∴有,解得:,∴,一次函数的解析式为。
二次函数与图像专项练习选择题30题(有答案)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①②B.①③C.②④D.③④2.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣23.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个4.已知二次函数y=ax2﹣1的图象开口向下,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个6.如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于07.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论错误的是()A.abc>0 B.3a>2bC.m(am+b)≤a﹣b(m为任意实数)D.4a﹣2b+c<08.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y210. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=3(x+2)2+3 B. y=3(x﹣2)2+3 C. y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣311.判断下列哪一组的a、b、c,可使二次函数y=ax2+bx+c﹣5x2﹣3x+7在坐标平面上的图形有最低点?()A. a=0,b=4,c=8 B.a=2,b=4,c=﹣8 C.a=4,b=﹣4,c=8 D. a=6,b=﹣4,c=﹣812.在平面直角坐标系中,将抛物线y=x2﹣x﹣6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1B.2C.3D.613.把抛物线y=3x2向右平移1个单位长度后,所得的函数解析式为()A.y=3x2﹣1 B.y=3(x﹣1)2C.y=3x2+1 D.y=3(x+1)214.抛物线y=x2﹣4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为()A.(4,﹣1)B.(0,﹣3)C.(﹣2,﹣3)D.(﹣2,﹣1)15.如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<016.已知二次函数y=ax2+bx+1,一次函数y=k(x﹣1)﹣,若它们的图象对于任意的非零实数k都只有一个公共点,则a,b的值分别为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=2 D.a=﹣1,b=﹣217.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个18.(二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.﹣1<t<119.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<﹣3 B.k>﹣3 C.k<3 D.k>320.如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1 D.当x=﹣3时,y的值小于021.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④22.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为23.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.424.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.25.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣226.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④27.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x+2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x﹣2)2﹣1D.y=3(x+2)2+128.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1B.C.D.﹣229.如图,小浩从二次函数y=ax2+bx+c(a≠0)的图象中得到如下信息:①ab<0 ②4a+b=0 ③当y=5时只能得x=0④关于x的一元二次方程ax2+bx+c=10有两个不相等的实数根,你认为其中正确的有()A.1个B.2个C.3个D.4个30.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 4 …y … 4 1 0 1 4 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2参考答案:1.解:由抛物线与y轴的交点位置得到:c>1,选项①错误;∵抛物线的对称轴为x=﹣=1,∴2a+b=0,选项②正确;由抛物线与x轴有两个交点,得到b2﹣4ac>0,即b2>4ac,选项③错误;令抛物线解析式中y=0,得到ax2+bx+c=0,∵方程的两根为x1,x2,且﹣=1,及﹣=2,∴x1+x2=﹣=2,选项④正确,综上,正确的结论有②④.故选C2.解:将抛物线y=x2+1先向左平移2个单位所得抛物线的函数关系式是:y=(x+2)2+1;将抛物线y=(x+2)2+1向下平移3个单位所得抛物线的函数关系式是:y=(x+2)2+1﹣3,即y=(x+2)2﹣2.故选B.3.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选A.4.解:∵二次函数y=ax2的图象开口向下,∴a<0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第二、三、四象限.故选D.5.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故正确为:③④两个.故选:B.6.解:由图可知,当x>﹣1时,函数值y随x的增大而减小,A、当x=0时,y的值小于1,故本选项错误;B、当x=3时,y的值小于0,故本选项正确;C、当x=1时,y的值小于1,故本选项错误;D、y的最大值不小于1,故本选项错误.故选B.7.解:A.由函数图象可得各系数的关系:a<0,c>0,对称轴x=﹣=﹣1<0,则b<0,故abc>0,故此选项正确,但不符合题意;B.∵x=﹣=﹣1,∴b=2a,∴2b=4a,∵a<0,b<0,∴3a>2b,故此选项正确,但不符合题意;C.∵b=2a,代入m(am+b)﹣(a﹣b)得:∴m(am+2a)﹣(a﹣2a)=am2+2am+a=a(m+1)2,∵a<0,∴a(m+1)2≤0,∴m(am+b)﹣(a﹣b)≤0,即m(am+b)≤a﹣b,故此选项正确,但不符合题意;D.当x=﹣2代入y=ax2+bx+c,得出y=4a﹣2b+c,利用图象与x轴交点右侧小于1,则得出图象与坐标轴左侧交点一定小于﹣2,故y=4a﹣2b+c>0,故此选项错误,符合题意;故选:D.8.解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.9.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.10. :由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.11.解:y=ax2+bx+c﹣5x2﹣3x+7=(a﹣5)x2+(b﹣3)x+(c+7),若使此二次函数图形有最低点,则图形的开口向上,即x2项系数为正数,∴a﹣5>0,∴a>5,故选D.12.解:当x=0时,y=﹣6,故函数图象与y轴交于点C(0,﹣6),当y=0时,x2﹣x﹣6=0,即(x+2)(x﹣3)=0,解得x=﹣2或x=3,即A(﹣2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.故选B.13.解:由“左加右减”的原则可知,把抛物线y=3x2向右平移1个单位长度后,所得的函数解析式为y=3(x﹣1)2.故选B.14.解:∵抛物线y=x2﹣4x+3可化为:y=(x﹣2)2﹣1,∴其顶点坐标为(2,﹣1),∴向右平移2个单位得到新抛物线的解析式,所得抛物线的顶点坐标是(4,﹣1).故选A.15.解:根据二次函数解析式确定抛物线的顶点坐标分别为(h,k),(m,n),因为点(h,k)在点(m,n)的下方,所以k=n不正确.故选A.16.解:根据题意得,y=ax2+bx+1①,y=k(x﹣1)﹣②,解由①②组成的方程组,消去y,整理得,ax2+(b﹣k)x+1+k+=0,∵它们的图象对于任意的实数k都只有一个公共点,则方程组只有一组解,∴x有两相等的值,即△=(b﹣k)2﹣4a(1+k+)=0,∴(1﹣a)k2﹣2(2a+b)k+b2﹣4a=0,由于对于非负实数k都成立,所以有1﹣a=0,2a+b=0,∴b2﹣4a=0,∴a=1,b=﹣2,故选B.17.解:①y=x,正比例函数,k=1>0,y随着x增大而增大,正确;②y=﹣2x+1,一次函数,k=﹣2<0,y随x的增大而减小,错误;③y=﹣,反比例函数,k=﹣1<0,当x<0时,函数值y随x的增大而增大,正确;④y=3x2,二次函数,a=3>0,开口向上,对称轴为x=0,故当x<0时,图象在对称轴左侧,y随着x的增大而减小,错误.故选B.18.解:∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴易得:a﹣b+1=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①②得:﹣1<a+b<1,且c=1,得到0<a+b+1<2,∴0<t<2.故选:B.19.解:根据题意得:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,∴此时y=|ax2+bx+c|=ax2+bx+c,∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,∴y=|ax2+bx+c|的图象如右图,∵观察图象可得当k≠0时,函数图象在直线y=3的上方时,纵坐标相同的点有两个,函数图象在直线y=3上时,纵坐标相同的点有三个,函数图象在直线y=3的下方时,纵坐标相同的点有四个,∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则函数图象应该在y=3的上边,故k>3,故选D.20.解:A、由图象知,点(1,1)在图象的对称轴的左边,所以y的最大值大于1,不小于0;故本选项错误;B、由图象知,当x=0时,y的值就是函数图象与y轴的交点,而图象与y轴的交点在(1,1)点的左边,故y<1;故本选项错误;C、对称轴在(1,1)的右边,在对称轴的左边y随x的增大而增大,∵﹣1<1,∴x=﹣1时,y的值小于x=﹣1 时,y的值1,即当x=﹣1时,y的值小于1;故本选项错误;D、当x=﹣3时,函数图象上的点在点(﹣2,﹣1)的左边,所以y的值小于0;故本选项正确.故选D.21.解:根据解析式可以得到函数的顶点坐标是(﹣2,3),对称轴是x=﹣2,则当x>﹣2时,y随x的增大而减小,故①错误;顶点坐标是(﹣2,3),开口向下,则函数的最大值是3,则②正确;当a=﹣1时,函数的解析式是:y=﹣(x+2)2+3,(0,0)不满足函数的解析式,故函数不经过原点,故③错误;顶点坐标是(﹣2,3),开口向下,则该抛物线和x轴总有两个公共点,故④正确.故选C22.解:∵M,N两点关于y轴对称,点M的坐标为(a,b),∴N点的坐标为(﹣a,b),又∵点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,∴,整理得,故二次函数y=﹣abx2+(a+b)x为y=﹣x2+3x,∴二次项系数为﹣<0,故函数有最大值,最大值为y==,故选:B.23.解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.24.解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c过第二四象限且经过原点,反比例函数y=位于第二四象限,纵观各选项,只有C选项符合.故选C.25.解:函数y=x2﹣4向右平移2个单位,得:y=(x﹣2)2﹣4;再向上平移2个单位,得:y=(x﹣2)2﹣2;故选B.26.解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=﹣﹣=﹣,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.27.解:由“左加右减”的原则可知,将抛物线y=3x2向左平移2个单位所得抛物线的解析式为:y=3(x+2)2;由“上加下减”的原则可知,将抛物线y=3(x+2)2向下平移1个单位所得抛物线的解析式为:y=3(x+2)2﹣1.故选A.28.解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.29.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,∴b>0,b+4a=0,所以①②正确;∵抛物线的对称轴为直线x=2,∴(0,5)和(4,5)是抛物线上两对称点,∴x=0或4时,y=5,所以③错误;∵抛物线的顶点坐标为(2,9),∴y的最大值为9,∴ax2+bx+c≤9,∴一元二次方程ax2+bx+c=10无实数解,所以④错误.故选B.30.解:∵当1<x<2时,函数值y小于1,当3<x<4时,函数值y大于1,∴y1<y2.故选B.。
求函数值练习题1. 给定函数 f(x) = 2x + 3,求当 x = 5 时,函数 f 的值。
解答:将 x = 5 代入函数 f(x) = 2x + 3 中,得到 f(5) = 2(5) + 3 = 13。
因此,当 x = 5 时,函数 f 的值为 13。
2. 给定函数 g(x) = x^2 - 4x + 4,求当 x = -2 时,函数 g 的值。
解答:将 x = -2 代入函数 g(x) = x^2 - 4x + 4 中,得到 g(-2) = (-2)^2 - 4(-2) + 4 = 16 + 8 + 4 = 28。
因此,当 x = -2 时,函数 g 的值为 28。
3. 给定函数 h(x) = 3x^3 - 2x^2 + x - 1,求当 x = 0 时,函数 h 的值。
解答:将 x = 0 代入函数 h(x) = 3x^3 - 2x^2 + x - 1 中,得到 h(0) =3(0)^3 - 2(0)^2 + 0 - 1 = -1。
因此,当 x = 0 时,函数 h 的值为 -1。
4. 给定函数 k(x) = sin(x) + cos(x),求当x = π/4 时,函数 k 的值。
解答:将x = π/4 代入函数 k(x) = sin(x) + cos(x) 中,得到k(π/4) = sin(π/4) + cos(π/4) = √2/2 + √2/2 = √2。
因此,当x = π/4 时,函数 k 的值为√2。
5. 给定函数 m(x) = e^x - 2^x,求当 x = ln2 时,函数 m 的值。
解答:将 x = ln2 代入函数 m(x) = e^x - 2^x 中,得到 m(ln2) = e^(ln2) - 2^(ln2) = 2 - 2 = 0。
因此,当 x = ln2 时,函数 m 的值为 0。
通过以上练习题的计算,我们求出了函数在特定取值下的函数值。
这些计算可以帮助我们了解函数的性质和变化规律,在数学中具有重要的应用价值。
初三数学函数专项练习题及答案一、选择题(每题4分,共32分)1.函数y=x+2中,自变量x的取值范围是(A)A.x≥-2B.x<-2C.x≥0D.x≠-22.函数y=2x+1〔x≥0〕,当x=2时,函数值y为(A) 4x〔x<0〕,A.5B.6C.7D.8k3.点A(2,y1),B(4,y2)都在反比例函数y=x(k<0)的图象上,那么y1,y2的大小关系为(B)A.y1>y2B.y1<y2C.y1=y2D.无法比较4.如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,那么以下列图能反映弹簧秤的读数y〔单位:N〕与铁块被提起的高度x〔单位:cm〕之间的函数关系的大致图象是〔C〕A.B.C.D.5.假设一次函数y=(a+1)x+a 的图象过第一、三、四象限,那么二次函数y=ax2-ax(B)a a a aA.有最大值4B.有最大值-4C.有最小值4D.有最小值-46.如图,二次函数224x的图象与正比例函数2y1=x-y2=x的图象交于点A(3,2),与x轴交于点B(2,0).假设3330<y1<y2,那么x的取值范围是(C)A.0<x<2B.0<x<3C.2<x<3D.x<0或x>37.二次函数y=ax2+bx+c(a≠0)的图象如下列图,那么正比例函数y=(b+c)x与反比例函数y=a-b+c在同一坐x标系中的大致图象是(C)18.如图是抛物线12+bx +c(a ≠0)图象的一局部,抛物线的顶点坐标是 A(1,3),与x 轴的一个交点是 B(4,0),y =ax 直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,以下结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的选项是(C)A .①②③B .①③④C .①③⑤D .②④⑤二、填空题(每题4分,共16分)9.点A(3,-2)关于x 轴对称的点的坐标是(3,2).k10.假设反比例函数y =x (k ≠0)的图象经过点(1,-3),那么一次函数 y =kx -k(k ≠0)的图象经过一、二、四象限.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如下列图的平面直角坐标系,双曲线 3经过点D ,y =x那么正方形ABCD 的面积是12.12.如图是一座拱桥,当水面宽 AB 为12m 时,桥洞顶部离水面4m ,桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,假设选取点 A 为坐标原点时的抛物线解析式是 y =- 1 (x -6)2+4,那么选取点B 为坐标原点9时的抛物线解析式是 y =- 1 2+4. (x +6) 92三、解答题(共52分)13.(12分)如图,正比例函数y1=-3x的图象与反比例函数k的图象交于A,B两点.点C在x轴负半轴上,y2=xAC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.解:(1)过点A作AD⊥OC于点D.又∵AC=AO,CD=DO.1S△ADO=2S△ACO=6.k=-12.(2)x<-2或0<x<2.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如下列图.请根据图象答复以下问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间?(2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3000÷10=300(米/分),3在超市逗留的时间为 40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3000),(45,2000)代入,得40k +b =3 000, k =-200,45k +b =2 解得b =11000. 000. ∴y 与x 的函数表达式为y =-200x +11000.令y =0,得-200x +11000=0,解得x =55.∴小敏8点55分返回到家.15.(14分)一名在校大学生利用“互联网+〞自主创业,销售一种产品,这种产品的本钱价为10元/件,销售价 不低于本钱价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销 售价x(元/件)之间的函数关系如下列图.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售 利润最大?最大利润是多少?解:(1)设y 与x 的函数解析式为y =kx +b ,10k +b =30,将(10,30),(16,24)代入,得16k +b =24,k =-1,解得b =40.所以y 与x 的函数解析式为y =-x +40(10≤x ≤16).∵ (2)根据题意知,W =(x -10)y ∵ (x -10)(-x +40) ∵ =-x 2+50x -400 ∵ =-(x -25)2+225. ∵ ∵a =-1<0,∵ ∴当x <25时,W 随x 的增大而增大.∵ 10≤x ≤16,4∴当x=16时,W取得最大值,最大值为144.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.16.(14分)在平面直角坐标系中,O为原点,直线 y=-2x-1与y轴交于点A,与直线y=-x交于点B,点B关于原点的对称点为点 C.(1)求过点A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC为菱形时,求点P的坐标.解:(1)由题意,得y=-2x-1,x=-1,y=-x.解得y=1.∴B(-1,1).∵点B关于原点的对称点为点C,∴C(1,-1).∵直线y=-2x-1与y轴交于点A,∴A(0,-1).设抛物线解析式为y=ax2+bx+c,∵抛物线过A,B,C三点,c=-1,a=1,∴a-b+c=1,解得b=-1,a+b+c=-1.c=-1.∴抛物线解析式为y=x2-x-1.(2)∵对角线互相垂直平分的四边形为菱形,点B关于原点的对称点为点C,点P关于原点的对称点为点Q,且与BC垂直的直线为y=x,y=x,∴P(x,y)需满足y=x2-x-1.x1=1+2,x2=1-2,解得=1-2.y=1+2,y12∴P点坐标为(1+2,1+2)或(1-2,1-2).5。
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
函数的值练习题函数是数学中非常重要的概念,它在各个领域都有广泛的应用。
通过函数,我们可以将自变量映射到相应的因变量上,从而获得函数的值。
在学习函数的过程中,我们需要进行一些练习,以加深对函数值的理解。
本文将介绍一些函数的值练习题,帮助读者巩固对函数的掌握。
1. 练习题一:线性函数给定函数 f(x) = 2x + 3,计算下列函数值:a) f(0)b) f(2)c) f(-4)解答:a) 将x替换为0,得到 f(0) = 2*0 + 3 = 3b) 将x替换为2,得到 f(2) = 2*2 + 3 = 7c) 将x替换为-4,得到 f(-4) = 2*(-4) + 3 = -52. 练习题二:二次函数给定函数 g(x) = x^2 - 4x + 5,计算下列函数值:a) g(1)b) g(-2)c) g(3)解答:a) 将x替换为1,得到 g(1) = 1^2 - 4*1 + 5 = 2b) 将x替换为-2,得到 g(-2) = (-2)^2 - 4*(-2) + 5 = 17c) 将x替换为3,得到 g(3) = 3^2 - 4*3 + 5 = 83. 练习题三:指数函数给定函数 h(x) = 2^x,计算下列函数值:a) h(0)b) h(1)c) h(-1)解答:a) 将x替换为0,得到 h(0) = 2^0 = 1b) 将x替换为1,得到 h(1) = 2^1 = 2c) 将x替换为-1,得到 h(-1) = 2^(-1) = 1/2 = 0.54. 练习题四:三角函数给定函数 sin(x),计算下列函数值:a) sin(0)b) sin(π/6)c) sin(π/4)解答:a) sin(0) = 0b) sin(π/6) = 1/2c) sin(π/4) = √2/2通过以上练习题,我们可以更好地理解函数的值。
在计算函数值时,我们只需要将自变量替换为具体的数值,然后根据函数表达式进行计算。
函数测试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项是函数的基本性质?A. 唯一性B. 多值性C. 单调性D. 可逆性答案:A2. 函数f(x) = x^2 + 3x + 2的零点个数是?A. 0B. 1C. 2D. 3答案:C3. 函数y = sin(x)是?A. 奇函数B. 偶函数C. 非奇非偶函数D. 既是奇函数又是偶函数答案:A4. 函数f(x) = x^3 - 3x + 1在区间(-∞, +∞)上是?A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案:D5. 函数y = 2^x的值域是?A. (-∞, 0)B. (0, +∞)C. [0, +∞)D. (-∞, +∞)答案:B二、填空题(每题3分,共15分)1. 函数f(x) = 2x + 3的反函数是________。
答案:f^(-1)(x) = (x - 3) / 22. 函数y = ln(x)的定义域是________。
答案:(0, +∞)3. 函数f(x) = x^2 - 4x + 4的最小值是________。
答案:04. 函数y = e^x的导数是________。
答案:e^x5. 函数f(x) = sin(x) + cos(x)的周期是________。
答案:2π三、解答题(每题10分,共20分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
解:首先求导数f'(x) = 3x^2 - 12x + 11,令f'(x) = 0,解得x = 1和x = 11/3。
经检验,x = 1为极小值点,x = 11/3为极大值点。
2. 证明函数f(x) = x^2在区间(0, +∞)上是单调递增的。
证明:任取x1, x2 ∈ (0, +∞),且x1 < x2,则f(x1) - f(x2) =x1^2 - x2^2 = (x1 - x2)(x1 + x2)。
高中数学函数的专项练习题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
店铺准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x), f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和 L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的`零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有 f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷 (非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________.解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________.解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,故实数k的取值范围是12,23.答案:12,2316.设函数f(x)=2x (-20),g(x)-log5(x+5+x2) (0若f(x)为奇函数,则当0解析:由于f(x)为奇函数,当-20时,f(x)=2x有最小值为f(-2)=2-2=14,故当0答案:34高中是人生中的关键阶段,大家一定要好好把握高中,店铺为大家整理的高一数学函数的应用测试题,希望大家喜欢。
一次函数的定义专项练习30题(有答案)1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+327.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
高中函数练习题及答案【篇一:高一数学函数经典习题及答案】班级姓名一、求函数的定义域1、求下列函数的定义域:⑴y?⑵y?⑶y?11?x?1?(2x?1)0?2、设函数f(x)的定义域为[0,1],则函数f(x)的定义域为_ __;函数f(?2)的定义域为________;23、若函数f(x?1)的定义域为[?2,3],则函数f(2x?1)的定义域是;函数f(?2)的定义域为。
4、知函数f(x)的定义域为[?1, 1],且函数f(x)?f(x?m)?f(x?m)的定义域存在,求实数m的取值范围。
1x二、求函数的值域5、求下列函数的值域:22⑴y?x?2x?3 (x?r) ⑵y?x?2x?3 x?[1,2] ⑶y?3x?13x?1⑷y? (x?5) x?1x?15x2+9x?4⑸y? ⑹ y? ⑺y?x?3?x? ⑻y?x2?x 2x?1⑼y? ⑽y?4⑾y?x2x2?ax?b6、已知函数f(x)?的值域为[1,3],求a,b的值。
2x?1三、求函数的解析式1、已知函数f(x?1)?x2?4x,求函数f(x),f(2x?1)的解析式。
2、已知f(x)是二次函数,且f(x?1)?f(x?1)?2x2?4x,求f(x)的解析式。
3、已知函数f(x)满足2f(x)?f(?x)?3x?4,则f(x)= 。
4、设f(x)是r上的奇函数,且当x?[0,??)时,f(x)?x(1,则当x?(??,0)时f(x)=____ _ f(x)在r上的解析式为5、设f(x)与g(x)的定义域是{x|x?r,且x??1},f(x) 是偶函数,g(x)是奇函数,且f(x)?g(x)?求f(x)与g(x) 的解析表达式1,x?1四、求函数的单调区间6、求下列函数的单调区间:⑴ y?x?2x?3⑵y? ⑶ y?x?6x?17、函数f(x)在[0,??)上是单调递减函数,则f(1?x2)的单调递增区间是228、函数y?2?x的递减区间是;函数y? 3x?6五、综合题9、判断下列各组中的两个函数是同一函数的为( c )⑴y1?(x?3)(x?5), y2?x?5;⑵y1?x?1x?1 , y2?(x?1)(x?1) ;x?3⑶f(x)?x, g(x)?2x2 ;⑷f(x)?x,g(x)?;⑸f1(x)?(2x?5), f2(x)?2x?5。