2015-2016学年人教版选修3-1 磁场 单元测试(A)
- 格式:doc
- 大小:258.00 KB
- 文档页数:10
物理选修3-1《第三章磁场》测试卷A (含答案)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个选项是符合题意的。
每小题1.下列哪些物理量是矢量------------------------- ()A .电流B .电势差C.电势能 D .磁感应强度A . B的大小与F成正比,与L、I成反比C.处在磁场中的通电导线L,在任何情况下所受磁场力F与L、I之比都恒定,且不为零3.------------------------------------------------------------------------------------------------------------ 下列各图中标出了匀强磁场中通电直导线受安培力的方向,正确的是----------------------------- ()4.如图所示,匀强磁场方向垂直于纸面向里,一束电子垂直于磁场射入,则电子束将X X X XX X X X—VDX X X XX X X XA .向上偏转B .向下偏转C.垂直于纸面向里偏转 D .垂直于纸面向外偏转X X X X试卷满分:100分考试时间:2.根据定义式IL F列说法正确的是 --------------------- ()100分钟4分,共48B. B的方向由F的方向所决定D .只有当B与L垂直时,定义式才有意义5.如图所示,ab两个带电粒子分别沿垂直于磁场方向进入匀强磁场中,圆弧为两粒子的运动轨迹,箭头表示运动方向,则A . a 粒子带正电,b 粒子带负电B .若ab 两粒子的质量、电量相等,则6. 一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小,轨迹如图所示。
下列有关粒子的运动方向和所带电性的判断正确的是 (C •若ab 两粒子的速率、质量相等,则 a 粒子带的电量较多D •若ab 两粒子的速率、电量相等,则 a 粒子的质量较小a粒子运动的动能较大A .粒子由a 向b 运动,带正电 C.粒子由b 向a 运动,带正电 B .粒子由a 向b 运动,带负电 D .粒子由b 向a 运动,带负电7.两通电直导线的电流方向分别为a —b ,c —d ,两导线垂直但不相交,ab 水平放置,可自由移动,cd 竖直放置且固定不动,如图所示。
新人教版选修3-1《第3章磁场》2016年单元测试卷一、选择题(每小题6分,共42分,每小题有一个或多个选项正确,全对得6分,少选得3分,有错选或不选得0分)1.(6分)如图所示,通电竖直长直导线的电流方向向上,初速度为υ0的电子平行于直导线竖直向上射出,不考虑电子的重力,则电子将()A.向右偏转,速率不变B.向左偏转,速率改变C.向左偏转,速率不变D.向右偏转,速率改变2.(6分)如图所示是表示磁场B,负电荷运动方向v和磁场对电荷作用力f的相互关系图,这四个图中画的正确的是(图中B、v、f两两垂直)()A. B.C.D.3.(6分)两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:4,电量之比为1:2,则两带电粒子受洛仑兹力之比为()A.2:1 B.1:1 C.1:2 D.1:44.(6分)有关电荷受电场力和洛仑兹力的说法中,正确的是()A.电荷在磁场中一定受磁场力的作用B.电荷在电场中一定受电场力的作用C.电荷受电场力的方向与该处电场方向垂直D.电荷若受磁场力,则受力方向与该处磁场方向垂直5.(6分)带电量为+q的粒子,以v0垂直进入匀强磁场,下列说法正确的是()A.如果把+q改为﹣q,且速度反向而大小不变,则洛仑兹力的大小方向均不变B.带电粒子运动的速度不会改变C.洛仑兹力的方向一定与电荷速度方向垂直,与磁场方向垂直D.电荷运动轨道平面一定与磁场方向垂直6.(6分)如图所示是一带电粒子垂直磁场方向进入磁场后的运动轨迹,已知磁场垂直纸面向内,则关于粒子的运动,下列说法中正确的是()A.如果是匀强磁场,且粒子运动过程中因受阻力影响,动能越来越小,则粒子一定是从b 运动到a,且粒子带正电B.如果是匀强磁场,且粒子运动过程中因受阻力影响,动能越来越小,则粒子一定是从a 运动到b,且粒子带负电C.如果是非匀强磁场,不考虑能量损失,则磁场的分布应是从左向右逐渐减弱D.如果是非匀强磁场,不考虑能量损失,则磁场的分布应是从左向右逐渐增强7.(6分)两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()A.轨道半径增大,角速度减小 B.轨道半径增大,角速度增大C.轨道半径减小,角速度减小 D.轨道半径减小,角速度增大8.(6分)有关洛仑兹力和安培力的描述,正确的是()A.通电直导线处于匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛仑兹力的宏观表现C.带电粒子在匀强磁场中运动受到洛仑兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行9.(6分)质量和电量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是()A.M带负电,N带正电B.M的速率小于N的速率C.洛伦兹力对M、N做正功D.M的运行时间大于N的运行时间10.(6分)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160 µV,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为()A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正11.(6分)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上.不计重力.下列说法正确的有()A.a、b均带正电B.a在磁场中飞行的时间比b的短C.a在磁场中飞行的路程比b的短D.a在P上的落点与O点的距离比b的近12.(6分)如图所示虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B 的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E和B的方向可能是()A.E和B都沿水平方向,并与电子运动方向相同B.E和B都沿水平方向,并与电子运动方向相反C.E竖直向上,B垂直于纸面向外D.E竖直向上,B垂直于纸面向里二、计算题(共28分)13.(8分)有一匀强磁场,磁感应强度的大小为1.2T,方向由南向北,如有一质子沿竖直向下的方向进入磁场,磁场作用在质子上的力为9.6×10﹣14N,则质子射入时的速度为m/s将在磁场中向偏转.(一个质子带一个单位正电荷)14.(10分)如图所示,电子射线管(A为其阴极),放在蹄形磁铁的N、S两极间(图中C 为N极),射线管的A、B两极分别接在直流高压电源的负极和正极.此时,荧光屏上的电子束运动径迹偏转(填“向上”“向下”或“不”).15.(10分)质量为m,带电量为q的微粒,以速度v与水平方向成45°角进入匀强电场和匀强磁场同时存在的空间(如图所示),微粒在电场、磁场、重力场的共同作用下做匀速直线运动,则带电粒子运动方向为沿轨迹向,带电粒子带电;电场强度大小为,磁感应强度的大小为.三、解答题(共3小题,满分40分)16.(10分)如图所示,在同一水平面上的两根导轨相互平行,并处在竖直向上的匀强磁场中,一根质量为3.6kg,有效长度为2m的金属棒放在导轨上.当金属棒中的电流为5A时,金属棒做匀速直线运动;当金属棒中的电流增加到8A时,金属棒的加速度为2m/s2,求磁场的磁感强度.17.(15分)电视机显像管简单原理如图所示,初速度不计的电子经加速电场加速后进入有限边界宽度为L的匀强磁场,磁感应强度为B,如要求电子束偏转角为α,求加速电场的电势差U.(已知电子电量为e,质量为m)18.(15分)电视机的显像管中,电子束的偏转是用磁偏转技术实现的.电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示.磁场方向垂直于圆面.磁场区的中心为O,半径为r.当不加磁场时,电子束将通过O点而打到屏幕的中心M点.为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?(电子的质量m、电量e均为已知)新人教版选修3-1《第3章磁场》2016年单元测试卷参考答案一、选择题(每小题6分,共42分,每小题有一个或多个选项正确,全对得6分,少选得3分,有错选或不选得0分)1.A;2.B;3.C;4.BD;5.ACD;6.AC;7.A;8.B;9.A;10.A;11.AD;12.ABC;二、计算题(共28分)13.5×105;东;14.向下;15.右上方;正;;;三、解答题(共3小题,满分40分)16.;17.;18.;。
第3章磁场单元测试 A61.指南针静止时,其地点如图中虚线所示.若在其上方搁置一水平方向的导线,并通以恒定电流,则指南针转向图中实线所示地点.据此可能是( B)A . 导线南北搁置,通有向北的电流B. 导线南北搁置,通有向南的电流C. 导线东西搁置,通有向西的电流D. 导线东西搁置,通有向东的电流2.如图,空间有垂直于xoy 平面的匀强磁场. t=0 的时辰,一电子以速度v0经过 x 轴上的 A 点,方向沿x 轴正方向 . A 点坐标为 (R2, 0) ,此中 R 为电子在磁场中做圆周运动的轨道半径 . 不计重力影响,则( D )①电子经过 y 轴时,速度大小仍为v0y②电子在tR时,第一次经过y 轴A v06v0(- R/2,0)O x③电子第一次经过y 轴的坐标为 (0 ,23R )2④电子第一次经过y 轴的坐标为 (0 ,23R ) 2以上说法正确的选项是A.①③B. ①④C. ①②③D. ①②④3.一个带电粒处于垂直于匀强磁场方向的平面内,在磁场力的作用下做圆周运动. 要想确立带电粒子的电荷量与质量之比,则只要要知道(D)A . 运动速度 v 和磁感觉强度 BB. 轨道半径 R 和磁感觉强度 BC. 轨道半径 R 和运动速度 vD . 磁感觉强度 B 和运动周期 T y/cm4.如下图,宽h=2cm 的有界匀强磁场,纵向范围足够大,磁感觉强度的方向垂直纸面向内,现有一群正粒子从O 点以同样的速率沿纸面不一样方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为 r=5cm,则( AD )A . 右界限 :-4 cm <y<4cm 有粒子射出B. 右界限 : y>4cm 和 y<-4 cm 有粒子射出C. 左界限 : y>8cm 有粒子射出D . 左界限 :0< y<8cm 有粒子射出5.如下图,两个半径同样的半圆形圆滑轨道置于竖直平面内,左右两头点等高,分别处于沿水平方向的匀强电场和匀强磁场中 . 两个同样的带正电小球同时从两轨道左端最高点由静止开释 . M、 N 为轨道的最低点,则以下说法中正确的选项是(O2x/cm+q+qB M E NBD )A . 两个小球抵达轨道最低点的速度v M <v NB. 两个小球第一次经过轨道最低点时对轨道的压力F M >F NC. 小球第一次抵达M 点的时间大于小球第一次抵达N 点的时间D. 在磁场中小球能抵达轨道的另一端最高处,在电场中小球不可以抵达轨道另一端最高处6.如下图圆形地区内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都同样的带电粒子,以不一样的速率,沿着同样的方向,对O 准圆心 O 射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间较长的带电粒子( A )A . 速率必定越小B. 速率必定越大C. 在磁场中经过的行程越长+D . 在磁场中的周期必定越大B= 1.0× 10-2T 的匀强7.把长 L = 0.15m 的导体棒置于磁感觉强度I磁场中,使导体棒和磁场方向垂直,如下图。
人教版选修3-1 第三章磁场一、单选题1.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b()A.穿出位置一定在O′点下方B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小2.如图所示,一根长度L的直导体棒中通以大小为I的电流,静止在导轨上,已知垂直于导体棒的匀强磁场的磁感应强度为B,B的方向与竖直方向成θ角.下列说法中正确的是()A.导体棒受到磁场力大小为BLI s inθB.导体棒对轨道压力大小为mg+BLI s inθC.导体棒受到导轨摩擦力为D.导体棒受到导轨摩擦力BLI cosθ3.下列关于磁场的说法中正确的是()A.磁体周围的磁场看不见、摸不着,所以磁场不是客观存在的B.将小磁针放在磁体附近,小磁针会发生偏转是因为受到磁场力的作用C.把磁体放在真空中,磁场就消失了D.当磁体周围撒上铁屑时才能形成磁场,不撒铁屑磁场就消失4.如图所示,带负电的金属圆盘绕轴OO′以角速度ω匀速旋转,在盘左侧轴线上的小磁针最后平衡的位置是()A. N极竖直向上B. N极竖直向下C. N极沿轴线向右D. N极沿轴线向左5.如图所示,一根通电直导线置于水平向右的匀强磁场中,电流方向垂直于纸面向里,该导线所受安培力大小为F.将导线长度减少为原来的一半时,导线受到的安培力为()A.B.C.FD. 2F6.质谱仪主要由加速电场和偏转磁场组成,其原理图如图.设想有一个静止的带电粒子P(不计重力),经电压为U的电场加速后,垂直进入磁感应强度为B的匀强磁场中,最后打到底片上的D 点,设OD=x,则图中能正确反映x2与U之间函数关系的是()A.B.C.D.7.如图所示,通电螺线管周围能自由转动的小磁针a、b、c、d已静止,N极指向正确的是()A.小磁针aB.小磁针bC.小磁针cD.小磁针d8.如图,一个带负电的物体从绝缘粗糙斜面顶端滑到底端时的速度为v,若加上一个垂直纸面向外的磁场,则滑到底端时()A.v变小B.v变大C.v不变D.不能确定v的变化9.关于磁场对通电直导线作用力的大小,下列说法中正确的是()A.通电直导线跟磁场方向平行时作用力最小,但不为零B.通电直导线跟磁场方向垂直时作用力最大C.作用力的大小跟导线与磁场方向的夹角大小无关D.通电直导线跟磁场方向不垂直时肯定无作用力10.如图所示,两根垂直纸面平行放置的直导线a和b,通有等值电流.在纸面上距a、b等远处有一点P,若P点合磁感应强度B的方向水平向左,则导线a、b中的电流方向是()A.a中向纸里,b中向纸外B.a中向纸外,b中向纸里C.a、b中均向纸外D.a、b中均向纸里二、多选题11.(多选)如图所示的xOy平面内,存在正交的匀强磁场和匀强电场,匀强磁场的磁感应强度大小为B,方向垂直xOy平面向里,匀强电场大小为E,方向沿y轴正方向.将一质量为m、带电量为q的粒子从O点由静止释放,粒子的运动曲线如图所示,运动周期为T,P点距x轴的距离为粒子运动过程中距x轴最大距离的一半,粒子的重力忽略不计.以下说法正确的是()A.粒子带正电B.粒子运动到最低点时,粒子所受电场力与洛伦兹力大小相等C.粒子由P点运动到与之等高的Q点所用时间为D.粒子在运动过程中,距x轴的最大距离为12.(多选)如图所示,一束正离子先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的()A.电荷B.质量C.速度D.比荷13.(多选)安培的分子环流假设,可用来解释()A.两通电导体间有相互作用的原因B.通电线圈产生磁场的原因C.永久磁铁产生磁场的原因D.铁质类物体被磁化而具有磁性的原因三、填空题14.在磁感应强度B=0.8 T的匀强磁场中,一根与磁场方向垂直放置、长度L=0.2 m的通电导线中通有I=0.4 A的电流,则导线所受磁场力大小为________;若将导线转过90°与磁场方向平行时,导线所受磁场力为________,此时磁场的磁感应强度为________.15.一矩形线圈面积S=10-2m2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×10-3Wb,则磁场的磁感应强度B=______________;若线圈以一条边为轴转180°,则穿过线圈的磁通量的变化量为____________;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф0=________________.16.边长为a的正方形线圈,放在磁感应强度为B的匀强磁场中,如图所示.求出下列四种情况下,穿过线圈的磁通量.17.在两平行金属板间,有如图所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有:A.不偏转 B.向上偏转C.向下偏转 D.向纸内或纸外偏转(1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________.(2)若电子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,电子将________.(3)若质子以大于v0的速度,沿垂直于电场方向和磁场方向从两板正中央射入,质子将________.(4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v0沿垂直于电场和磁场的方向,从两极正中央射入时,电子将________.18.如图所示,一个质量为m带正电的带电体电荷量为q,紧贴着水平绝缘板的下表面滑动,滑动方向与垂直纸面向里的匀强磁场B垂直,则能沿绝缘面水平滑动的速度方向________,大小应不小于________,若从速度v0开始运动,则它沿绝缘面运动的过程中,克服摩擦力做功为________.四、实验题19.霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图甲所示,在一矩形半导体薄片的P、Q间通入电流I,同时外加与薄片垂直的磁场B,在M、N 间出现电压U H,这种现象称为霍尔效应,U H称为霍尔电压,且满足U H=k,式中d为薄片的厚度,k为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图甲所示,该同学用电压表测量U H时,应将电压表的“+”接线柱与________(填“M”或“N”)端通过导线相连.(2)已知薄片厚度d=0.40 mm,该同学保持磁感应强度B=0.10 T不变,改变电流I的大小,测量相应的U H值,记录数据如下表所示.根据表中数据在图乙中画出U H-I图线,利用图线求出该材料的霍尔系数为________×10-3V·m·A-1·T-1(保留2位有效数字).(3)该同学查阅资料发现,使半导体薄片中的电流反向再次测量,取两个方向测量的平均值,可以减小霍尔系数的测量误差,为此该同学设计了如图丙所示的测量电路,S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流从Q端流入,P端流出,应将S1掷向________(填“a”或“b”),S2掷向________(填“c”或“d”).为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串联在电路中.在保持其它连接不变的情况下,该定值电阻应串联在相邻器件____和____(填器件代号)之间.20.1879年美国物理学家霍尔在研究载流导体在磁场中受力情况时,发现了一种新的电磁效应:将导体置于磁场中,并沿垂直磁场方向通入电流,则在导体中垂直于电流和磁场的方向会产生一个横向电势差,这种现象后来被称为霍尔效应,这个横向的电势差称为霍尔电势差.(1)如图甲所示,某长方体导体abcd-a′b′c′d′的高度为h、宽度为l,其中的载流子为自由电子,自由电子电荷量为e,导体处在与abb′a′面垂直的匀强磁场中,磁场的磁感应强度为B0.在导体中通有垂直于bcc′b′面的恒定电流,若测得通过导体的恒定电流为I,横向霍尔电势差为U H,此导体中单位体积内自由电子的个数为________.(2)对于某种确定的导体材料,其单位体积内的载流子数目n和载流子所带电荷量q均为定值,人们将H=定义为该导体材料的霍尔系数.利用霍尔系数H已知的材料可以制成测量磁感应强度的探头,有些探头的体积很小,其正对横截面(相当于图甲中的abb′a′面)的面积可以在0.1 cm2以下,因此可以用来较精确地测量空间某一位置的磁感应强度.如图乙所示为一种利用霍尔效应测磁感应强度的仪器,其中探头装在探杆的前端,且使探头的正对横截面与探杆垂直.这种仪器既可以控制通过探头的恒定电流的大小I,又可以监测探头所产生的霍尔电势差U H,并自动计算出探头所测位置磁场的磁感应强度的大小,且显示在仪器的显示窗内.①在利用上述仪器测量磁感应强度的过程中,对控杆的放置方位要求为:______________.②要计算出所测位置磁场的磁感应强度,除了要知道H、I、U H外,还需要知道物理量__________________.推导出用上述物理量表示所测位置磁感应强度大小的表达式:_____________.五、计算题21.如图所示,空间内有方向垂直纸面(竖直面)向里的界匀强磁场区域Ⅰ、Ⅱ,磁感应强度大小未知,区域Ⅰ内有竖直向上的匀强电场,区域Ⅱ内有水平向右的匀强电场,两区城内的电场强度大小相等,现有一质量、电荷量的带正电滑块从区域Ⅰ左侧与边界相距的点以的初速度沿粗糙、绝缘的水平面向右运动,进入区域Ⅰ后,滑块立即在竖直平面内做匀速圆周运动,在区域Ⅰ内运动一段时间后离开磁场落回点.已知滑块与水平面间的动摩擦因数,重力加速度.(1)求匀强电场的电场强度大小和区域Ⅰ中磁场的磁感应强度大小;(2)求滑块从点出发到再次落回点所经历的时间(可用分数表示,圆周率用字母π表示);(3)若滑块在点以的初速度沿水平面向右运动,当滑块进入区域Ⅱ后恰好能做匀速直线运动,求有界磁场区域Ⅰ的宽度及区域Ⅱ内磁场的磁感应强度大小.(可用分数表示).22.如图所示,ab、cd为两根相距 2 m的平行金属导轨,水平放置在竖直向下的匀强磁场中,一根质量为 3.6 kg金属棒,当通以 5 A的电流时,金属棒沿导轨做匀速运动;当金属棒中电流增加到8 A时,金属棒能获得 2 m/s2的加速度,求匀强磁场的磁感应强度的大小.23.如图所示,通电导线L垂直放于匀强磁场(各点的磁感应强度大小和方向均相同)中,导线长8m,磁感应强度B的值为 2 T,导线所受的力为32 N,求导线中电流的大小.答案解析1.【答案】C【解析】a粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定做匀速直线运动,故对粒子a有:Bqv=Eq即只要满足E=Bv,无论粒子带正电还是负电,都可以沿直线穿出复合场区,当撤去磁场只保留电场时,粒子b由于电性不确定,故无法判断是从O′点的上方还是下方穿出,故A、B错误;粒子b在穿过电场区的过程中必然受到电场力的作用而做类平抛运动,电场力做正功,其电势能减小,动能增大,故C项正确,D项错误.2.【答案】D【解析】根据左手定则可得导体棒受力分析如图所示.因为B与I垂直,故导体棒受到磁场力大小为,故A错误;根据共点力平衡规律得:,得导体棒对轨道的压力大小为,故B错误;由题意知导体棒受到的是静摩擦力,由平衡条件可得:,故C错误,D正确.3.【答案】B【解析】4.【答案】C【解析】等效电流的方向与转动方向相反,由安培定则知轴线上的磁场方向向右,所以小磁针N 极受力向右,故C正确.5.【答案】B【解析】电流与磁场垂直,安培力:F=BIL当导线长度减少为原来的一半时,导线受到的安培力为:F′=BI·联立解得:F′=.6.【答案】A【解析】根据动能定理qU=mv2得,v=粒子在磁场中偏转洛伦兹力提供向心力qvB=m,则R=.x=2R=.知x2∝U.故A正确,B、C、D错误.7.【答案】C【解析】根据安培定则,判断出通电螺线管左边为N,右边为S,则静止时小磁针N极指向磁场方向,所以图中正确的只有小磁针c.8.【答案】A【解析】根据左手定则,带负电的物体沿斜面下滑时受到垂直斜面向下的洛伦兹力,所以物体与斜面间的摩擦力增大,从而使物体滑到斜面底端时速度变小,故A正确.9.【答案】B【解析】由于安培力F=BIL sinθ,θ为导线和磁场的夹角,当导线的方向与磁场的方向平行时,所受安培力为0;当导线的方向与磁场方向垂直时,安培力最大.10.【答案】A【解析】若a中向纸里,b中向纸外,根据安培定则判断可知:a在P处产生的磁场Ba方向垂直于aP连线向下,如图所示.b在P处产生的磁场Bb方向垂直于bP连线向上,如图所示,根据平行四边形定则进行合成,则得P点的磁感应强度方向水平向左.符合题意.故A正确.若a中向纸外,b中向纸里,同理可知,P点的磁感应强度方向水平向右.故B错误.若a、b中均向纸外,同理可知,P点的磁感应强度方向竖直向上.故C错误.若a、b中均向纸里,同理可知,P点的磁感应强度方向竖直向下.故D错误.11.【答案】AC【解析】粒子由静止开始运动,故开始时电场力向下,故粒子带正电,故A正确;粒子运动到最低点时,合力向上,电场力向下,合力提供向心力,故洛伦兹力大于电场力,故B错误;粒子的初速度为零,将初速度沿着水平方向分解为水平向左和水平向右的两个相等分速度v1和v2,大小均为v,向右的分速度v2,对应的洛伦兹力与电场力平衡,故:qv2B=qE①向左的分速度v1,做逆时针的匀速圆周运动,根据牛顿第二定律,有:qv1B=m②其中:v1=v2=v③联立①②③解得:R=T==粒子由P点运动到与之等高的Q点所用时间为:t=·T=粒子在运动过程中,距x轴的最大距离为:ym=2R=故C正确,D错误.12.【答案】CD【解析】离子在区域Ⅰ内不偏转,则有qvB=qE,v=,说明离子有相同速度,C对;在区域Ⅱ内半径相同,由r=知,离子有相同的比荷,D对;至于离子的电荷与质量是否相等,由题意无法确定,故A、B错.13.【答案】CD【解析】两通电导体有相互作用,是通过磁体之间的磁场的作用产生的,故A错误;通电线圈产生磁场的原因是电流的周围存在磁场,与分子电流无关,故B错误;安培提出的分子环形电流假说,解释了为什么磁体具有磁性,说明了磁现象产生的本质,故C正确;安培认为,在原子、分子或分子团等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都形成一个微小的磁体,未被磁化的物体,分子电流的方向非常紊乱,对外不显磁性;磁化时,分子电流的方向大致相同,于是对外界显出显示出磁性,故D正确.14.【答案】6.4×10-2N00.8 T【解析】当磁感应强度B与电流I垂直放置时,由公式B=可知F=BIL=0.8×0.4×0.2 N=6.4×10-2N当导线放置方向与磁感应强度的方向平行时,受到的磁场力的大小为零,磁场中某点的磁感应强度的大小和是否放置通电导线以及放置的方向无关,B=0.8 T.15.【答案】0.2 T2×10-3Wb0【解析】线圈的磁通量Ф=B·S⊥=BS sin 30°,所以B===0.2 T若线圈以一条边为轴转180°,则穿过线圈的磁通量的变化量ΔФ=Ф-Ф′=1×10-3Wb-(-1×10-3)Wb=2×10-3Wb线圈平面和磁场方向之间的夹角变为0°,则Ф0=0.16.【答案】0Ba20.5Ba2【解析】由图1可知,线圈与磁场的方向平行,根据可知,穿过线圈的磁通量等于0;由图2可知,线圈与磁场垂直,根据可知,穿过线圈的磁通量为;由图3可知,线圈与磁场之间的夹角是30°,根据可知,穿过线圈的磁通量为;由图4可知,线圈与磁场之间的夹角额60°,根据可知,穿过线圈的磁通量为.17.【答案】(1)A(2)A(3)B(4)C【解析】设带电粒子的质量为m,带电荷量为q,匀强电场的电场强度为E,匀强磁场的磁感应强度为B.带电粒子以速度v0垂直射入互相正交的匀强电场和匀强磁场中时,若粒子带正电荷,则所受电场力方向向下,大小为qE;所受磁场力方向向上,大小为Bqv0.沿直线匀速通过时,显然有Bqv0=qE,v0=,即沿直线匀速通过时,带电粒子的速度与其质量、电荷量无关.如果粒子带负电荷,电场力方向向上,磁场力方向向下,上述结论仍然成立.所以,(1)(2)两小题应选 A.若质子以大于v0的速度射入两板之间,由于磁场力F=Bqv,磁场力将大于电场力,质子带正电荷,将向上偏转,第(3)小题应选 B.磁场的磁感应强度B增大时,电子射入的其他条件不变,所受磁场力F =Bqv0也增大,电子带负电荷,所受磁场力方向向下,将向下偏转,所以第(4)小题应选择 C.18.【答案】水平向右,,m[v-()2]【解析】19.【答案】(1)M(2)如图所示 1.5(1.4或 1.6)(3)b c S1E(或S2E)【解析】(1)根据左手定则得,正电荷向M端偏转,所以应将电压表的“+”接线柱与M端通过导线相连.(2)U H—I图线如图所示.根据U H=k知,图线的斜率为k=k=0.375,解得霍尔系数k=1.5×10-3V·m·A-1·T-1.(3)为使电流从Q端流入,P端流出,应将S1掷向b,S2掷向c,为了保护电路,定值电阻应串联在S1和E(或S2和E)之间.20.【答案】(1)(2)①应调整探杆的放置位置(或调整探头的方位),使霍尔电势差达到最大(或使探杆与磁场方向平行;使探头的正对横截面与磁场方向垂直;abb′a′面与磁场方向垂直)②探头沿磁场方向的宽度lB=【解析】(1)设单位体积内的自由电子数为n,自由电子定向移动的速率为v,则有I=nehlv当形成恒定电流时,自由电子所受电场力与洛伦兹力相等,因此有evB0=e解得n=.(2)①应调整探杆的放置方位(或调整探头的方位),使霍尔电势差达到最大(或使探杆与磁场方向平行;探头的正对横截面与磁场方向垂直;abb′a′面与磁场方向垂直).②设探头中的载流子所带电荷量为q,根据上述分析可知,探头处于磁感应强度为B的磁场中,当通有恒定电流I,产生最大稳定霍尔电压U H 时,有qvB=q又因I=nqhlv和H=联立可解得B=所以,还需要知道探头沿磁场方向的宽度l.21.【答案】(1)(2)(3)【解析】(1)滑块在区域Ⅰ内做匀速圆周运动时,重力与电场力平衡,则有:.解得:滑块在A、N间运动时,由牛顿第二定律可得:由运动公式可得:代入数据得:平抛运动过程满足:做圆周运动满足联立方程求解得:.(2)滑块在A、N间的时间:在磁场中做匀速圆周运动的时间:平抛运动的时间:总时间为:。
高中物理学习材料金戈铁骑整理制作第三章磁场综合测试题答案及详解本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.答案:ABD解析:只有当通电导线和磁场平行时,才不受安培力的作用,而A、D中导线均与磁场垂直,B中导线与磁场方向夹角为60°,因此受安培力的作用,故正确选项为A、B、D.2.答案:D解析:因为带电小球静止,所以不受磁场力的作用.3.答案:A解析:用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内部磁感应强度为零.4.答案:C解析:通电后,弹簧的每一个圈都相当一个环形电流,且各线圈都通以相同方向的电流,根据同向电流相互吸引,弹簧收缩,下端脱离水银面,使电路断开,电路断开后,弹簧中的电流消失,磁场作用失去,弹簧在弹力和自身重力作用下下落,于是电路又接通,弹簧又收缩……如此周而复始,形成弹簧上下跳动.正确答案为C.5.答案:A解析:离导线越远磁感应强度越小,电子的轨道半径越大.6.答案:A解析:由于m甲∶m乙=4∶1,q甲∶q乙=2∶1,v甲∶v乙=1∶1,故R甲∶R乙=2∶1.由于带电粒子只受洛伦兹力的作用,而洛伦兹力充当粒子做圆周运动的向心力,由左手定则判断,甲、乙所受洛伦兹力方向相反,则可判断,A选项正确.7.答案:ABD解析:当磁场方向垂直斜面向下时,据平衡条件知在沿斜面方向上mg sin30°=BIL所以B=mg2IL,因此选项A正确;当磁场方向竖直向下时,由左手定则知安培力应水平向左,直导体受力如图所示.由平衡条件知在沿斜面方向上mg sin30°=BIL cos30°所以B =mg3IL,故选项B 正确;若磁感应强度垂直斜面向上,由左手定则知安培力应沿斜面向下,这样直导体不可能静止在斜面上,所以选项C 不正确;若B 水平向左,由左手定则知,安培力方向应竖直向上,此时若满足BIL =mg ,即B =mgIL,则直导体仍可静止在斜面上,所以D 选项正确.8.答案:ACD解析:各粒子做圆周运动的周期T =2πmqB,根据粒子的比荷大小可知:T 1=T 2<T 3,故A正确;由于r 1>r 2>r 3结合r =m vqB及粒子比荷关系可知v 1>v 2>v 3,故B 错误;粒子运动的向心加速度a =q v Bm,结合各粒子的比荷关系及v 1>v 2>v 3可得:a 1>a 2>a 3,故C 正确;由图可知,粒子运动到MN 时所对应的圆心角的大小关系为θ1<θ2<θ3,而T 1=T 2,因此t 1<t 2,由T 2<T 3,且θ2<θ3,可知t 2<t 3,故D 正确.9.答案:ABD解析:带负电小球由槽口下滑到P 点的过程中,磁场力不做功,支持力不做功,只有重力做功.小球在P 点受磁场力方向竖直向上.根据机械能守恒mgR =12m v 2v =2gR在P 点N +Bq v -mg =m v 2RN =3mg -qB 2gRM 对地面压力N ′=Mg +N =(M +3m )g -qB 2gR 当qB 2gR =2mg 时N ′=(M +m )g 当qB 2gR =3mg 时N ′=Mg 选项A 、B 、D 正确. 10.答案:CD解析:在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若三力的合力恰好为零,则小球将沿直线匀速通过复合场,C 正确;D 图中小球只受到竖直向下的重力和竖直向上的电场力可以沿直线通过复合场,D 正确.第Ⅱ卷(非选择题 共60分)二、填空题(共4小题,每小题5分,共20分.把答案直接填在横线上)11.答案:由安培定则判定答案如下图所示.12.答案:竖直向下 垂直纸面向里 E 2ghgB2πEgB +32h g 22gh π13.答案:0.5T解析:金属杆偏离竖直方向后受力如图所示,杆受重力mg ,绳子拉力F 和安培力F 安的作用,由平衡条件可得:F sin30°=BIL ① F cos30°=mg ②①②联立,得mg tan30°=BIL∴B =mg tan30°IL=0.5T14.答案:速度,荷质比解析:由直线运动可得:qE =qB v 进而可知:v =EB,可得速度相同,再由在后面只有磁场空间内半径相同,可得mq相同.三、论述·计算题(共5小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.答案:11V解析:ab 棒受到的安培力:F =BIL =0.04N 所以I =2A I 总=3AE =I 总(r +R ·R abR +R ab)=11V .16.答案:P =BIa解析:将原图的立体图改画成从正面看的侧视图,如图所示,根据左手定则判断出电流受力方向向右.F =BIh ,P =F S =F ah =BIh ah =BIa点评:本题的物理情景是:当电流I 通过金属液体沿图中方向向上时,电流受到磁场的作用力,这个磁场力即为驱动液态金属流动的动力,由于这个驱动力而使金属液体沿流动方向产生压强.17.答案:(1)轨迹图见解析(2)2L (L 2+d 2)2mU q解析:(1)作粒子经电场和磁场中的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立求解①②③式得:磁感应强度B =2L (L 2+d 2)2mUq .18.答案:(1)6×10-3J (2)0.6m解析:(1)从M →N 过程,只有重力和摩擦力做功.刚离开N 点时有 Eq =Bq v即v =E /B =42m/s =2m/s.根据动能定理mgh -W f =12m v 2所以W f =mgh +12m v 2=1×10-3×10×0.8-12×1×10-3×22=6×10-3(J).(2)从已知P 点速度方向及受力情况分析如附图由θ=45°可知 mg =Eq f 洛=2mg =Bq v p所以v P =2mg Bq =2EB=22m/s.根据动能定理,取M →P 全过程有mgH -W f -Eqs =12m v 2P求得最后结果s =mgH -W f -12m v 2PEq=0.6m.19.答案:(1)3.46m (2)1.53s解析:(1)设垒球在电场中运动的加速度为a ,时间为t 1,有:qE =ma h =12at 21 d =v 0t 1代入数据得:a =50m/s 2,t 1=35s ,d =23m =3.46m(2)垒球进入磁场时与分界面夹角为θtan θ=at 1v 0=3,θ=60°进入磁场时的速度为v =v 0cos θ=20m/s设垒球在磁场中做匀速圆周运动的半径为R由几何关系得:R =dsin θ=4m又由R =m v qB ,得B =m vqR=10T球在磁场中运动时间为:t 2=360°-2×60°360°TT =2πm qB ,故t 2=4π15s运动总时间为:t =2t 1+t 2=1.53s。
高中物理学习材料唐玲收集整理《磁场》单元测试第I 卷(选择题 共30分)一、本题共10小题;每小题3分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得3分,选不全的得1分,有选错或不答的得0分1、下列单位中与磁感应强度单位相同有( )A .牛库·米秒;/B .牛安·米;C .伏米米秒;//D .韦米2 2、如右图所示,木板质量为M ,静止于水平地面上,木板上固定一质量不计的框架,框架上悬有磁铁A ,木板上放有磁铁B ,两磁铁质量均为m ,设木板对地面的压力为N 1,B 对木板的压力为N 2,A 对悬线的拉力为T ,则下面结论正确的是( )A .N 1=+Mg mg 2B .N mg 2=C .T mg =D .以上答案全不对3、通电矩形线圈放在匀强磁场中,线圈平面与磁感线平行时,它受到的电磁力矩为M 。
要使线圈受到的电磁力矩变为M/2,可以采取的措施是( )A .保持线圈大小不变,将匝数减小一半B .保持线圈的匝数不变,将线圈的长和宽都减半C .将线圈绕垂直于磁感线的轴线转过30°D .将线圈绕垂直于磁感线的轴线转过60°4、带电为+q 的粒子在匀强磁场中运动,下面说法中正确是( )(A )只要速度大小相同,所受洛仑兹力就相同。
(B )如果把+q 改变为-q ,速度反向,则受力的大小、方向均不变。
(C )已知洛仑兹力、磁场、速度中任意两个量的方向,就能判断第三个量的方向。
(D )粒子受到洛仑兹力作用后运动的动能动量均不变。
5、一束带电粒子流沿同一方向垂直射入一磁感应强度为B 的匀强磁场中,在磁场中这束粒子流分成两部分,其运动轨迹分别如图示中1、2所示,这两部分粒子的运动速度v ,动量P ,电量q及荷质比q/m 之间的关系正确的是( )A .如果q m q m v v 112212=<,则有 B . 如果q m q m v v 112212==,则有 C . 如果q q p p 1212=<,则有且两者都带电荷D .如果 p p q q 1212=>,则有,且两者都带负电6、三种粒子(均不计重力):质子、氘核和α粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图示中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离C .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均可以分离D .区域内加水平向左方向的匀强磁场时,三种带电粒子不能分离7、如图所示,ab 和cd 是匀强磁场中与磁场方向垂直的平面内两条平行直线。
同步检测十一第三章磁场综合(A卷)(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.把一条导线平行地放在磁针的上方附近,当导线中有电流通过时,磁针会发生偏转.首先观察到这个实验现象的物理学家是A.爱因斯坦B.奥斯特C.伽利略D.牛顿答案:B解析:奥斯特在1820年首先发现了电流的磁效应.2.由磁感应强度定义式B=F/IL可知A.磁感应强度B与通电导线受到的磁场力F成正比,与电流强度I和导线长度L的乘积成反比B.同一段通电短导线垂直于磁场放在不同磁场中,所受的磁场力F与磁感应强度B成正比C.公式B=F/IL只适用于匀强磁场D.只要满足L很短,I很小的条件,B=F/IL对任何磁场都适用答案:BD解析:场中某点的磁感应强度的大小和方向由磁场本身性质决定,其大小与磁场中放不放通电导线、放什么样的通电导线及与通电导线所受的力都无关,不能认为B和F成正比,B 和IL成反比;由B=F/IL得F=BIL,可见,当IL相同时,F与B成正比;B=F/IL是磁感应强度的定义式,对任何磁场都适用.3.如图所示,若一束电子从O点沿y轴正向移动,则在z轴上某点A的磁场方向应是A.沿x的正向B.沿x的负向C.沿z的正向D.沿z的负向答案:B解析:电子沿y轴正向移动时,等效电流方向为y轴负方向,根据安培定则,在A点磁场方向为x轴负向,应选B.4.如右图所示,有一劲度系数很小的金属弹簧A、B,当它通以电流时,以下说法正确的是A.当电流从A向B通过时,弹簧长度增大,电流反向时弹簧长度减小B.当电流从B向A通过时,弹簧长度增大,电流反向时弹簧长度减小C.无论电流方向如何,弹簧长度都增大D.无论电流方向如何,弹簧长度都减小答案:D解析:由安培定则可知,无论从哪个方向通入电流,相邻两环均会相吸,故长度减小.5.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心.如图所示,若圆环为弹性环,其形状由Ⅰ扩大到Ⅱ,那么圆环内磁通量的变化的情况是A.磁通量增大B.磁通量减小C.磁通量不变D.条件不足,无法确定答案:B解析:磁铁内部磁感线从S极到N极,磁铁外部磁感线从N极到S极,由于圆环在Ⅱ时,面积大于在Ⅰ时的面积,因此,Ⅱ中由磁铁N极到S极向下穿过圆环的磁感线条数大于Ⅰ中,而在Ⅰ、Ⅱ两种形状时,在磁铁内部由S极到N极向上穿过圆环的磁感线的条数相同,不论圆环处在Ⅰ形状还是Ⅱ形状,向上穿过圆环的磁感线条数总是多于向下穿过圆环的磁感线条数,且Ⅱ中向下的磁感线增加,因此Ⅱ中总的磁通量减小,正确选项是B.6.如图所示,条形磁铁放在水平桌面上,在它正上方中央固定一根直导线,导线与磁场垂直,现给导线通以垂直纸面向外的电流,则下列说法正确的是A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大C.磁铁对桌面的压力不变D.以上说法都不可能答案:A解析:如图,由左手定则知,导线受力竖直向下,由牛顿第三定律知,磁铁受导线的作用力向上,故选A.7. 1930年劳伦斯制成了世界上第一台回旋加速器,其原理如右图所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量答案:AD解析:回旋加速器的两个D形盒间隙分布周期性变化的电场,不断地给带电粒子加速使其获得能量;而D形盒处分布有恒定不变的磁场,具有一定速度的带电粒子在D形盒内受到磁场的洛伦兹力提供的向心力而做圆周运动;洛伦兹力不做功故不能使离子获得能量,C错;离子源在回旋加速器的中心附近.所以正确选项为A、D.8.一个质子穿过某一空间而未发生偏转,则A.可能存在电场和磁场,它们的方向与质子运动方向相同B.此空间可能有磁场,方向与质子运动速度的方向平行C.此空间可能只有磁场,方向与质子运动速度的方向垂直D.此空间可能有正交的电场和磁场,它们的方向均与电子速度垂直答案:ABD解析:带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上.9.质量为m的金属导体棒置于倾角为θ的导轨上,棒与导轨间的动摩擦因数为μ,当导体棒通以垂直纸面向里的电流时,恰能在导轨上静止,如下图所示的四个图中,标出了四种可能的匀强磁场方向,其中棒与导轨间的摩擦力可能为零的是答案:ACD解析:摩擦力可能为零时,安培力的范围如图所示,故可知B的范围,符合题意的为A、C、D.10.如图所示,O为圆心,和是半径分别为ON、OM的同心弧,在O处垂直纸面放置一载流直导线,电流方向垂直纸面向外,用一根导线围成回路KLMN.当回路中沿图示方向通过电流时则回路A.向左移动B.向右移动C.KL边垂直纸面向里运动,MN边垂直纸面向外运动D.KL边垂直纸面向外运动,MN边垂直纸面向里运动答案:D解析:先用右手螺旋定则判断出I1周围磁场磁感线的方向,不受安培力,再用左手定则判断KL、MN受力方向可确定D正确.二、填空题(本题共3小题,每小题6分,共18分)11.把长为l=0.25 m的导体棒置于磁感应强度B=1.0×10-2T的匀强磁场中,使导体棒和磁场方向垂直,如图所示,若导体棒电流I=2.0 A,方向向右,则导体棒受到的安培力的大小F=__________,安培力的方向为竖直_________(选填“上”或“下”).答案:5.0×10-3N上解析:F =BIL=1.0×10-2×2.0×0.25 N=5.0×10-3N由左手定则知,安培力的方向竖直向上.12.以ab 为边界的两匀强磁场的磁感应强度B 1=2B 2,现有一质量为m 、带电荷量为+q 的粒子,从O 点以初速v 0沿垂直于ab 方向发射,如图1所示,请在图中画出此粒子的运动轨迹,并求出经历时间t =___________该粒子重新回到O 点(重力不计).图1图2答案:22qB mπ 解析:此粒子的运动轨迹如图所示.粒子在上半部和下半部运动的周期分别为,211qB mT π=,222qB mT π=经历的时间.22222121qB m qB m qB m T T t πππ=+=+= 13.一劲度系数为k 的轻质弹簧,下端挂有一匝数为n 的矩形线框abcd ,bc 边长为L ,线框的下半部处在匀强磁场中,磁感应强度大小为B ,方向与线框平面垂直,在图中垂直于纸面向里.线框中通以电流I ,方向如图2所示.开始时线框处于平衡状态.今磁场反向,磁感应强度的大小为B ,线框达到新的平衡.在此过程中线框位移的大小Δx =___________,方向_________. 答案:knIBL2 方向向下 解析:设线框的质量为m ,bc 边受到的安培力为F =nBIL .当电流如图所示时,设弹簧伸长量为x 1,平衡时mg -F =kx 1,当电流反向后,设弹簧伸长量为x 2,平衡时mg +F =kx 2,所以线圈中电流反向后线框的位移大小为,2212knIBLk F x x x ==-=∆方向向下. 三、解答题(本题共4小题,14、15、16题各10分,17题12分,共42分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)14.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B .一带正电的粒子以速度v 0从O 点射入磁场,入射方向在xy 平面内.与x 轴正向的夹角为θ. 若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电荷量和质量之比.mq答案:lBv θsin 20解析:带正电的粒子射入磁场后,由于受到洛伦兹力的作用,粒子将沿右图所示的轨迹运动,从A 点射出磁场,O 、A 间的距离为l ,射出时速度的大小仍为v 0,射出方向与x 轴的夹角为θ.由于洛伦兹力提供向心力,则:,200Rv m B qv =R 为圆轨道的半径,解得:qBm v R 0=① 圆轨道的圆心位于OA 的中垂线上,由几何关系可得:θsin 2R l② 联立①②两式,解得.sin 20lBv m q θ= 15.在POQ 区域内有磁感应强度为B 的匀强磁场,磁场方向如图所示,负离子质量为m ,电量为-q ,从边界OQ 上的A 点垂直于OQ 也垂直于磁场方向射入磁场,OA =d ,若要求离子不从OP 边界射出磁场,离子的速度v 应满足什么条件?答案:mqBdv )12(+≤解析:由离子在A 点所受洛伦兹力方向可确定圆心一定在AQ 线上,离子从OP 边界射出磁场的临界轨迹是轨迹圆,且恰与OP 相切,如图所示.确定临界轨迹圆的圆心:从轨迹圆和OP 的切点D 作OP 的垂线交AQ 于C 即为圆心,画出临界轨迹圆,利用几何知识可得临界半径.)12(d r +=满足条件的半径,)12(d r +≤再利用物理规律qBmvr =可确定v 的取值范围.)12(mqBdv +≤16.一段粗细均匀的导体长为L ,横截面积为S ,如图所示,导体单位体积内的自由电子数为n ,电子电荷量为e ,通电后,电子定向运动的速度大小为v .(1)请用n 、e 、S 、v 表示流过导体的电流大小I .(2)若再在垂直导体的方向上加一个空间足够大的匀强磁场,磁感应强度大小为B ,试根据导体所受安培力推导出导体中某一自由电子所受的洛伦兹力大小的表达式. 答案:(1)nSve (2)f =evB解析:(1)导体中电流大小:I =q /t取t 时间,该时间内通过导体某一截面的自由电子数为nSvt 该时间内通过导体该截面的电荷量为vSvte 代入上式得:I =q /t =nSve(2)该导体处于垂直于它的匀强磁场中所受到的安培力: F =ILB又I =nSve ,代入上式得:F =BneSvL安培力是洛伦兹力的宏观表现,即某一自由电子所受的洛伦兹力 f =F /N式中N 为该导体中所有的自由电子数N =nSL 由以上几式得:f =evB17.如图所示,在xOy 坐标平面的第一象限内有存沿-y 方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场.现有一电荷量为+q 、质量为m 的粒子(不计重力)以初速度v 0沿-x 方向从坐标为(3l ,l )的P 点开始运动,接着进入磁场后由坐标原点O 射出,射出时速度方向与y 轴方向的夹角为45°,求:(1)粒子从O 点射出时的速度v 和电场强度E . (2)粒子到从P 点运动到O 点过程所用的时间.答案:(1)02v v = qlmv E 220=(2))8(44200021ππ+=+=+=v l v l v l t t t 解析:依题意知,带电粒子在电场中做类平抛运动,设进入磁场时的点为Q 点.在磁场中粒子做匀速圆周运动,最终由O 点射出.(1)由对称性可知,粒子在Q 点时速度大小为v ,方向与-x 轴方向成45°,则有 v cos45°=v 0,解得02v v =在P 到Q 的过程中,有2022121mv mv qEl -=联立以上两式解得qlmv E 22=(2)粒子在电场中运动,到达Q 点时沿-y 方向速度大小为v y =v 0,P 到Q 的运动时间为.201v l t =水平分运动,有x =v 0t 1;竖直分运动,有,210t v l =则x =2l 带电粒子在磁场中做匀速圆周运动,设其轨道半径为R ,由几何关系可得lR 22=运动时间024241v lv R t ππ=⨯=粒子到从P 点运动到O 点过程所用的时间)8(44200021πππ+=+=+=lv l v l t t t。
第三章磁场单元测试(人教版选修3-1)(时间:90分钟满分:100分)第Ⅰ卷(选择题共40分)一、选择题(本题共10小题,每小题4分,共40分)1.下列关于磁场和磁感线的描述中正确的是()A.磁感线可以形象地描述各点磁场的方向B.磁感线是磁场中客观存在的线C.磁感线总是从磁铁的N极出发,到S极终止D.实验中观察到的铁屑的分布就是磁感线2.发现通电导线周围存在磁场的科学家是()(A.洛伦兹B.库仑C.法拉第D.奥斯特3.如图1所示,带负电的金属环绕其轴OO′匀速转动时,放在环顶部的小磁针最后将()图1A.N极竖直向上B.N极竖直向下C.N极水平向左D.小磁针在水平面内转动4.如图2,条形磁铁放在水平桌面上,在其正中央的上方固定一根长直导线,导线与磁铁垂直.给导线通以垂直纸面向里的电流,用F N表示磁铁对桌面的压力,用F f表示桌面对磁铁的摩擦力,则导线通电后与通电前相比较()}图2A.F N减小,F f=0 B.F N减小,F f≠0C.F N增大,F f=0 D.F N增大,F f≠05.在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根通电长直导线,电流的方向垂直于纸面向里.如图3所示,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中()图3A.c、d两点的磁感应强度大小相等B.a、b两点的磁感应强度大小相等C.c点的磁感应强度的值最小、D.b点的磁感应强度的值最大6.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图4所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电荷量不变).从图中可以确定()图4A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电D.粒子从b到a,带负电7.“月球勘探者号”空间探测器运用高科技手段对月球近距离勘探,在月球重力分布、磁场分布及元素测定方面取得了新成果.月球上的磁场极其微弱,通过探测器拍摄电子在月球磁场中的运动轨迹,可分析月球磁场的强弱分布情况,图5是探测器通过月球表面a、b、c、d四个位置时,拍摄到的电子运动轨迹照片.设电子速率相同,且与磁场方向垂直,则可知四个位置的磁场从强到弱的排列正确的是()*图5A.B b→B a→B d→B c B.B d→B c→B b→B aC.B c→B d→B a→B b D.B a→B b→B c→B d8.如图6所示,一圆形区域内存在匀强磁场,AC为直径,O为圆心,一带电粒子从A 沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)()图6A.v2>v1,v2的方向必过圆心B.v2=v1,v2的方向必过圆心C.v2>v1,v2的方向可能不过圆心<D.v2=v1,v2的方向可能不过圆心9.每时每刻都有大量宇宙射线向地球射来如图7所示,地磁场可以改变射线中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义.假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,在地磁场的作用下,它将()图7A.向东偏转B.向南偏转C.向西偏转D.向北偏转10.如图8所示,质量为m,带电荷量q的小球从P点静止释放,下落一段距离后进入正交的匀强电场和匀强磁场,电场方向水平向左,磁场方向垂直纸面向里,则小球在通过正交的电场和磁场区域时的运动情况是()图8A.一定做曲线运动{B.轨迹一定是抛物线C.可能做匀速直线运动D.可能做匀加速直线运动题号123456(78910答案]二、填空题(本题共3小题,共14分)11.(4分)将长为1 m的导线ac从中点b折成如图9所示的形状,放入B=T的匀强磁场中,abc平面与磁场垂直.若在导线abc中通入25 A的直流电,则整个导线所受安培力大小为________ N.图9}12.(5分)如图10所示,有一质量为m、电荷量为q的带正电的小球停在绝缘平面上,并且处在磁感应强度为B、方向垂直纸面向里的匀强磁场中.为了使小球飘离平面,匀强磁场在纸面内移动的最小速度为____________,方向为____________.图1013.(5分)如图11所示,在x轴的上方(y≥0)存在着垂直于纸面向外的匀强磁场,磁感应强度为B.在原点O有一个离子源向x轴上方的各个方向发射出质量为m,电荷量为q 的正离子,速率都为v.对那些在xOy平面内运动的离子,在磁场中可能到达的最大值为x=________,y=________.图11三、计算题(本题共4小题,共46分)14.(10分)如图12所示,在倾角为37°的光滑斜面上水平放置一条长为0.2 m的直导线PQ,两端以很软的导线通入5 A的电流.当加一个竖直向上的B=T的匀强磁场时,PQ恰好平衡,则导线PQ的重力为多少(sin 37°=图12\15.(12分)如图13所示,质量为m、带电荷量为+q的粒子,从两平行电极板正中央垂直电场线和磁感线以速度v飞入.已知两极间距为d,磁感应强度为B,这时粒子恰能沿直线穿过电场和磁场区域.今将磁感应强度增大到某值,则粒子将落到极板上.已知粒子重力不计,则粒子落到极板上时的动能为多少图1316.(10分)如图14所示,直线MN上方为磁感应强度为B的足够大的匀强磁场.一电子(质量为m、电荷量为e)以v的速度从点O与MN成30°角的方向射入磁场中,求:¥图14(1)电子从磁场中射出时距O点多远;(2)电子在磁场中运动的时间为多少.17.(14分)质量为m,电荷量为q的带负电粒子自静止开始,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L,如图15所示.已知M、N两板间的电压为U,粒子的重力不计.图15(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图);(2)求匀强磁场的磁感应强度B..参考答案1.A [磁感线是为了形象描述磁场而引入的假想线,它可以描述磁场的强弱和方向,A 对,B 错.磁铁的外部,磁感线从N 极到S 极,内部从S 极到N 极,内外部磁感线为闭合曲线,C 错.实验中观察到的铁屑的分布只是模拟磁感线的形状,不是磁感线,磁感线是看不到的,D 错.] |2.D [洛伦兹研究了磁场对运动电荷的作用力,库仑发现库仑定律,法拉第发现法拉第电磁感应规律,奥斯特通过实验发现电流的周围存在磁场,提出电流可以产生磁场的理论,故D 正确.]3.C [带电金属环形成逆时针电流(从右向左看),据安培定则可以确定,通过金属环轴OO′处的磁场方向水平向右,小磁针处的磁场方向水平向左,故小磁针N 极最后水平指向左方,C 项正确.]4.C [由于磁铁在导线所在处的磁感应强度方向水平向左,由左手定则知,磁铁对通电导线的作用力竖直向上,由牛顿第三定律可知,通电导线对磁铁的作用力竖直向下,使磁铁与桌面间的压力变大;由于通电导线对磁铁的作用力竖直向下,因此磁铁没有水平运动趋势,故C 正确.]5.C [通电直导线在c 点的磁感应强度方向与B 0的方向相反,b 、d 两点的电流磁场与B 0垂直,a 点电流磁场与B 0同向,由磁场的叠加知c 点的合磁感应强度最小.] 6.B7.D [电子在磁场中做匀速圆周运动,由题图可知在a 、b 、c 、d 四图中电子运动轨迹的半径大小关系为R d >R c >R b >R a ,由半径公式R =mvqB 可知,半径越大,磁感应强度越小,所以B a >B b >B c >B d ,D 正确.]8.B [由于洛伦兹力对带电粒子不做功,故v 2=v 1,由几何关系可知v 2的方向必过圆心,故B 正确,A 、C 、D 错误.]9.A [赤道附近的地磁场方向水平向北,一个带正电的射线粒子竖直向下运动时,据左手定则可以确定,它受到水平向东的洛伦兹力,故它向东偏转,A 正确.]10.A [小球从P 点静止释放,下落一段距离后进入正交的匀强电场和匀强磁场中后一定会受到电场力和洛伦兹力.电场力和重力会对小球做正功,洛伦兹力不做功.小球的动能会增加,即速度变大,且速度的方向也会发生变化.洛伦兹力也会变大,方向也会改变.小球运动的速度和加速度的大小、方向都会改变.所以运动情况是一定做曲线运动.] !解析 折线abc 受力等效于a 和c 连线受力,由几何知识可知ac = 32 m ,F =ILB sin θ=25××32×sin 90° N = 3 N . 水平向左解析 由左手定则可以判断出,当小球相对于磁场向右运动时,带正电的小球所受的洛伦兹力方向向上,当其与重力平衡时,小球即将飘离平面.设此时速度为v ,则由力的平衡可知mg =qvB ,所以最小速度v =mgqB .小球相对于磁场向右运动,而小球静止,则磁场向左运动. 2mv qB解析 正离子在匀强磁场中做匀速圆周运动,其偏转方向为顺时针方向,射到y 轴上最远的离子是沿x 轴负方向射出的离子.而射到x 轴上最远的离子是沿y 轴正方向射出的离子.这两束离子可能到达的最大x 、y 值恰好是圆周的直径,如图所示. 14. N解析 对通电导线受力分析如图所示.由平衡条件得: ~F 安=mg tan 37°, 又F 安=BIL , 代入数据得:G =mg =BILtan 37°=错误! N = N .mv 2-12qvBd解析 带电粒子做匀速直线运动时,有q Ud =qvB ,qU =qvBd.磁感应强度增大,则磁场力增大,粒子向磁场力方向偏转.当粒子到达极板时,电场力做负功,则-q U 2=E k -12mv 2.得E k =12mv 2-12qU =12mv 2-12qvBd16.(1)mv Be (2)πm3Be 、解析 (1)由左手定则可判断出电子应落在ON 之间,根据几何关系可解得圆心角为60°,则电子出射点距O 点的距离等于电子的运动半径 mveB .(2)电子在磁场中的运动时间应为t =16T =πm3Be 17.(1)轨迹图见解析 (2)2L L 2+d 22mUq 解析 (1)作粒子经电场和磁场的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12mv 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:qvB =m v 2r ②由几何关系得:r 2=(r -L)2+d 2③ 联立①②③式得:磁感应强度B =2L L 2+d 2 2mUq .。
人教版物理选修3-1第三章《磁场》测试试题(含答案)1 / 9第三章《磁场》测试题一、单选题(每小题只有一个正确答案)1.电场强度是表征电场的力的性质的物理量,在磁场中也存在类似的物理量,它是( )A .磁通量B .磁感应强度C .洛仑兹力D .磁通量变化率2.下列用来定量描述磁场强弱和方向的是( )A .磁感应强度B .磁通量C .安培力D .磁感线3.如图所示,一个可以自由运动的通电线圈套在一条形磁铁正中并与其同轴放置,则线圈将( ).A .不动,扩张趋势B .向左移动,扩张趋势C .向右移动,收缩趋势D .不动,收缩趋势 4.如图,在天花板下用细线悬挂一半径为R 的金属圆环,圆环处于静止状态,圆环一部分处在垂直于环面的磁感应强度大小为B 的水平匀强磁场中,环与磁场边界交点A 、B 与圆心O 连线的夹角为120 ,此时悬线的张力为F .若圆环通电,使悬线的张力刚好为零,则环中电流大小和方向是( )ABCD5.为了降低潜艇噪音,可用电磁推进器替代螺旋桨。
如图为直线通道推进器示意图,推进器内部充满海水,前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。
空间内存在由超导线圈产生的匀强磁场,其磁感应强度B=10.0T ,方向竖直向下。
若在推进器前后方向通以电流I=1.0×103A,方向如图。
则下列判断正确的是( )A .推进器对潜艇提供向左的驱动力,大小为5.0×103NB .推进器对潜艇规供向右的驱动为,大小为5.0×103NC .推进器对潜艇提供向左的驱动力,大小为4.0×103ND .推进器对潜艇提供向右的驱动力,大小为4.0×103N6.下列有关磁感线的说法中,正确的是( )A .在磁场中存在着一条一条的磁感线B .磁感线是起于N 极,止于S 极C .磁感线越密集处磁场越强D .磁感线的切线方向就是磁场对电流的作用力的方向7.三个速度大小不同的同种带电粒子(重力不计),沿同一方向从图中长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为090、060、030,则它们在磁场中运动的时间之比为( )A .1:1:1B .1:2:3C .3:2:1D .238.磁性水雷是用一个可绕轴转动的小磁针来控制起爆电路的,军舰被地磁场磁化后就变成了一个浮动的磁体.当军舰接近磁性水雷时,就会引起水雷的爆炸,其依据是( )A .磁体的吸铁性B .磁极间的相互作用规律C .电荷间的相互作用规律D .磁场对电流的作用原理9.下列说法正确的是( )A .加速度v a t ∆=∆、电流U I R=、电场强度F E q =都用到了比值定义法 B .基本物理量和基本单位共同组成了单位制C .法拉第发现了电流的磁效应,拉开了研究电与磁相互关系的序幕D .1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定人教版物理选修3-1第三章《磁场》测试试题(含答案)律,并测出了静电力常量k的值10.如图所示,一根条形磁铁穿过一个弹性线圈,将线圈面积拉大,放手后穿过线圈的( )A.磁通量减少且合磁通量向左 B.磁通量增加且合磁通量向左C.磁通量减少且合磁通量向右 D.磁通量增加且合磁通量向右11.如图所示是表示电荷运动方向v、磁感应强度B和电荷所受的洛伦兹力F的相互关系图,四个图均为立体图且B、v、F两两相互垂直,其中正确的是A.B.C.D.12.如图所示,一条形磁铁放在粗糙水平面上,在其N极左上方放有一根长直导线,当导线中通以垂直纸面向里的电流I时,磁铁所受支持力和摩擦力的变化情况,正确的是()A.支持力变大,摩擦力向左 B.支持力变大,摩擦力向右C.支持力变小,摩擦力向左 D.支持力变小,摩擦力向右13.通电矩形线框abcd与长直通电导线MN在同一平面内,如图所示,ab边与MN平行.关于MN的磁场对线框的作用力,下列说法正确的是()A.线框所受的安培力的合力方向为零B.线框所受的安培力的合力方向向左C.线框有两条边所受的安培力方向相同D.线框有两条边所受的安培力大小相等3/ 914.关于磁场,以下说法正确的是()A.电流在磁场中某点不受磁场力作用,则该点的磁感强度一定为零B.磁场中某点的磁感强度,根据公式B=FIL,它跟F,I,L都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量15.关于回旋加速器中电场和磁场的作用的叙述,正确的是A.电场和磁场都对带电粒子起加速作用B.电场和磁场是交替地对带电粒子做功的C.只有电场力对带电粒子起加速作用D.同一带电粒子最终获得的最大动能只与交流电压的大小有关二、多选题(每小题至少有两个正确答案)16.如图所示,一长为L的通电直导线MN垂直放置在水平向右的匀强磁场中,磁感应强度大小为B,直导线中的电流方向由N到M,电流强度为I,则通电直导线所受安培力()A.方向垂直纸面向外B.方向垂直纸面向里C.大小为BIL D.大小为B IL17.如图所示是回旋加速器的示意图,其核心部分是两个D形金属盒,分别与高频交流电极连接,两个D形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是()A.加速电压越大,粒子最终射出时获得的动能就越大B.粒子射出时的最大动能与加速电压无关,与D形金属盒的半径和磁感应强度有关人教版物理选修3-1第三章《磁场》测试试题(含答案)5 / 9C .若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D .粒子第518.如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 、g 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则下列说法正确的是( )A .小球带负电B .小球做匀速圆周运动过程中机械能保持不变C .小球做匀速圆周运动过程中周期2E T Bgπ= D .若电压U 增大,则小球做匀速圆周运动的周期变大19.如图,两平行金属板中有相互垂直的匀强电场和匀强磁场,带正电的粒子(不计粒子的重力)从两板中央垂直电场、磁场入射.它在金属板间运动的轨迹为水平直线,如图中虚线所示.若使粒子飞越金属板间的过程中向上板偏移,可以采取下列的正确措施为 ( )A .使入射速度增大B .使粒子电量增大C .使电场强度增大D .使磁感应强度增大20.一金属条放置在相距为d 的两金属轨道上,如图所示.现让金属条以v 0的初速度从AA ′进入水平轨道,再由CC ′进入半径为r 的竖直圆轨道,金属条到达竖直圆轨道最高点的速度大小为v ,完成圆周运动后,再回到水平轨道上,整个轨道除圆轨道光滑外,其余均粗糙,运动过程中金属条始终与轨道垂直且接触良好.已知由外电路控制、流过金属条的电流大小始终为I ,方向如图中所示,整个轨道处于水平向右的匀强磁场中,磁感应强度为B ,A 、C 间的距离为L ,金属条恰好能完成竖直面内的圆周运动.重力加速度为g ,则由题中信息可以求出()A.金属条的质量B.金属条在磁场中运动时所受的安培力的大小和方向C.金属条运动到DD′时的瞬时速度D.金属条与水平粗糙轨道间的动摩擦因数三、实验题21.如图所示,在“用DIS研究通电螺线管的磁感应强度”的实验中,M,N是通电螺线管轴线上的两点,且这两点到螺线管中心的距离相等。
人教版高中物理选修3-1《磁场》单元测试卷限时:90分钟总分:100分一、选择题(每小题4分,共40分)1.下列说法正确的是()A.除永久磁铁外,一切磁场都是由运动电荷产生的B.一切磁现象都起源于运动电荷C.一切磁作用都是运动电荷通过磁场产生的D.有磁必有电,有电必有磁2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,B值越大3.如图所示,一圆形区域内存在匀强磁场,AC为直径,O为圆心,一带电粒子从A沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)()A.v2>v1,v2的方向必过圆心B.v2=v1,v2的方向必过圆心C.v2>v1,v2的方向可能不过圆心D.v2=v1,v2的方向可能不过圆心4.如图所示,三个速度大小不同的同种带电粒子沿同一方向从图示长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90˚、60˚、30˚,则它们在磁场中运动时间之比为()A.1∶1∶1B.1∶2∶3C.3∶2∶1D.3∶2∶15.电磁轨道炮工作原理如下图所示,待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是()A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变6.如图所示,甲是一带正电的小物块,乙是不带电的绝缘物块,甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场.现用水平恒力拉乙物块,使甲、乙无相对滑动一起向左加速运动,在加速运动阶段()A.甲、乙两物块间摩擦力不断增大B.甲、乙两物块间摩擦力不断减小C.甲、乙两物块间摩擦力大小不变D.乙物块与地面间摩擦力不断增大7.利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上的两条宽度分别为2d和d的缝,两缝近端相距为L.一群质量为m,电荷量为q,具有不同速度的粒子从宽度为2d的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是()A.粒子带正电B.射出粒子的最大速度为qB(3d+L)2mC.保持d和L不变,增大B,射出粒子的最大速度与最小速度之差增大D.保持d和B不变,增大L,射出粒子的最大速度与最小速度之差增大8.如图所示,匀强磁场的磁感应强度为B,有一矩形线圈abcd,且ab=L1,ad=L2,通有逆时针方向的电流I,让它绕cd边转过某一角度时,使线圈平面与磁场夹角为θ,则()A.穿过线圈的磁通量为Φ=BL1L2sinθB.穿过线圈的磁通量为Φ=BL1L2cosθC.cd边受到的安培力为F=BIL1sinθD.ad边受到的安培力为F=BIL1cosθ9.如图,空间有垂直于xOy平面的匀强磁场.t=0的时刻,一电子以速度v0经过x轴上的A点,方向沿x轴正方向.A点坐标为(-R2,0),其中R为电子在磁场中做圆周运动的轨道半径.不计重力影响,则() A.电子经过y轴时,速度大小仍为v0B.电子在t=πR6v0时,第一次经过y轴C.电子第一次经过y轴的坐标为(0,2-32R)D.电子第一次经过y轴的坐标为(0,-2-32R)10.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()A.质子被加速后的最大速度不可能超过2πfRB.质子被加速后的最大速度与加速电场的电压大小无关C.只要R足够大,质子的速度可以被加速到任意值D.不改变B和f,该回旋加速器也能用于加速α粒子二、填空题(每小题5分,共20分)11.如图所示,比荷为em的电子,以速度v0沿AB边射入边长为a的等边三角形的匀强磁场区域中,欲使电子从BC边穿出,磁感应强度B的取值应为________.12.如图所示,质量为m,带电量为-q的粒子,从两平行电极板正中央垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感应强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感应强度增大到某值,则粒子将落到极板上.粒子落到极板上的动能为________.13.如图所示,A、B为粗细均匀的铜环直径两端,若在A、B两端加一电压U,则环心O处的磁感应强度为________.(已知圆环直径为d)14.如图所示,质量为m的带电微粒,在相互垂直的匀强电磁场中运动,电场强度为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里,此微粒在垂直于磁场的竖直平面内做半径为R的匀速圆周运动(不计空气阻力),微粒一定带________电(填“正”或“负”),微粒的线速度大小为________.三、计算题(共40分)15.(10分)如图所示,平行金属导轨间距为0.5 m,水平放置,电源电动势为E=1.5 V,内阻r=0.2 Ω,金属棒电阻R=2.8 Ω,与平行导轨垂直,其余电阻不计,金属棒处于磁感应强度B=2.0 T、方向与水平方向成60˚角的匀强磁场中,则开始接通电路瞬间,金属棒受到的安培力的大小和方向如何?若棒的质量为m=5×10-2 kg,此时它对轨道的压力是多少?(g取10 m/s2)16.(10分)如图所示,足够长的绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直于纸面向外.一带电量q=+4.0×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s,从斜面底端A冲上斜面,经过3 s离开斜面,求磁场的磁感应强度.(取g=10 m/s2)17.图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R,圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.一电荷量为q的正离子沿平行金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧FG所对应的圆心角为θ,不计重力,求(1)离子速度的大小;(2)离子的质量.18.(10分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴正方向夹角为θ.不计空气阻力,重力加速度为g,求:(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.人教版高中物理选修3-1《磁场》单元测试试卷参考答案一、选择题(每小题4分,共40分)1.下列说法正确的是()A.除永久磁铁外,一切磁场都是由运动电荷产生的B.一切磁现象都起源于运动电荷C.一切磁作用都是运动电荷通过磁场产生的D.有磁必有电,有电必有磁解析:磁现象的电本质,一切磁现象都起源于运动电荷.答案:BC2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,B值越大解析:磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关,而磁感线可以描述磁感应强度,疏密程度表示大小.答案:D图13.如图1所示,一圆形区域内存在匀强磁场,AC为直径,O为圆心,一带电粒子从A沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)()A.v2>v1,v2的方向必过圆心B.v2=v1,v2的方向必过圆心C .v 2>v 1,v 2的方向可能不过圆心D .v 2=v 1,v 2的方向可能不过圆心答案:B图24.如图2所示,三个速度大小不同的同种带电粒子沿同一方向从图示长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90˚、60˚、30˚,则它们在磁场中运动时间之比为( )A .1∶1∶1B .1∶2∶3C .3∶2∶1 D.3∶2∶1解析:如图3所示,图3设带电粒子在磁场做圆周运动的圆心为O ,由几何关系知,圆弧MN ︵ 所对应的粒子运动的时间t =MN ︵v =Rαv =m v qB ·αv =mαqB ,因此,同种粒子以不同速度射入磁场,经历时间与它们的偏角α成正比,即t 1∶t 2∶t 3=90˚∶60˚∶30˚=3∶2∶1.答案:C5.(2011·新课标卷)电磁轨道炮工作原理如下图4所示,待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I 从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是()图4A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变解析:由题意可知,安培力做功使炮弹的速度逐渐增大.假设轨道宽度为L′,则由动能定理可知F安培力L=12,而F安培力=BIL′,又根据题意可知B=KI(K2m v为常数),三个式子整理可得到弹体的出射速度v=I2KLL′,从而判断B,Dm正确.答案:BD6.如图5所示,甲是一带正电的小物块,乙是不带电的绝缘物块,甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场.现用水平恒力拉乙物块,使甲、乙无相对滑动一起向左加速运动,在加速运动阶段()图5A.甲、乙两物块间摩擦力不断增大B.甲、乙两物块间摩擦力不断减小C .甲、乙两物块间摩擦力大小不变D .乙物块与地面间摩擦力不断增大答案:BD图67.利用如图6所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上的两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m ,电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析:粒子要从右边的缝中射出,粒子进入磁场后向右偏,根据左手定则可以判断粒子带负电,A 项错误;由q v B =m v 2r 得v =qBr m ,可见半径越大,速率越大,最大半径为3d +L 2,因此射出的最大速度为qB (3d +L )2m,B 项正确;同理可求得最小速度为qBL 2m ,最大速度与最小速度之差为3qBd 2m ,这个值与L 无关,可以分析,C 项正确,D 项错误.答案:BC8.如图7所示,匀强磁场的磁感应强度为B ,有一矩形线圈abcd ,且ab =L 1,ad =L 2,通有逆时针方向的电流I ,让它绕cd 边转过某一角度时,使线圈平面与磁场夹角为θ,则( )图7A.穿过线圈的磁通量为Φ=BL1L2sinθB.穿过线圈的磁通量为Φ=BL1L2cosθC.cd边受到的安培力为F=BIL1sinθD.ad边受到的安培力为F=BIL1cosθ解析:沿cd转过某一角度,使线圈平面与磁场夹角为θ,此时穿过线圈的有效面积为L1L2sinθ,所以穿过线圈的磁通量为BL1L2sinθ,cd边与磁场方向垂直,受到的安培力为BIL1,ad边与磁场方向平行,受到的安培力为0.答案:A9.如图8,空间有垂直于xOy平面的匀强磁场.t=0的时刻,一电子以速度v0经过x轴上的A点,方向沿x轴正方向.A点坐标为(-R2,0),其中R为电子在磁场中做圆周运动的轨道半径.不计重力影响,则()图8A.电子经过y轴时,速度大小仍为v0B.电子在t=πR6v0时,第一次经过y轴C.电子第一次经过y轴的坐标为(0,2-32R)D.电子第一次经过y轴的坐标为(0,-2-32R)解析:因电子在匀强磁场中运动,只受洛伦兹力,做匀速圆周运动,故A正确;画出轨迹,由几何关系可知,当电子转过30˚角时,到达y轴对应时间t=112T=1 12×2πRv0=πR6v0,故B正确;电子应向下方偏转.故穿过y轴时坐标为∶y=-R(1-cos30˚)=-2-32R,故D正确.答案:ABD10.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图9所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()图9A.质子被加速后的最大速度不可能超过2πfRB.质子被加速后的最大速度与加速电场的电压大小无关C.只要R足够大,质子的速度可以被加速到任意值D.不改变B和f,该回旋加速器也能用于加速α粒子解析:由于回旋加速器所加交变电压周期与粒子转动的周期相同,则粒子的最大速度为2πfR,A项正确;质子被加速后的最大速度v m=BqRm,与加速电场的电压大小无关,B项正确;R足够大,质子速度不能被加速到任意值.因为按相对论原理,质子速度接近光速时光子质量发生变化,进一步提高速度就不可能了,C 项错误;因为回旋加速器所加交变电压周期与粒子转动周期应相同,粒子转动周期T=2πmBq,α粒子与质子的比荷不相同,应调节f或B,故D项错误.答案:AB二、填空题(每小题5分,共20分)图1011.如图10所示,比荷为e m 的电子,以速度v 0沿AB 边射入边长为a 的等边三角形的匀强磁场区域中,欲使电子从BC 边穿出,磁感应强度B 的取值应为________.解析:画出刚好不出BC 边的临界状态对应的轨迹,应与BC 相切,根据轨迹确定半径,再根据r =m v 0eB 求B .答案:B ≤3m v 0ae图1112.如图11所示,质量为m ,带电量为-q 的粒子,从两平行电极板正中央垂直电场线和磁感线以速度v 飞入.已知两板间距为d ,磁感应强度为B ,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感应强度增大到某值,则粒子将落到极板上.粒子落到极板上的动能为________.解析:由题意:q U d =q v B ,又当粒子落到极板上有:-q ·U 2=E k -12m v 2,所以E k =m v 2-q v Bd 2. 答案:m v 2-q v Bd 213.如图12所示,A 、B 为粗细均匀的铜环直径两端,若在A 、B 两端加一电压U,则环心O处的磁感应强度为________.(已知圆环直径为d)图12答案:014.如图13所示,质量为m的带电微粒,在相互垂直的匀强电磁场中运动,电场强度为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里,此微粒在垂直于磁场的竖直平面内做半径为R的匀速圆周运动(不计空气阻力),微粒一定带________电(填“正”或“负”),微粒的线速度大小为________.图13解析:粒子做匀速圆周运动,则重力与电场力等大反向,故电场力竖直向上,则微粒带负电,又R=m vqB 且mg=qE,所以v=qBRm=gBRE.答案:负;BRg E三、论述计算题(共40分)图1415.(10分)如图14所示,平行金属导轨间距为0.5 m,水平放置,电源电动势为E=1.5 V,内阻r=0.2 Ω,金属棒电阻R=2.8 Ω,与平行导轨垂直,其余电阻不计,金属棒处于磁感应强度B=2.0 T、方向与水平方向成60˚角的匀强磁场中,则开始接通电路瞬间,金属棒受到的安培力的大小和方向如何?若棒的质量为m=5×10-2 kg,此时它对轨道的压力是多少?(g取10 m/s2)解:电路刚接通的瞬间,金属棒瞬时速度为零,金属棒受三个力作用,即:重力、支持力、安培力,由于此时金属棒未动,不会产生感应电动势,这时回路中的电流只由电源及回路电阻决定.由闭合电路欧姆定律有I=ER+r = 1.52.8+0.2A=0.5 A.F=BIL=2.0×0.5×0.5 N=0.5 N.方向由左手定则可知,与轨道成30˚角斜向左上方,其竖直的分力F sinθ=0.5×sin30˚ N=0.25 N.因F sin30˚=0.25 N,小于重力mg=5×10-2×10 N=0.5 N.说明轨道对金属棒仍有支持力F N存在,由竖直方向受力平衡知:F N+F sin30˚-mg=0,F N=mg-F sin30˚=0.5 N-0.25 N=0.25 N.由牛顿第三定律可知,金属棒对轨道的压力为0.25 N.图1516.(10分)如图15所示,足够长的绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直于纸面向外.一带电量q=+4.0×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s,从斜面底端A冲上斜面,经过3 s离开斜面,求磁场的磁感应强度.(取g=10 m/s2)解:带电小球的受力示意图如图16所示.小球沿斜面方向做匀减速运动,根据牛顿第二定律,则有:mg sinα+qE cosα=ma.图16解得:a=g sinα+qEm cosα=(10×0.6+4×10-2×50×0.80.40) m/s2=10 m/s2.设小球运动到最高点时速度v t=0,所用时间为t1,则有:v t=v0-at1=0.解得:t1=v0a=2010s=2 s.图17故带电小球上升至最高点后立即下滑,此时小球受力情况如图17所示.小球沿斜面加速下滑其加速度仍为:a=10 m/s2,下滑时间:t2=t-t1=3 s-2 s=1 s.小球下滑t2=1 s时的速度为:v′=at2=10×1 m/s=10 m/s.此时小球离开斜面,F N=0.则垂直斜面方向有:qE sinα+q v′B=mg cosα,解得B=mg cosα-qE sinαq v′=5.0 T.17.图18中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R,圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.一电荷量为q的正离子沿平行金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧FG所对应的圆心角为θ,不计重力,求图18(1)离子速度的大小;(2)离子的质量.解:(1)由题设知,离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡q v B0=qE0①式中,v是离子运动速度的大小,E0是平行金属板之间的匀强电场的强度,有E0=Ud②由①②式得v =U B 0d ③ (2)在圆形磁场区域,离子做匀速圆周运动.由洛伦兹力公式和牛顿第二定律有q v B =m v 2r ④图19式中,m 和r 分别是离子的质量和它做圆周运动的半径.由题设,离子从磁场边界上的点G 穿出,离子运动的圆周的圆心O ′必在过E 点垂直于EF 的直线上,且在EG 的垂直平分线上(见上图).由几何关系有r =R tan α⑤式中,α是OO ′与直线EF 的夹角.由几何关系有2α+θ=π⑥联立③④⑤⑥式得,离子的质量为m =qBB 0Rd U cot θ2⑦图2018.(10分)如图20所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴正方向夹角为θ.不计空气阻力,重力加速度为g,求:(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.解:(1)小球在电场、磁场中恰能做匀速圆周运动,其所受电场力必须与重力平衡,有qE=mg①E=mg q ②重力的方向是竖直向下的,电场力的方向则应为竖直向上,由于小球带正电,所以电场强度方向竖直向上.(2)小球做匀速圆周运动,O′为圆心,MN为弦长,∠MO′P=θ,(P为MN 的中点).设半径为r,由几何关系知L2r=sinθ③小球做匀速圆周运动的向心力由洛伦兹力提供,设小球做圆周运动的速率为v,有q v B=m v2 r④由速度的合成与分解得v0v=cosθ⑤由③④⑤式得v0=qBL2m cotθ⑥(3)设小球到M点的竖直分速度为v y,它与水平分速度的关系为v y=v0tanθ⑦由匀变速直线运动规律v2y=2gh⑧由⑥⑦⑧式得h=q2B2L2 8m2g⑨。
章末检测(A)(90分钟100分)一、选择题(本题10小题,每小题5分,共50分)1.一个质子穿过某一空间而未发生偏转,则()A.可能存在电场和磁场,它们的方向与质子运动方向相同B.此空间可能有磁场,方向与质子运动速度的方向平行C.此空间可能只有磁场,方向与质子运动速度的方向垂直D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直答案ABD解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上.2. 两个绝缘导体环AA′、BB′大小相同,环面垂直,环中通有相同大小的恒定电流,如图1所示,则圆心O处磁感应强度的方向为(AA′面水平,BB′面垂直纸面)A.指向左上方B.指向右下方C.竖直向上D.水平向右答案 A3.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,B值越大答案 D解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关.而磁感线可以描述磁感应强度,疏密程度表示大小.4.关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是()A.可能做匀速直线运动B.可能做匀变速直线运动C.可能做匀变速曲线运动D.只能做匀速圆周运动答案 A解析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不可能做匀变速运动,故B、C两项错误.只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故D项中“只能”是不对的.5. 1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图2所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()图2A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量答案AD解析本题源于课本而又高于课本,既考查考生对回旋加速器的结构及工作原理的掌握情况,又能综合考查磁场和电场对带电粒子的作用规律.由R=m v qB知,随着被加速离子的速度增大,离子在磁场中做圆周运动的轨道半径逐渐增大,所以离子必须由加速器中心附近进入加速器,A项正确,B项错误;离子在电场中被加速,使动能增加;在磁场中洛伦兹力不做功,离子做匀速圆周运动,动能不改变.磁场的作用是改变离子的速度方向,所以C项错误,D项正确.6. 如图3所示,一个带负电的油滴以水平向右的速度v进入一个方向垂直纸面向外的匀强磁场B后,保持原速度做匀速直线运动,如果使匀强磁场发生变化,则下列判断中正确的是()图3A.磁场B减小,油滴动能增加B.磁场B增大,油滴机械能不变C.使磁场方向反向,油滴动能减小D.使磁场方向反向后再减小,油滴重力势能减小答案ABD解析带负电的油滴在匀强磁场B中做匀速直线运动,受坚直向下的重力和竖直向上的洛伦兹力而平衡,当B减小时,由F=q v B可知洛伦兹力减小,重力大于洛伦兹力,重力做正功,故油滴动能增加,A正确;B增大,洛伦兹力大于重力,重力做负功,而洛伦兹力不做功,故机械能不变,B正确;磁场反向,洛伦兹力竖直向下,重力做正功,动能增加,重力势能减小,故C错,D正确.7.如图4所示为一个质量为m、电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中(不计空气阻力).现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度—时间图象可能是下图中的()图4答案AD解析由左手定则可知,圆环所受洛伦兹力竖直向上,如果恰好q v0B=mg,圆环与杆间无弹力,不受摩擦力,圆环将以v0做匀速直线运动,故A正确;如果q v0B<mg,则a=μ(mg-q v B)m,随着v的减小,a增大,直到速度减为零后静止;如果q v0B>mg,则a=μ(q v B-mg)m,随着v的减小a也减小,直到q v B=mg,以后将以剩余的速度做匀速直线运动,故D正确,B、C错误.8. 如图5所示,空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述3种情况下,从A到B点,从A到C点和A 到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,则有(粒子重力忽略不计)()图5A.t1=t2=t3B.t2<t1<t3C.t1=t2<t3D.t1=t3>t2答案 C解析只有电场时,粒子做类平抛运动,水平方向为匀速直线运动,故t1=t2;只有磁场时做匀速圆周运动,速度大小不变,但沿AC方向的分速度越来越小,故t3>t2,综上所述可知,选项C对.9.如图6所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d 孔射出后分成3束.则下列判断正确的是()图6A .这三束正离子的速度一定不相同B .这三束正离子的质量一定不相同C .这三束正离子的电荷量一定不相同D .这三束正离子的比荷一定不相同答案 D解析 本题考查带电粒子在电场、磁场中的运动,速度选择器的知识.带电粒子在金属板中做直线运动,q v B =Eq ,v =E B ,表明带电粒子的速度一定相等,而电荷的带电量、电性、质量、比荷的关系均无法确定;在磁场中R =m v Bq ,带电粒子运动半径不同,所以比荷一定不同,D 项正确.10.如图7所示,两个半径相同的半圆形轨道分别竖直放置在匀强电场和匀强磁场中.轨道两端在同一高度上,轨道是光滑的,两个相同的带正电小球同时从两轨道左端最高点由静止释放.M 、N 为轨道的最低点,则下列说法正确的是( )图7A .两小球到达轨道最低点的速度v M <v NB .两小球第一次到达轨道最低点时对轨道的压力F M <F NC .小球第一次到达M 点的时间大于小球第一次到达N 点的时间D .在磁场中小球能到达轨道的另一端,在电场中小球不能到达轨道的另一端答案 D解析 在磁场中运动时,只有重力做正功,在电场中运动时,重力做正功、电场力做负功,由动能定理可知:12m v 2M =mgH12m v 2N =mgH -qE·d 故v M >v N ,A 、C 不正确.最低点M 时,支持力与重力和洛伦兹力的合力提供向心力,最低点N 时,支持力与重力的合力提供向心力.因v M >v N ,故压力F M >F N ,B 不正确.在电场中因有电场力做负功,有部分机械能转化为电势能,故小球不能到达轨道的另一端.D 正确.二、填空题(5+5=10分)11. 一个电子(电荷量为e ,质量为m)以速率v 从x 轴上某点垂直x 轴进入上方匀强磁场区域,如图8所示,已知上方磁感应强度为B ,且大小为下方匀强磁场磁感应强度的2倍,将从开始到再一次由x 轴进入上方磁场作为一个周期,那么,电子运动一个周期所用的时间是________,电子运动一个周期的平均速度大小为________.图8答案 3πm eB 2v 3π解析电子一个周期内的运动轨迹如右图所示.由牛顿第二定律及洛伦兹力公式,可知e v B =m v 2R ,故圆半径R =m v eB ,所以上方R 1=m v eB ,T 1=2πm eB ;下方R 2=2m v eB ,T 2=4πm eB .因此电子运动一个周期所用时间是:T =T 12+T 22=πm eB +2πm eB =3πm eB ,在这段时间内位移大小:x =2R 2-2R 1=2×2m v eB -2×m v eB =2m v eB ,所以电子运动一个周期的平均速度大小为:v =x T =2m v eB 3πm eB=2v 3π.12.(5分)如图9所示,正方形容器处在匀强磁场中,一束电子从a 孔沿a →b 方向垂直射入容器内的匀强磁场中,结果一部分电子从小孔c 竖直射出,一部分电子从小孔d 水平射出,则从c 、d 两孔射出的电子在容器中运动的时间之比t c ∶t d =____________,在容器中运动的加速度大小之比a c ∶a d =__________答案 1∶2 2∶1解析 同一种粒子在同一磁场中运动的周期相同,且t c =14T ,t d =12T ,即t c ∶t d =1∶2.由r =m v qB 知,v c ∶v d =r c ∶r d =2∶1,而a c ∶a d =q v c B m ∶q v d B m =v c ∶v d =2∶1.三、计算题(8+8+12+12=40分)13.如图10所示,在倾角为37°的光滑斜面上有一根长为0.4 m ,质量为6×10-2 kg 的通电直导线,电流I =1 A ,方向垂直纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T ,方向竖直向上的磁场中,设t =0时,B =0,则需要多长时间斜面对导线的支持力为零?(g 取10 m/s 2)图10答案5 s解析 斜面对导线的支持力为零时受力分析如右图由平衡条件得:BIL =mgcot 37°B =mgcot 37°IL=6×10-2×10×0.80.61×0.4 T =2 T所需时间t =B ΔB =20.4 s =5 s14.电子质量为m ,电荷量为q ,以速度v 0与x 轴成θ角射入磁感应强度为B 的匀强磁场中,最后落在x 轴上的P 点,如图11所示,求:图11(1)OP 的长度;(2)电子由O 点射入到落在P 点所需的时间t.答案 (1)2m v 0Bq sin θ (2)2θm Bq解析带电粒子在匀强磁场中做匀速圆周运动,应根据已知条件首先确定圆心的位置,画出运动轨迹,所求距离应和半径R 相联系,所求时间应和粒子转动的圆心角θ、周期T 相联系.(1)过O 点和P 点做速度方向的垂线,两线交点C 即为电子在磁场中做匀速圆周运动的圆心,如右图所示,则可知OP =2R·sin θ①Bq v 0=m v 20R ②由①②式可解得: OP =2m v 0Bq sin θ.(2)由图中可知:2θ=ωt ③又v 0=ωR ④由③④式可得:t =2θm Bq .15.如图12所示,有界匀强磁场的磁感应强度B =2×10-3T ;磁场右边是宽度L =0.2 m 、场强E =40 V/m 、方向向左的匀强电场.一带电粒子电荷量q =-3.2×10-19 C ,质量m =6.4×10-27 kg ,以v =4×104 m/s 的速度沿OO ′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.求:图12(1)大致画出带电粒子的运动轨迹(画在给出的图中);(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子飞出电场时的动能E k .答案 (1)见解析图 (2)0.4 m (3)7.68×10-18 J解析 (1)轨迹如下图所示.(2)带电粒子在磁场中运动时,由牛顿运动定律,有q v B =m v 2R ,R =m v qB =6.4×10-27×4×1043.2×10-19×2×10-3m =0.4 m. (3)E k =EqL +12m v 2=40×3.2×10-19×0.2 J +12×6.4×10-27×(4×104)2 J =7.68×10-18 J.16.质量为m ,电荷量为q 的带负电粒子自静止开始,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图13所示,已知M 、N 两板间的电压为U ,粒子的重力不计.图13(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图);(2)求匀强磁场的磁感应强度B.答案 (1)见解析图 (2)2L (L 2+d 2)2mU q解析 (1)作出粒子经电场和磁场的轨迹图,如下图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r ②由几何关系得:r 2=(r -L)2+d 2③联立①②③式得:磁感应强度B =2L (L 2+d 2)2mU q .。