人教版高中数学必修二 导学案:第二章第一节空间中直线与直线之间的位置关系
- 格式:doc
- 大小:999.00 KB
- 文档页数:5
§2-4 空间直线位置关系一、学习目标:1)直观认识和理解、体会空间中的直线之间的位置关系 2)学会用数学语言表述空间中的直线之间的位置关系 二、学习重点与难点: 1)异面直线2)异面直线所成角 三、学习过程思考:同一平面的两条直线有几种位置关系?空间中的两条直线呢?图(1) 图(2)图(3) 图(1)中线段B A 1所在的直线与线段C C 1所在的直线位置关系如何? 与(2)中线段所1AA 在的直线与线段C C 1所在的直线位置关系如何?线段所1AA 在的直线与线段11B C 所在的直线位置关系如何?中线段所1AA 在的直线与线段11B A 所在的直线位置关系如何?图(3)中的两条立交桥所在的直线位置关系如何? 1.空间两直线的位置关系和异面直线的概念与画法 (1)以“共面”和“异面”的角度分为⎧⎧⎪⎨⎨⎩⎪⎩相交直线: ;共面直线平行直线:;异面直线:. (2)以有无公共点的角度可以分为11南海万泉河立交桥⎪⎩⎪⎨⎧⎩⎨⎧异面直线平行直线没有公共点相交直线有且仅有一个公共点--------- 2.异面直线的概念: 例1: 判断下列说法是否正确1)异面直线是指两条直线不能同在任何一个平面内 2)2121,,l l l l ,则βα⊂⊂是异面直线 3)既不相交也不平行的直线是异面直线 4)空间中不相交的两条直线; 5)某平面内的一条直线和这平面外的直线; 例2:(1)在如图所示的正方体中,指出哪些棱所在的直线与直线BA 1是异面直线?例3:已知M 、N 分别是长方体的棱C 1D 1与CC 1上的点,那么MN 与AB 所在的直线相交吗?例4那么AB ,CD ,EF ,GH 是异面直线的 对3.异面直线的画法(注意:常用平面衬托法画两条异面直线)练习:画两直线相交,第三条直线与它们异面4.平行公理m l ααl m β在同一平面内,a ∥ b ,b ∥c 则 那么在空间呢?如图长方体D C B A ABCD ''''-中,B B '∥ A A 'D D '∥ A A ' 那么D D '∥ B B '吗?公理4:文字语言表述:2)图形语言表述:3) 符号语言表述 4)作用:例:空间四边形ABCD 中,H G F E ,,,分别是DA CD BC AB ,,,的中点。
2.1.2 空间中直线与直线之间的位置关系[学习目标] 1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.知识点一 空间中两条直线的位置关系 1.异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线.要点分析:①异面直线的定义表明:异面直线不具备确定平面的条件.异面直线既不相交,也不平行.②不能误认为分别在不同平面内的两条直线为异面直线.如图中,虽然有a ⊂α,b ⊂β,即a ,b 分别在两个不同的平面内,但是因为a ∩b =O ,所以a 与b 不是异面直线.(2)画法:画异面直线时,为了充分显示出它们既不平行也不相交,即不共面的特点,常常需要画一个或两个辅助平面作为衬托,以加强直观性、立体感.如图所示,a 与b 为异面直线.(3)判断方法 方法 内容定义法 依据定义判断两直线不可能在同一平面内定理法过平面外一点与平面内一点的直线和平面内不经过该点的直线为异面直线(此结论可作为定理使用)反证法假设这两条直线不是异面直线,那么它们是共面直线(即假设两条直线相交或平行),结合原题中的条件,经正确地推理,得出矛盾,从而判定假设“两条直线不是异面直线”是错误的,进而得出结论:这两条直线是异面直线2.空间中两条直线位置关系的分类 (1)按两条直线是否共面分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点平行直线:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点(2)按两条直线是否有公共点分类⎩⎨⎧有且仅有一个公共点——相交直线无公共点⎩⎪⎨⎪⎧平行直线异面直线思考 (1)分别在两个平面内的两条直线一定是异面直线吗? (2)两条垂直的直线必相交吗? 答 (1)不一定.可能相交、平行或异面. (2)不一定.可能相交垂直,也可能异面垂直. 知识点二 公理4(平行公理)知识点三 空间等角定理 1.定理判断或证明两个角相等或互补2.推广如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 思考 如果两条直线和第三条直线成等角,那么这两条直线平行吗? 答 不一定.这两条直线可能相交、平行或异面 知识点四 异面直线所成的角1.概念:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).2.异面直线所成的角θ的取值范围:0°<θ≤90°.3.如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.两条互相垂直的异面直线a,b,记作a⊥b.4.异面直线所成的角的两种求法(1)在空间任取一点O,过点O分别作a′∥a,b′∥b,则a′与b′所成的锐角(或直角)为异面直线a与b所成的角,然后通过解三角形等方法求角.(2)在其中一条直线上任取一点(如在b上任取一点)O,过点O作另一条直线的平行线(如过点O作a′∥a),则两条直线相交所成的锐角(或直角)为异面直线所成的角(如b与a′所成的角),然后通过解三角形等方法求角(如图).题型一空间两条直线的位置关系的判定例1若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.平行B.异面C.相交D.平行、相交或异面答案D解析可借助长方体来判断.如图,在长方体ABCD-A′B′C′D′中,A′D′所在直线为a,AB所在直线为b,已知a和b是异面直线,b和c是异面直线,则c可以是长方体ABCD-A′B′C′D′中的B′C′,CC′,DD′.故a和c可以平行、相交或异面.反思与感悟 1.判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.跟踪训练1如图所示,在正方体ABCD-A 1B1C1D1中,判断下列直线的位置关系:(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.答案(1)平行(2)异面(2)相交(4)异面解析序号结论理由(1)平行因为A1D1綊BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C(2)异面A1B与B1C不同在任何一个平面内(3)相交D1D∩D1C=D1(4)异面AB与B1C不同在任何一个平面内题型二公理4、等角定理的应用例2E,F分别是长方体ABCD-A1B1C1D1的棱A1A,C1C的中点,求证:四边形B1EDF 是平行四边形.证明设Q是DD1的中点,连接EQ,QC1.因为E是AA1的中点,所以EQ綊A1D1.又因为在矩形A1B1C1D1中,A1D1綊B1C1,所以EQ綊B1C1.所以四边形EQC1B1为平行四边形.所以B1E綊C1Q.又因为Q,F分别是矩形DD1C1C两边D1D,C1C的中点,所以QD綊C1F.所以四边形DQC1F为平行四边形.所以C1Q綊FD.又因为B1E綊C1Q,所以B1E綊FD.所以四边形B1EDF为平行四边形.反思与感悟 1.空间两条直线平行的证明:一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行.2.求证角相等:一是用等角定理;二是用三角形全等或相似.跟踪训练2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若四边形EFGH 是矩形,求证:AC ⊥BD . 证明 (1)在△ABD 中,∵E ,H 分别是AB ,AD 的中点, ∴EH ∥BD .同理FG ∥BD ,则EH ∥FG . 故E ,F ,G ,H 四点共面.(2)由(1)知EH ∥BD ,同理AC ∥GH . 又∵四边形EFGH 是矩形, ∴EH ⊥GH .故AC ⊥BD .题型三 异面直线所成的角例3 如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角. 解 如图,取BD 的中点G ,连接EG ,FG . 因为E ,F 分别为BC ,AD 的中点, AB =CD ,所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE 就是EF 与AB 所成的角或其补角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF .所以∠EGF =90°. 所以△EFG 为等腰直角三角形.所以∠GFE =45°,即EF 与AB 所成的角为45°.反思与感悟 1.异面直线一般依附于某几何体,所以在求异面直线所成的角时,首先将异面直线平移成相交直线,而定义中的点O 常选取两异面直线中其中一个线段的端点或中点或几何体中的某个特殊点.2.求异面直线所成的角的一般步骤为: (1)作角:平移成相交直线.(2)证明:用定义证明前一步的角为所求.(3)计算:在三角形中求角的大小,但要注意异面直线所成的角的范围.跟踪训练3 空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成角的大小. 解 取AC 的中点G ,连接EG ,FG , 则EG 綊12AB ,GF 綊12CD .故直线GE ,EF 所成的锐角即为AB 与EF 所成的角, 直线GE ,GF 所成的锐角即为AB 与CD 所成的角. ∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°. 由AB =CD ,知EG =FG ,∴△EFG 为等腰三角形. 当∠EGF =30°时,∠GEF =75°; 当∠EGF =150°时,∠GEF =15°. 故EF 与AB 所成的角为15°或75°.转化与化归思想例5 在空间四边形ABCD 中,AD =BC =2a ,E ,F 分别是AB ,CD 的中点,EF =3a ,求异面直线AD ,BC 所成的角.分析 要求异面直线AD ,BC 所成的角,可在空间中找一些特殊点,将AD ,BC 平移至一个三角形中.此题已知E ,F 分别为AB ,CD 的中点,故可寻找一边中点,如BD 的中点M ,则∠EMF (或其补角)为所求角.解 如图,取BD 的中点M .由题意,知EM 为△BAD 的中位线, 所以EM ∥AD 且EM =12AD .同理,MF ∥BC 且MF =12BC .所以EM =a ,MF =a ,且∠EMF (或其补角)为所求角. 在等腰△MEF 中,取EF 的中点N , 连接MN ,则MN ⊥EF . 又因为EF =3a , 所以EN =32a . 故有sin ∠EMN =EN EM =32.所以∠EMN =60°,所以∠EMF =2∠EMN =120°. 因为∠EMF =120°>90°,所以AD ,BC 所成的角为∠EMF 的补角, 即AD 和BC 所成的角为60°.解后反思 在求异面直线所成的角的过程中要注意:(1)通常将空间中的两条异面直线通过平移的方法,转化到同一个三角形中,将空间问题转化为平面问题求解;(2)要特别注意平移所得的角可能是异面直线所成的角的补角,这是由异面直线所成角的范围是⎝⎛⎦⎤0,π2决定的.反证法的合理应用例6 如图,三棱锥P -ABC 中,E 是PC 上异于点P 的点.求证:AE 与PB 是异面直线.分析 利用定义直接证明,即从不同在任何一个平面内中的“任何”开始入手,一个平面一个平面地寻找是不可能实现的,因此必须找到一个间接证法来证明,反证法即是一种行之有效的方法.证明 假设AE 与PB 不是异面直线, 设AE 与PB 都在平面α内, 因为P ∈α,E ∈α,所以PE ⊂α. 又因为C ∈PE ,所以C ∈α. 所以点P ,A ,B ,C 都在平面α内.这与P ,A ,B ,C 不共面(P -ABC 是三棱锥)矛盾. 于是假设不成立,所以AE 与PB 是异面直线.1.若空间两条直线a 和b 没有公共点,则a 与b 的位置关系是( ) A.共面 B.平行 C.异面 D.平行或异面答案 D解析 若直线a 和b 共面,则由题意可知a ∥b ;若a 和b 不共面,则由题意可知a 与b 是异面直线.2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( ) A.平行或异面 B.相交或异面 C.异面 D.相交 答案 B解析 如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1与BC 是异面直线,又AA 1∥BB 1,AA 1∥DD 1,显然BB 1∩BC =B ,DD 1与BC 是异面直线,故选B.3.设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( ) A.有无数条 B.有两条 C.至多有两条 D.有一条 答案 A解析 我们现在研究的平台是锥空间.如图所示,过点P 作直线l ′∥l ,以l ′为轴,与l ′成30°角的圆锥面的所有母线都与l 成30°角.4.如图所示,G ,H ,M ,N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填序号)答案 ②④解析 ①中,∵G ,M 是中点,∴AG 綊BM ,∴GM 綊AB 綊HN ,∴GH ∥MN ,即G ,H ,M ,N 四点共面;②中,∵H ,G ,N 三点共面,且都在平面HGN 内,而点M 显然不在平面HGN 内,∴H ,G ,M ,N 四点不共面,即GH 与MN 异面;③中,∵G ,M 是中点,∴GM 綊12CD ,∴GM 綊12HN ,即GMNH 是梯形,则HG ,MN 必相交,∴H ,G ,M ,N 四点共面;④中,同②,G ,H ,M ,N 四点不共面,即GH 与MN 异面.5.在正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与A 1B 1所成角的余弦值为________. 答案 13解析 设棱长为1,因为A 1B 1∥C 1D 1,所以∠AED1就是异面直线AE与A1B1所成的角.在△AED1中,cos∠AED1=D1EAE=1232=13.1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角为θ,且0°<θ≤90°,解题时经常结合这一点去求异面直线所成的角的大小.一、选择题1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面答案D解析可能相交也可能异面,但一定不平行(否则与条件矛盾).2.已知空间两个角α,β,α与β的两边对应平行,且α=60°,则β等于()A.60°B.120°C.30°D.60°或120°答案D解析由等角定理,知β与α相等或互补,故β=60°或120°.3.在正方体ABCD-A1B1C1D1中,异面直线BA1与CC1所成的角为()A.30°B.45°C.60°D.90°答案B解析如图,在正方体ABCD-A1B1C1D1中,BB1∥CC1,故∠B1BA1就是异面直线BA1与CC1所成的角,故为45°.4.下面四种说法:①若直线a、b异面,b、c异面,则a、c异面;②若直线a、b相交,b、c相交,则a、c相交;③若a∥b,则a、b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4B.3C.2D.1 答案 D解析 若a 、b 异面,b 、c 异面,则a 、c 相交、平行、异面均有可能,故①不对.若a 、b 相交,b 、c 相交,则a 、c 相交、平行、异面均有可能,故②不对.若a ⊥b ,b ⊥c ,则a 、c 平行、相交、异面均有可能,故④不对.③正确.5.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( )A.梯形B.矩形C.平行四边形D.正方形 答案 D解析 如图,因为BD ⊥AC ,且BD =AC ,又因为E ,F ,G ,H 分别为对应边的中点,所以FG 綊EH 綊12BD ,HG 綊EF 綊12AC .所以FG ⊥HG ,且FG =HG .所以四边形EFGH 为正方形.6.若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,则过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为( ) A.10 B.20 C.8 D.4 答案 B解析 设截面四边形为EFGH ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,∴EF =GH =12AC =4,FG =HE =12BD =6,∴周长为2×(4+6)=20. 7.如图,三棱柱ABCA 1B 1C 1中,底面三角形A 1B 1C 1是正三角形,E 是BC 的中点,则下列叙述正确的是( ) 1与B 1E 是异面直线 B.C 1C 与AE 共面 C.AE 与B 1C 1是异面直线 D.AE 与B 1C 1所成的角为60° 答案 C解析 由于CC 1与B 1E 都在平面C 1B 1BC 内,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC 内,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.综上所述,故选C.二、填空题8.在四棱锥P-ABCD中,各棱所在的直线互相异面的有________对.答案8解析以底边所在直线为准进行考察,因为四边形ABCD是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确的序号为________.答案①③解析把正方体的平面展开图还原成原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.10.如图所示,在正方体ABCD-A1B1C1D1中,异面直线A1B与AD1所成的角为______.答案60°解析连接BC1,A1C1,∵BC1∥AD1,∴异面直线A1B与AD1所成的角即为直线A1B与BC1所成的角.在△A1BC1中,A1B=BC1=A1C1,∴∠A1BC1=60°,故异面直线A1B与AD1所成的角为60°.三、解答题11.如图所示,等腰直角三角形ABC 中,∠BAC =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.解 取AC 的中点F ,连接EF ,BF ,在△ACD 中,E ,F 分别是AD ,AC 的中点,∴EF ∥CD ,∴∠BEF 即为所求的异面直线BE 与CD 所成的角(或其补角).在Rt △ABC 中,BC =2,AB =AC ,∴AB =AC =1,在Rt △EAB 中,AB =1,AE =12AD =12,∴BE =52. 在Rt △AEF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt △ABF 中,AB =1,AF =12,∴BF =52. 在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010, ∴异面直线BE 与CD 所成角的余弦值为1010. 12.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且有AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形?(3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH .(1)证明 因为AE ∶EB=AH∶HD ,所以EH ∥BD .又因为CF ∶FB =CG ∶GD ,所以FG ∥DB .所以EH ∥FG .所以E ,F ,G ,H 四点共面.(2)解 当且仅当EH ∥FG ,EH =FG 时,四边形EFGH 为平行四边形.因为EH BD =AE AE +EB =m m +1,所以EH =m m +1BD . 同理FG =n n +1BD ,由EH =FG ,得m =n . 故当m =n 时,四边形EFGH 为平行四边形.(3)证明 当m =n 时,AE ∶EB =CF ∶FB ,所以EF ∥AC .又因为AC ⊥BD ,而∠FEH 是AC 与BD 所成的角,所以∠FEH =90°,从而平行四边形EFGH 为矩形,所以EG =FH .。
第二章 点、直线、平面之间的位置关系§2.1.2 空间中直线与直线之间的位置关系【使用说明及学法指导】1.先精读一遍教材P44-P47,用红笔进行勾画,再针对导学案问题导学部分二次阅读并回答提出的问题,时间不超过15分钟;2.限时完成导学案合作探究部分,书写规范;3.找出自己的疑惑和需要讨论的问题准备课堂上讨论质疑; 4.重点理解的内容:(1)、异面直线的概念;(2)、公理4及等角定理。
【学习目标】1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.一、问题导学1.空间两条直线的位置关系思考1:观察长方体,你能发现长方体ABCD —A′B′C′D′中, 线段A′B 所在的直线与线段C′C 所在直线的位置关系如何?(1)空间的两条直线的位置关系有且只有三种:相交直线: ; 平行直线: ;异面直线: 。
(2)异面直线的画法:为了表示异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:思考2:若βα⊂⊂b a ,,那么直线a 与b 一定是异面直线吗?思考3:如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH 这四条线段所在直线是异面直线的有 3 对?2.平行公理(公理4)思考:长方体D C B A ABCD ''''-中,B B '∥A A ',D D '∥A A ', B B '与D D '平行吗?公理4: ; 符号表示为: ;公理4作用: 3.等角定理思考:长方体D C B A ABCD ''''-中,ADC ∠与C D A '''∠,ADC ∠与C B A '''∠的两边分别对应平行,这两组角的大小关系如何?等角定理: 4.异面直线所成的角:(1)定义:如图,已知异面直线a 、b ,经过空间中任一点O 作直线a′∥a ,b′∥b ,我们把a′与b′所成的锐角(或直角)叫做 .编号 高一数学必修二导学案 编制人: 陈善明 审核人: 宋世才 组长签字:—————————————————————————————————————————————————————————————————学 案装订线共面直线ACEGH DB F说明:a '与b '所成的角的大小只由b a ,的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;(2) 两条异面直线所成的角的取值范围θ∈ ; (3) 当两条异面直线所成的角是直角时,我们就说这两条异面直线 ,记作 ;【我的疑惑】 二、合作探究例1、空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,且FG=BD 21. 所以EH ∥FG ,且EH=FG .所以四边形EFGH 为平行四边形.例2 如图,已知正方体ABCD —A′B′C′D′.(1)哪些棱所在直线与直线BA′是异面直线? (2)直线BA′和CC′的夹角是多少? (3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD 、DC 、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB 、BC 、CD 、DA 、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.例3 如图,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.解:设G 是AC 中点,连接EG 、FG .因E 、F 分别是AB 、CD 中点,故EG ∥BC 且EG=BC 21,FG ∥AD ,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求. 由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°.【课堂小结】知识方面 __________________________________________________________________ _____数学思想方法____________________________________________________________三、巩固提升1.下列说法中正确的个数是( B ) ①两直线无公共点,则两直线平行;②两直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线,与平面内任一直线均构成异面直线; ④和两条异面直线都相交的两直线必是异面直线. (A)0 (B)1 (C)2 (D)32、如图是一个正方体的展开图,在原正方体中,有下列命题:①AB 与CD 所在直线垂直;②CD 与EF 所在直线平行;③AB 与MN 所在直线成60°角;④MN 与EF 所在直线异面.其中正确命题的序号是( D ) A.①③ B.①④ C.②③ D.③④ 3.如果两条异面直线称作“一对”,那么在正方体的十二条棱中,共有几对异面直线( B )(A )12 (B )24 (C )36 (D )48 4、在长方体1111D C B A ABCD -中,1,21===CC BC AB ,则异面直线1AC 与1BB 所成的角的大小为( C )A.30°B.45°C.60°D.90°5、如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD. 求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,EF ∥AC ,且FG=BD 21,EF=AC 21. 所以EH ∥FG ,且EH=FG .所以四边形EFGH 为平行四边形.因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.6、如图,已知正方体ABCD —A′B′C′D′.(1)求异面直线BC′与A′B′所成的角的度数; (2)求异面直线CD′和BC′所成的角的度数. 解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角, ∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C 是异面直线CD′和BC′所成的角, ∵△AD′C 是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.。
2.1.2 空间中直线与直线的位置关系知识点一:空间两条直线的位置关系 [提出问题]问题1:在同一平面内,两条直线有怎样的位置关系? 问题2:若把立交桥抽象成一条直线,它们是否在同一平面内?有何特征?问题3:观察一下,日光灯管所在的直线与黑板的左右两侧所在直线,是否也具有类似的特征? [导入新知] 1.异面直线(1)定义:不同在 的两条直线. (2)异面直线的画法2.空间两条直线的位置关系空间两条直线的位置关系有且只有三种. (1)若从公共点的数目分,可以分为: ① 只有一个公共点—— ;② 没有公共点(2)若从平面的基本性质分,可以分为:① 在同一平面内② 不同在任何一个平面内——;思考:若βα⊂⊂b a ,,那么a 与b 一定是异面直线吗?知识点二:平行公理及等角定理 [提出问题]1.同一平面内,若两条直线都与第三条直线平行,那么这两条直线互相平行.问题:空间中是否有类似规律?2.观察下图中的AOB ∠与B O A '''∠问题1:这两个对应的两条边之间有什么样的位置关系?问题2:测量一下,这两个角的大小关系如何?[导入新知]1. 平行公理(公理4)(1)文字表述:平行于同一直线的两条直线 ,这一性质叫做空间 . 符号表述:⇒⎭⎬⎫c b b a //// . 2.等角定理:空间中如果两个角的两边分别 , 那么这两个角 或 . 3.异面直线所成的角(1)定义:已知两条异面直线b a ,,经过空间任意一点O 作直线b b a a //,//'',我们把a '与b '所成的(或 )叫做异面直线a 与b 所成的角(或夹角). (2)异面直线所成的角θ的取值范围: . (3)当=θ 时,异面直线a 与b 垂直,记作: . 3突破常考题型题型一:两条直线位置关系的判定[例1]如图,正方体ABCD -A 1B 1C 1D 1,判断下列直线的位置关系:①直线A 1B 与直线D 1C 的位置关系是 ; ②直线A 1B 与直线B 1C 的位置关系是 ; ③直线D 1D 与直线D 1C 的位置关系是 ; ④直线AB 与直线B 1C 的位置关系是 . [活学活用]如图,正方体ABCD-A1B1C1D1中,M,N分别是A1B1和B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.题型二:平行公理及等角定理的应用[例2]在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是CD和AD的中点.(1)求证:四边形MN A1 C1是梯形;(2)求证:111CADDNM∠=∠[活学活用]已知如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.题型三:两异面直线所成的角[例3]如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD的中点,求异面直线CD1,EF所成角的大小.[活学活用]已知正方体ABCD-A1B1C1D1.(1)哪些棱所在的直线与直线BA1是异面直线?(2)直线BA1和CC1的夹角是多少?(3)哪些棱所在的直线与直线AA1垂直?4应用落实体验 [随堂即时演练]1.如图,是长方体的一条棱,这个长方体中与AA 1平行和异面的棱的条数是( )A .6,4B .3,4C .5,,8D .8,4 2.已知如图,长方体ABCD -A 1B 1C 1D 1中,2321===AA AD AB ,.BC 和A 1C 1以及BC 1和AB 1所成的角分别是( )A .6045, B .4545, C .9060, D .6030, 3.如果B O OB A O OA ''''//,//,那么AOB ∠和B O A '''∠ .4.已知b a ,是异面直线,直线c //直线a ,那么c 与b 的位置关系 .5.如图所示,空间四边形ABCD 中,AB =CD ,CD AB ⊥, E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.5课时跟踪检测A 组基础达标 1.空间两个角βα,,且α与β的两边对应平行,60=α,则β为( )A .60 B .120 C .30 D .60或120 2.给出下列四个命题:①若b a ,是异面直线,c b ,是异面直线,则c a ,异面; ②若直线b a ,相交,c b ,相交,则c a ,相交; ③若b a //,则b a ,与c 所成的角相等; ④若c b b a ⊥⊥,,则c a //.其中真命题的个数是( )A .4B .3C .2D .13.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( )A .梯形B .矩形C .平行四边形D .正方形 4.在空间四边形ABCD 中,AB ,BC ,CD 的中点分别是P ,Q ,R ,且352===PR QR PQ ,,,那么异面直线AC和BD 所成的角是( )A .90 B .60 C .45 D .305.在三棱锥A —BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,若AD 与BC 所成的角是60,那么FEG ∠为( ) A .60 B .30 C .120 D .60或120 6.如图,将无盖的正方体纸盒展开,直线AB ,CD ,在原正方体的位置关系是( )A .平行B .相交且垂直C .异面D .相交成607.如图,G ,H ,M ,N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形是 .8.已知b a ,为不垂直的异面直线,α是一个平面,则b a ,在α上的射影有可能的是( )① 两条平行的直线; ② 两条互相垂直的直线; ③ 同一条直线; ④ 一条直线及其外一点.在以上结论中,正确的是 (写出所有正确的结论的编号)9. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别AA 1,CC 1是的中点.求证:1ED BF //且1ED BF =10.在正方体ABCD -A 1B 1C 1D 1中,求 (1)AA 1与B 1C 所成的角; (2)A 1B 与B 1C 所成的角.B 能力提升11.如图,在空间四边形ABCD 中,两条对边3==CD AB ,E ,F 分别是另外两条对边AD ,BC 上的点,且521===EF FC BF ED AE ,,求AB 和CD 所成的角的大小.。
2.1.2 空间中直线与直线之间的位置关系问题导学一、空间两条直线位置关系的判定活动与探究1在正方体ABCD-A1B1C1D1中,E,F分别是AA1,AB的中点,试判断下列各对线段所在直线的位置关系:(1)AB与CC1;(2)A1B1与DC;(3)A1C与D1B;(4)DC与BD1;(5)D1E与CF.迁移与应用1.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.下列结论正确的是( )A.没有公共点的两条直线是平行直线B.两条直线不相交就平行C.两条直线有既不相交又不平行的情况D.一条直线和两条相交直线中的一条平行,它也可能和另一条平行3.已知三条直线a,b,c,a与b异面,b与c异面,则a与c的位置关系是__________.(1)空间两条直线位置关系的判定方法:①判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.②判定两条直线是异面直线的方法:定义法:由定义判断两直线不可能在同一平面内.排除法(反证法):排除两直线共面(平行或相交).(2)两条直线异面,是指找不到平面,使这两条直线同在这一平面内,并不是说,这两条直线不同在某一平面内.二、公理4与等角定理的应用活动与探究2如图,在正方体ABCD-A1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.迁移与应用1.空间两个角α,β的两边分别对应平行,且α=60°,即β为( )A.60° B.120°C.30° D.60°或120°2.如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.(1)公理4表明了平行线的传递性,它可以作为判断两直线平行的依据,同时也给出空间两直线平行的一种证明方法.(2)如果一个角的两边与另一个角的两边分别平行,并且方向相同,那么这两个角相等.三、求异面直线所成的角活动与探究3如图,在正方体ABCD-A1B1C1D1中,求下列异面直线所成的角.(1)AA1与BC;(2)DD1与A1B;(3)A1B与AC.迁移与应用正方体ABCD-A1B1C1D1中,(1)AC和DD1所成的角是________;(2)AC和D1C1所成的角是________;(3)AC和B1D1所成的角是________.求两异面直线所成的角的一般步骤:(1)作角:根据两异面直线所成角的定义,用平移法作出异面直线所成的角;(2)证明:证明作出的角就是要求的角即证明所作角的两边分别与两异面直线平行;(3)计算:求角的值,常在三角形中求解;(4)结论.也可用“一作”“二证”“三求解”来概括.当堂检测1.如图所示,在三棱锥P-ABC中,六条棱所在的直线是异面直线的共有( )A.2对 B.3对 C.4对 D.6对2.若∠AOB=∠A1O1B1且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是( ) A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行3.若直线a∥直线b,直线a与直线c异面,则b与c( )A.一定是异面直线 B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线4.在长方体ABCD-A1B1C1D1的所有棱中,与棱AA1平行的棱有______.5.正方体ABCD-A1B1C1D1中,与AC成45°角的棱共有__________条.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.答案:课前预习导学【预习导引】1.(1)任何一个预习交流1提示:a,b不一定是异面直线,因为a,b也有可能平行或相交.根据异面直线的定义,若a,b是异面直线,则找不到任何一个平面,使得直线a,b 都在这个平面内.2.相交直线平行直线异面直线预习交流2提示:这两条直线平行或异面.3.(1)互相平行平行线的传递性a∥c(2)对应平行相等互补预习交流3 提示:相等4.(1)锐角直角(2)直角a⊥b预习交流4 (1)提示:0°<θ≤90°(2)提示:∵a⊥c,∴a与c所成的角为直角.∵a∥b,∴b与c所成的角等于a与c所成的角.即b与c所成的角是直角,∴b⊥c.课堂合作探究【问题导学】活动与探究1 思路分析:依据两直线相交、平行、异面的定义、公理或定理判断.解:(1)∵C∈平面ABCD,AB⊂平面ABCD,又C∉AB,C1∉平面ABCD,∴AB与CC1异面.(2)∵A1B1∥AB,AB∥DC,∴A1B1∥DC.(3)∵A1D1∥BC,则A1,B,C,D1在同一平面内,∴A1C与D1B相交.(4)∵B∈平面ABCD,DC⊂平面ABCD,又B∉DC,D1∉平面ABCD,∴DC与BD1异面.(5)连接A1B,EF,D1C,则A1B D1C.又E,F分别是AA1,AB的中点,∴EF 12A1B.∴EF 12D1C,∴四边形CD1EF是梯形,D1E与CF是腰.∴D1E与CF相交.迁移与应用1.D 2.C3.相交、平行或异面活动与探究2 思路分析:(1)欲证四边形BB1M1M是平行四边形,可证BB1与MM1平行且相等;(2)可结合(1)利用等角定理证明或利用三角形全等证明.证明:(1)在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,∴MM1AA1.又∵AA1BB1,∴MM1∥BB1,且MM1=BB1,∴四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角,∴∠BMC=∠B1M1C1.迁移与应用1.D2.证明:连接BD,因为EH是△ABD的中位线,所以EH ∥BD ,且EH =12BD .同理FG ∥BD ,且FG =12BD .所以EH ∥FG ,且EH =FG .所以四边形EFGH 是平行四边形.活动与探究3 思路分析:先根据两异面直线所成角的定义,在图中作出或找出两异面直线所成的角,然后再求其大小.解:(1)∵AD ∥BC ,AA 1⊥AD ,∴AA 1⊥BC ,即AA 1与BC 所成的角为90°.(2)∵DD 1∥AA 1,∴DD 1与A 1B 所成的角就是AA 1与A 1B 所成的角.又∠AA 1B =45°,∴DD 1与A 1B 所成的角为45°.(3)连接D 1C ,AD 1,则A 1B ∥D 1C .∴D 1C 与AC 所成的角就是A 1B 与AC 所成的角. 又∵AC =CD 1=D 1A , ∴∠ACD 1=60°.∴A 1B 与AC 所成的角为60°.迁移与应用 (1)90° (2)45° (3)90° 【当堂检测】1.B 2.D 3.C 4.BB 1,CC 1,DD 1 5.8。
2、1、2 空间中直线与直线之间的位置关系一、【学习目标】1、正确理解空间中直线与直线的位置关系,两直线的异面关系;2、以公理4和等角定理为基础,理解两异面直线所成角概念以及应用;3、培养学生空间想象能力,以及有根有据、实事求是的科学态度和品质.二、【自学内容和要求及自学过程】1、阅读第44页—45页探究上面的内容,回答问题(异面直线)材料一:思考:同一平面内的两条直线有几种位置关系?空间中的两条直线呢?教室内的日光灯管所在直线与黑板左右两侧所在直线,既不相交,也不共面,即它们不同在任何一个平面内;又如天安门广场上,旗杆所在的直线与长安街所在的直线,它们既不相交也不共面,即不能处在同一平面内.如下图:材料二:阅读教材“观察”的内容,如下:<1>根据材料和教材内容,请你总结出什么叫异面直线?<2>学习完异面直线以后,请总结一下空间两条直线的位置关系有几种?结论:<1>异面直线是指.它是以否定的形式给出的,以否定形式给出的问题一般用证明;<2>空间两条直线的位置关系有且只有三种.结合长方体模型,可以得出结论.2、阅读教材第45页例2上面内容,回答问题(公理4)材料三:教材45页观察内容<3>结合材料三,和教材内容,请你总结归纳出公理4.结论:<3>公理4:平行于同一条直线的两条直线互相平行.符号表示为:a ∥b, ⇒ca ∥c .强调:公理4实质上是说平行具有 性,在平面、空间这个性质都适用.公理4是判断空间两条直线 的依据,不必证明,可直接应用.3、阅读教材46页内容,回答问题(等角定理、异面直线所成角)<4>请你通过学习总结出等角定理.<5>你能给“两异面直线所成角”下一个定义吗?你能否总结出异面直线所成角的画法?两异面直线所成角的范围是多少?什么叫做两直线垂直? 结论:<4>空间中如果两个角的两边分别对应 ,那么这两个角相等或者 ;<5>可以把异面直线所成角转化为 所成角表示,如图所示,已知两异面直线a,b ,经过空间内任一点O 做直线 ,我们把''b a 、所成的 (或直角)叫做异面直线a 与b 所成的角(或夹角).两条异面直线所成角的范围是 .如果两条异面直线所成的角为 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a,b ,记作b a ⊥.三、【练习与巩固】 练习一:请同学们自学教材第例2、例3,检查自己是否完成了这节课的学习目标; 练习二:完成教材第48页练习1、2.四、【作业】1、必做题:教材51页习题2.1A 组第4题<1><2><3>;B 组1<2><3>题;2、选做题:教材第52页习题2.1A 组第8题.。
2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。
【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。
难点:异面直线所成角的计算。
【教学过程】(一)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
思考:如图所示:正方体的棱所在的直线中,与直线AB异面的有哪些?2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。
在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。
再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线a∥b共面直线=>a∥cc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
例1空间四边形 A BCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△A BD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
第二章 2.1.2 空间中直线与直线之间的位置【学习目标】1.理解异面直线的概念;了解空间中两条直线的三种位置关系,知道异面直线、异面直线的夹角以及直线垂直的概念;2.能正确理解平行公理和等角定理,并会运用进行相关的推理证明。
3.通过对比空间和平面两直线间的位置关系之间异同和联系,逐步提高将立体图形转为平面图形的能力以及空间想象能力、观察归纳能力、类比推理能力.【学习重点】重点:异面直线的概念及异面直线所成的角的概念及异面直线所成的角求法难点:理解异面直线概念,作异面直线所成的角.【知识链接】以长方体为载体,使学生在直观感知的基础上,认识空间中两直线的位置关系;通过“直观感知——操作确认——思维辩证”的认知过程展开,得到平行公理和等角定理.【基础知识】复习1:平面的特点是______、 _______ 、_______.复习2:平面性质(三公理)公理1_________________________________________________________________;公理2_________________________________________________________________;公理3_________________________________________________________________.探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,线段A1B所在直线与线段CC1所在直线的位置关系如何?结论:直线A B'与CC'既不相交,也不平行.新知1:像直线A1B与CC1这样不同在任何一个平面内的两条直线叫做异面直线试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b异面):αabαβabαab理解选择合适的异面直线的定义:A BC1C1B1AD不同在任何一个平面内的两条直线叫做异面直线。
2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。
【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。
难点:异面直线所成角的计算。
【教学过程】(一)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
思考:如图所示:正方体的棱所在的直线中,与直线AB 异面的有哪些?2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。
在空间中,是否有类似的规律?组织学生思考: 长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗? 生:平行。
再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b共面直线 =>a ∥c强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
例1空间四边形 ABCD中,E.F.G.H分别是AB.BC.CD.DA的中点求证:四边形EFGH是平行四边形证明:连接BD1BD 因为EH是△ABD的中位线,所以EH∥BD且EH=21BD同理FG∥BD且FG=2因为EH∥FG且EH=FG所以四边形EFGH是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD,那么四边形EFGH是什么图形?4、组织学生思考教材P46的思考题让学生观察、思考:∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
第二章第一节空间中直线与直线之间的位置关系
三维目标
1.理解空间中两条直线的位置关系;
2.理解异面直线的概念、会画异面直线,提升空间想象能力;
3.了解公理4和等角定理,知道异面直线所成角的定义、范围及作用.
________________________________________________________________________________ 目标三导学做思1
问题1.通过身边诸多实物,空间两条直线有多少种位置关系?
*问题2.如何用图形语言表示表示空间两条直线的位置关系?
问题3. 如右图长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?你能得出什么结论?
【试试】
公理4:
符号表示为:
作用:
问题4. 如右图∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何? 【试试】 等角定理:
符号表示为:
作用: 问题5.阅读教材46-47页回答:什么是异面直线所成角?如何画出两
条异面直线所成的角?异面直线所成角的范围是多少? 【学做思2】
1.如图
2.1-17,空间四边形ABCD 中,E,F,G,H 分别是AB,BC,CD,DA 的中点,求证:四边形EFGH 是平行四边形.
图2.1-17
2. 如图2.1-18,观察长方体ABCD-A'B'C'D' (1)有没有两条棱所在的直线是相互垂直的异面直线? (2)如果两条平行直线中的一条与某一条直线垂直, 那么另一条直线是否也与这条直线垂直?
(3)垂直于同一条直线的两条直线是否平行?
图2.1-18
A 1
3.如图2.1-20,已知正方体ABCD-A'B'C'D'. (1)哪些棱所在直线与直线BA'是异面直线?
(2)直线BA'和CC'的夹角是多少? (3)哪些棱所在的直线与直线AA'垂直?
图2.1-20
【反思】 如何求异面直线所成角?
达标检测
*1.平面βα,内各取两点,这四点都不在交线上,这四点最多能确定 个平面
*2.若︒=∠120AOB ,直线a OA a ,//与OB 为异面直线,则OB a 和所成的角的大小为 . 3.填空题: (1)如图1,'
AA 是长方体的一条棱,长方体中与'AA 平行的棱共有 ________ 条.
(2)如果
OA//''A O ,OB//''B O ,'''B O ________.
图1 图2
*4.如图2,在正方体1111D C B A ABCD 中,F E 、分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。