高中物理-《动量守恒定律》章末测试题
- 格式:doc
- 大小:507.66 KB
- 文档页数:13
人教版高中物理选修3-5章末测试题及答案全套阶段验收评估(一) 动量守恒定律(时间:50分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
1~5小题只有一个选项符合题目要求,6~8小题有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.做平抛运动的物体,在相等的时间内,物体动量的变化量()A.始终相同B.只有大小相同C.只有方向相同D.以上说法均不正确解析:选A做平抛运动的物体,只受重力作用,重力是恒力,其在相等时间内的冲量始终相等,根据动量定理,在相等的时间内,物体动量的变化量始终相同。
2.下列情形中,满足动量守恒的是()A.铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑水平桌面上的木块过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量解析:选B铁锤打击放在铁砧上的铁块时,铁砧对铁块的支持力大于系统重力,合外力不为零;子弹水平穿过墙壁时,地面对墙壁有水平作用力,合外力不为零;棒击垒球时,手对棒有作用力,合外力不为零;只有子弹水平穿过放在光滑水平面上的木块时,系统所受合外力为零,所以选项B正确。
3.如图1所示,光滑圆槽的质量为M,静止在光滑的水平面上,其内表面有一小球被细线吊着恰位于槽的边缘处,如将细线烧断,小球滑到另一边的最高点时,圆槽的速度为()图1A.0 B.向左C.向右D.无法确定解析:选A小球和圆槽组成的系统在水平方向上不受外力,故系统在水平方向上动量守恒,细线被烧断的瞬间,系统在水平方向的总动量为零,又知小球到达最高点时,小球与圆槽水平方向有共同速度,设为v′,设小球质量为m,由动量守恒定律有0=(M+m)v′,所以v′=0,故A正确。
4.在光滑的水平面上有a、b两球,其质量分别为m a、m b,两球在t时刻发生正碰,两球在碰撞前后的速度图像如图2所示,下列关系正确的是()图2A .m a >m bB .m a <m bC .m a =m bD .无法判断解析:选B 由v -t 图像可知,两球碰撞前a 球运动,b 球静止,碰后a 球反弹,b 球沿a 球原来的运动方向运动,由动量守恒定律得m a v a =-m a v a ′+m b v b ′,解得m a m b =v b ′v a +v a ′<1,故有m a <m b ,选项B 正确。
选修1高中物理 《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题1.如图(a )所示,一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 以水平速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动。
在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻。
下列说法正确的是A .A 、B 一起在竖直面内做周期T =t 0的周期性运动B .A 的质量大小为06m F m m g=- C .子弹射入木块过程中所受冲量大小为000(6)m mm v F m g F - D .轻绳的长度为22002365mm v g F 2.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
则关于小球下落过程中,说法正确的是A .整个下落过程中,小球的机械能减少了mgHB .整个下落过程中,小球克服阻力做的功为mg (H +h )C .在陷入泥潭过程中,小球所受阻力的冲量大于mD .在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变5.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g ,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J6.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5kg·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A =6 kg·m/s ,pB =6 kg·m/sB .p A =3 kg·m/s ,p B =9 kg·m/sC .p A =-2 kg·m/s ,p B =14 kg·m/sD .p A =-4 kg·m/s ,p B =17 kg·m/s7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
章末过关检测(时间:90分钟,满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
1~5题为单项选择题,6~8题为多项选择题.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.某物体受到一个-6 N·s的冲量作用,则()A.物体的动量一定减小B.物体的末动量一定是负值C.物体动量增量的方向一定与规定的正方向相反D.物体原来动量的方向一定与这个冲量的方向相反解析:根据动量定理知合外力的冲量等于动量的变化量,动量定理为矢量式,合外力冲量的方向与动量变化量的方向相同,冲量的方向为负方向说明动量的增量方向与规定的正方向相反,所以C项正确;动量的增量为负值,有可能物体的末动量方向为负方向,所以A项错误;若物体的末动量比初动量小,动量的变化量就为负值,所以B项错误;正方向的规定是人为的,与物体原来动量的方向可以相同也可以不同,所以D项错误.答案:C2.在不计空气阻力作用的条件下,下列说法中不正确的是( ) A.自由下落的小球在空中运动的任意一段时间内,其增加的动能一定等于其减少的重力势能B.做平抛运动的小球在空中运动的任意相同的时间内,其速度的变化量一定相同C.做匀速圆周运动的小球在任意一段时间内其合外力做的功一定为零,合外力的冲量也一定为零D.单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零解析:不计空气阻力,自由下落的小球,其所受合外力为重力,则小球在运动的过程中机械能守恒,其增加的动能一定等于其减小的重力势能,故A正确;做平抛运动的小球所受合外力为重力,加速度的大小与方向都不变,所以小球在空中运动的任意相同的时间内,其速度的变化量一定相同,故B正确;做匀速圆周运动的小球,其所受合外力的方向一定指向圆心,小球在任意一段时间内其合外力做的功一定为零,但由于速度的方向不断变化,所以速度的变化量不一定等于0,合外力的冲量也不一定为零,故C错误;经过一个周期,单摆的小球又回到初位置,所有的物理量都与开始时相等,所以单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零,故D正确.答案:C3.在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反,则碰撞后B 球的速度大小可能是( )A.0。
2021学年高中物理第一章碰撞与动量守恒章末习题(提高篇)教科版选修35一、选择题1.如图所示,水平轻弹簧与物体A 和B 相连,放在光滑水平面上,处于静止状态.物体A 的质量为m ,物体B 的质量为M ,且M >m .现用大小相等的水平恒力F 1、F 2拉A 和B ,从它们开始运动到弹簧第一次伸长到最长的过程中(弹簧始终在弹性限度范畴内)( ).A .B 的动量变化量的大小等于A 的动量变化量的大小B .当A 的动能最大时,B 的动能也最大C .A 和B 做的总功为零D .弹簧第一次最长时,A 和B 的总动能最大2.放在光滑水平面上的物体A 和B 之间用一弹簧相连,一颗水平飞来的子弹沿着AB 连线击中A ,并留在其中,若A 和B 及子弹质量分别为m A 和m B 及m ,子弹击中A 之前的速度为v 0,则( ).A .A 物体的最大速度为0Amv m m+ B .B 物体的最大速度为0B mv m m+ C .两物体速度相同时其速度为0A B mv m m m ++ D .条件不足,无法运算3.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 和b 两块,若质量较大的a 块的速度方向仍沿原先的方向,则( ).A .b 块的速度方向一定与原速度方向相反B .从炸裂到落地的这段时刻里,a 块飞行的水平距离一定比b 块大C .a 块和b 块一定同时到达地面D .在炸裂过程中,a 块与b 块受到的爆炸力的冲量大小一定相等4.如图所示,在光滑水平地面上放着两个物体,其间用一根不能伸长的细绳相连,开始时B 静止,A 具有4 kg·m/s 的动量(令向右为正),开始绳放松.在绳拉紧(可能拉断)的过程中,A 、曰动量的变化可能为( ).A .Δp A =-4 kg·m/s ,ΔpB =4 kg·m/sB .Δp A =2 kg·m/s ,Δp B =-2 kg·m/sC .Δp A =-2 kg·m/s ,Δp B =2 kg·m/sD.Δp A=Δp B=2 kg·m/s5.在光滑的水平桌面上静止着长为L的方木块M,今有A、B两颗子弹沿同一水平轨道分别以速度v A、v B从M的两侧同时射入木块.A、B在木块中嵌入的深度分别为d A、d B,且d A>d B,d A+d B<L,而木块却一直保持静止,如图所示,则可判定A、B子弹在射入前().A.速度v A>v BB.A的动能大于B的动能C.A的动量大小大于B的动量大小D.A的动量大小等于B的动量大小6.安静的水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,那个人向船尾走去,走到船中部他突然停止走动.水对船的阻力忽略不计.下列说法中正确的是(). A.人走动时,他相关于水面的速度和小船相关于水面的速度大小相等、方向相反B.他突然停止走动后,船由于惯性还会连续运动一小段时刻C.人在船上走动过程,人对水面的位移是船对水面的位移的9倍D.人在船上走动过程,人的动能是船的动能的8倍7.图为两物体A、B在没有其他外力作用时相互作用前后的v-t图象,则由图象可知().A.A、B的质量之比为5∶3 B.A、B作用前后总动量守恒C.A、B作用前后总动量不守恒 D.A、B间相互作用力相同8.如图甲所示,一质量为M的木板静止在光滑水平面上,现有一质量为m的小滑块以一定初速度v0从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时刻变化的情形如图1-12乙所示,依照图象作出如下判定().①滑块始终与木板存在相对运动;②滑块未能滑出木板;③滑块的质量m大于木板的质量M;④在t1时刻滑块从木板上滑出.A.①③④ B.②③④ C.②③ D.②④二、填空题9.如图1-13所示,一个质量M=0.5 kg的斜面体A原先静止在光滑的水平面上,一个质量m=40 g 的小球B以水平速度v0=30 m/s撞到A的斜面上,碰撞时刻极短,碰后变为竖直向上运动,则物体A 碰后的速度为________.10.为验证“两小球碰撞过程中动量守恒”,某同学用如图所示的装置依次进行了如下的实验操作:Ⅰ.将斜槽轨道的末端调整水平,在一块平木板表面先后钉上白纸和复写纸,并将该木板竖直立于紧靠槽口处,使小球a从斜槽轨道上某固定点处由静止开释,撞到木板并在白纸上留下痕迹O;Ⅱ.将木板向右平移适当的距离固定,再使小球a从原固定点处由静止开释,撞到木板上得到痕迹B;Ⅲ.把半径与a相同的小球b静止放在斜槽轨道水平段的最右端,让小球a仍从原固定点处由静止开释,和小球b相碰后,两球撞在木板上得到痕迹A和C;Ⅳ.用天平测得a、b两小球的质量分别为m a、m b,用刻度尺测量纸上D点到A、B、C三点的距离分别为y1、y2、y3.依照上述实验过程,回答:(1)所选用的两小球质量关系应为m a______m b,半径关系应为r a______r b.(填“<”“>”或“=”)(2)用实验中所测得的量来验证两小球碰撞过程动量守恒,其表达式为________.三、解答题11.关于两物体碰撞前后速度在同一直线上,且无机械能缺失的碰撞过程,能够简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力.设A物体质量m1=1.0 kg,开始时静止在直线上某点;B物体质量m2=3.0 kg,以速度v0从远处沿该直线向A运动,如图所示.若d=0.10 m,F=0.60 N,v0=0.20 m/s,求:(1)相互作用过程中A、B加速度的大小;(2)从开始相互作用到A、B间的距离最小时,两物体组成的系统动能的减少量;(3)A、B间的最小距离.12.如图所示,P 是固定的竖直挡板,A 是置于光滑平面上的平板小车(小车表面略低于挡板下端),B 是放在小车最左端表面上的一个可视为质点的小物块.开始时,物块随小车一起以相同的水平速度v 0向左运动,接着物块与挡板发生了第一次碰撞,碰后物块相关于车静止时的位置离小车最左端的距离等于车长的3/4,此后物块又与挡板发生了多次碰撞,最后物块恰好未从小车内滑落.若物块与小车表面间的动摩擦因数是个定值,物块与挡板发生碰撞时无机械能缺失且碰撞时刻极短,试确定小车与物块的质量关系.13.一垒球手水平挥动球棒,迎面打击一以速度5.0 m /s 水平飞来的垒球.垒球随后在离打击点水平距离为30 m 的垒球场上落地.设垒球质量为0.18 kg ,打击点离地面高度为2.2 m ,球棒与垒球的作用时刻为0.010 s ,重力加速度为9.9 m /s 2,求球棒对垒球的平均作用力的大小.14.一质量为M 的长木板,静止在光滑的水平面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时的速度为013v .若把此木板固定在水平桌面上,其他条件相同,求滑块离开木板时的速度v .15.用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v=6 m /s 的速度在光滑的水平面上运动,弹簧处于原长,质量为4 kg 的物块C 在前方静止,如图所示.B 与C 碰后二者粘在一起运动.在以后的运动中,求:(1)当弹簧的弹性势能最大时,物体A 的速度是多大?(2)弹性势能最大值是多少?(3)A 的速度可能向左吗?什么缘故?【答案与解析】一、选择题1.【答案】A 、B【解析】A 、B 以及弹簧组成的系统,水平方向上动量守恒,因此任何时刻A 、B 动量变化的大小相等,但A 、B 动量变化的方向相反,F 1、F 2都做正功,故C 选项错误.当弹簧拉力跟F 1或F 2相等时,A 、B 的动能最大.2.【答案】A 、C3.【答案】C 、D4.【答案】C【解析】绳张紧过程中动量守恒,动能要缺失.5.【答案】A 、B 、D【解析】由动量守恒可知D 项正确,因为木块一直静止,因此A 、B 两子弹对木块的作用力等大,即木块对A 、B 两子弹的作用力等大,由动能定理可知B 项正确.依照22p Ek m可知A 项正确.6.【答案】D【解析】人船系统动量守恒,总动量始终为零,因此人、船的动量等大,速度和质量成反比是8∶1,选项A错误.人“突然停止走动”是指人和船相对静止,设那个速度为u,则(M+m)u=0,因此u=0,说明船的运动赶忙停止,选项B错误.人和船系统动量守恒,速度和质量成反比,因此人的位移是船位移的8倍,选项C错误.由动能、动量关系212kpEm m=∝,人的动能是船的动能的8倍,选项D正确.7.【答案】A、B【解析】A、B两物体发生碰撞,没有其他外力,A、B形成的系统总动量守恒,故选项B正确,选项C错误.由动量守恒定律,得m AΔv A=-m BΔv B,615325A BB Am vm v∆-=-=-=∆-∶,故选项A正确.A、B之间相互作用力大小相等、方向相反,因而A、B间相互作用力不同.故选项D错误.8.【答案】A【解析】由图象直截了当可知①④正确,由v-t图的斜率可知a M>a m,而M与m相互作用力大小相等,因此m>M,③正确.二、填空题9.【答案】2.4 m/s【解析】因水平面光滑,因此斜面体A与小球B组成的系统在水平方向上动量守恒,有:mv0=Mv A,00.0430m / s 2.4m / s0.5A mvvM ⨯===.10.【答案】(1)>=(2)m m m=【解析】(1)两小球要正碰,碰后a球不能反弹,故a球质量要大于b球质量,两球半径要相等.(2)不放小球b时碰痕为反对应的速度为av=(s为轨道末端与木板的水平距离),碰后两球的碰痕分别是A、C,对应的速度分别是'a v=和'b v=,验证动量守恒,应有m m m=+三、解答题11.【答案】见解析【解析】(1)由牛顿第二定律可得2110.6N0.60m / s1.0kgFam===,2220.6N0.20m / s3.0kgFam===.(2)两者速度相同时,距离最近,由动量守恒得 m 2v 0=(m 1+m 2)v , 20120.15m / s m v v m m ==+. 22201211||()0.015J 22k E m v m m v ∆=-+=. (3)依照匀变速运动规律 v 1=a 1t ,v 2=v 0-a 2t ,当v 1=v 2时,解得A 、B 两者距离最近时所用时刻t=0.25 s ,21112x a t =,220212x v t a t =-,21()x d x x ∆=--, 解得 Δx=0.075 m.12.【答案】见解析【解析】设小车、物块的质量分别为M 和m ,车长为L ,物块与小车间的动摩擦因数为μ,初速度为v 0.第一次碰后由于无机械能缺失,因此物块的速度方向变为向右,大小仍为v 0,此后它与小车相互作用,两者速度相等为v 时(由题意知,此速度方向必向左,即必有M >m ),现在相对车的最大位移为2,对物块、小车系统由动量守恒定律有(M -m)v 0=(M+m)v ,由能量守恒定律有22011()()22mgl M m v M m v μ=+-+. 多次碰撞后,物块恰未从小车内滑落,说明最后当物块运动到小车最右端时两者刚好同时停止运动(或者速度同时趋于零).对物块、小车系统由能量守恒定律有 201()2mgL M m v μ=+,而34l L =. 由以上各式得v 0=2v ,M=3m .13.【答案】见解析【解析】以m 、v 和v ',分别表示垒球的质量、垒球在打击过程始、末瞬时速度的大小,球棒与垒球的作用时刻为t ,球棒对垒球的平均作用力的大小为f ,取力的方向为正方向,按动量定理有 ft=mv '-m(-v). ①垒球在与球棒碰撞后,以速率v ',做平抛运动.令打击点高度为h ,垒球落地点与打击点的水平距离为x ,则按平抛运动规律有x=v 't . ② 21'2h gt =. ③式中,t '是垒球做平抛运动的时刻.由②③式得 'v = ④由①④式得 m f v t ⎛⎫= ⎪ ⎪⎝⎭. 代入数据得 f=900 N .14.【答案】见解析【解析】设摩擦力对系统做功为盯,第一过程木板的速度为v ',对第一过程 00'3v mv Mv m =+⋅. ①22200111'2232f v mv m Mv W ⎛⎫--= ⎪⎝⎭. ② 对第二过程 2201122f mv mv W -=. ③由以上①②③式得 v =15.【答案】见解析【解析】(1)设弹性势能最大时,A 的速为v 1,当A 、B 、C 三个物块同速时,弹性势能最大,由动量守恒定律有(m A +m B )v=(m A +m B +m C )v 1.解得v 1=3 m /s .(2)当B 跟C 碰撞时,弹簧可不能突然发生形变,A 的运动不受阻碍,以B 和C 为系统,设B 、C 粘在一起时的速度为v ',由动量守恒定律有 m B v=(m B +m C )v ',解得v '=2 m /s .B 、C 粘在一起后,以A 、B 、C 为系统机械能守恒,则有2221111()'()222A B C A B C pm m v m m v m m m v E ++=+++,解得 E pm =12 J . (3)由于A 、B 、C 系统的总动量守恒(总动量p=24 kg·m/s ),假设A 的速度向左,那么B 、C 的速度向右且一定大于4 m /s ,B 、C 具有的动能21()48J 2k B C B E m m v =+>,而系统在B 、C 粘在一起后的总能量为48 J ,由于可不能显现能量增加的情形,因此可不能显现A 的速度向左.。
选修1高中物理(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.质量为M 的小船在平静的水面上以速率0v 向前匀速行驶,一质量为m 的救生员站在船上相对小船静止,水的阻力不计。
以下说法正确的是( )A .若救生员以速率u 相对小船水平向后跳入水中,则跳离后小船的速率为()00m v u v M ++B .若救生员以速率u 相对小船水平向后跳入水中,则跳离后小船的速率为0m v u M m ++ C .若救生员以速率u 相对小船水平向前跳入水中,则跳离后小船的速率为0m v u M m ++ D .若救生员以速率u 相对小船水平向前跳入水中,则跳离后小船的速率为0m v u M m-+ 2.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。
若把A 固定,让质量为0.01m 的子弹以v 0水平射入物块B (时间极短,子弹未穿出)后,物块B 恰好能在竖直面内做圆周运动,且B 不会撞到轻杆。
则( )A .在子弹射入物块B 的过程中,子弹和物块B 构成的系统,其动量和机械能都守恒 B .子弹射入物块B 的初速度v 05gLC .若物块A 不固定,子弹仍以v 0射入时,物块上摆的初速度将小于原来物块A 固定时的上摆初速度D .若物块A 不固定,子弹仍以v 0射入,当物块B 摆到与PQ 等高时,物块A 的速率为5gL 3.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A.v2=2v1B.B点到C点的过程中,物体动量改变量为2kg·m/sC.F=7ND.运动过程中F对小滑块做功28J4.如图所示,在光滑的水平面上放有一质量为M的物体P,物体P上有一半径为R的光滑四分之一圆弧轨道, 现让质量为m的小滑块Q(可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A.P、Q组成的系统动量不守恒,机械能守恒B.P移动的距离为mM m+RC.P、Q组成的系统动量守恒,机械能守恒D.P移动的距离为M m M+R5.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A.B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.落地时的速率相同B.重力的冲量相同C.重力势能的变化量相同D.重力做功的平均功率相同6.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始下落,与半圆槽相切自A点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒7.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值8.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
动量守恒定律测试题(选修3-5)一、单选题: 本大题共10小题, 从第1小题到第10小题每题4.0分 小计40.0分; 共计40.0分。
1、一只猴子用绳子拉着一块与其等质量的石块, 在光滑水平面上运动(如图), 开始时猴子和石块都静止, 然后猴子以相对于绳子的速度u 拉石块, 则石块的速度为 [ ] A.B.uC.u 23D.2u2、如图所示,一个平板小车放在光滑水平面上,平板车上有一立柱,立柱顶端用细线栓一个小球使小球偏离竖直方向一个角度后由静止释放.释放后小球将和立柱发生多次碰撞,在二者相互作用的运动过程中,小车在水平面上[ ]A .一定向右运动B .一定向左运动C .一定保持静止D .可能向右运动,也可能向左运动 3、在光滑的水平面上有两个静止的小车,车上各站着一名运动员,两车(含运动员)总质量均为M .乙车上的人把原来在车上质量为m 的篮球沿水平方向以速度v 抛出,被甲车上的人接住.则甲、乙两车最终速度大小之间的关系是[ ]A .B .C .D .视M 、m 和v 的大小而定4、A 物体在光滑的水平地面上运动,与静止在同一水平面的B 物体相碰,碰后A 继续沿原方向运动,但速度减为原来的一半,已知A 、B 两物体质量的比是2:1,则碰后两物体的动量之比是[ ] A .1:1 B .1:2 C .1:4 D .2:15、甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 甲=5kg ·m/s ,p 乙=7kg ·m/s ,甲从后面追上乙并发生碰撞,碰后乙球动量变为10kg ·m/s ,则二球质量m 甲与m 乙的可能关系是[ ] A .m 乙=m 甲 B .m 乙=2m 甲 C .m 乙=4m 甲D .m 乙=6m 甲6、甲、乙两只船相向而行, 甲船总质量m甲=1000kg, 乙船总质量m乙= 500kg. 当两船靠近时, 各把m0=50kg的物体移到另一只船上, 结果甲船停止运动, 乙船以8.5m/s的速度按原方向前进. 不计水的阻力, 则甲、乙两船原来的速度大小分别是 [ ]A. 0.5m/s, 9.0m/sB. 1.0m/s, 9.5m/sC. 1.5m/s, 95m/sD. 0.5m/s, 9.5m/s7、总质量为M的小车, 沿水平光滑地面以速度v匀速运动, 某时刻从车上竖直上抛一个质量为m的物体, 则车子的速度[ ]A.不变B.vC.vD.无法确定8、质量为3m的机车, 其速度为v0, 在与质量为2m的静止车厢碰撞后挂接在一起运动, 其运动速度应为 [ ]A.v0B.v0C.v0D.v09、质量为3m的小车,运动速度为,与质量为2m的静止小车碰撞后连在一起运动,则碰撞后两车的总动量为[ ]B.A.C.D.10、如图所示, 小球m用长为L的细绳系着做圆锥摆运动, 小球m由A点摆至B点的过程中, 下述结论正确的是 [ ]A.动量守恒B.动量不守恒, 且△mv= mv BC.动量不守恒, 且△mv= mv AD.动量不守恒, 且△mv= mv B+ mv A= 2mv二、填空题:本大题共3小题,从第11小题到第13小题每题4.0分小计12.0分;共计12.0分。
绝密★启用前2019鲁科版高中物理选修3-5第1章《动量守恒定律研究》章节测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共20小题,每小题3.0分,共60分)1.关于物体的动量,下列说法中正确的是()A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.动量越大的物体,其质量一定越大2.如图所示,质量为M的物体P静止在光滑的水平桌面上,另有一质量为m(M>m)的物体Q以速度v0正对P滑行,则它们相碰后(设桌面足够大)()A.Q物体一定被弹回,因为M>mB.Q物体可能继续向前C.Q物体的速度不可能为零D.若相碰后两物体分离,则过一段时间可能再碰3.试管开口向上,管内底部有一小昆虫,试管自由下落时,当昆虫停在管底和沿管壁加速上爬的两种情况下,试管在相等时间内获得的动量大小是()A.小昆虫停在管底时大B.小昆虫向上加速上爬时大C.两种情况一样大D.小昆虫加速度大小未知,无法确定4.如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s,B球的速度是-2 m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是()A.v A′=-2 m/s,vB′=6 m/sB.v A′=2 m/s,vB′=2 m/sC.v A′=1 m/s,vB′=3 m/sD.v A′=-3 m/s,vB′=7 m/s5.光子的能量为hν,动量大小为,如果一个静止的放射性元素的原子核在发生γ衰变时只放出一个γ光子,则衰变后的原子核()A.仍然静止B.沿着与光子运动方向相同的方向运动C.沿着与光子运动方向相反的方向运动D.可能向任何方向运动6.如图所示,a、b、c三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同一高度分别开始做自由下落和平抛运动.它们从开始到到达地面,下列说法正确的有()A.它们同时到达地面B.重力对它们的冲量相同C.它们的末动能相同D.它们动量变化的大小相同7.如图所示,质量为M的斜劈置于光滑的水平地面上,一质量为m的滑块以初速度v0沿斜劈向上滑行,它们在相互作用的过程中,当斜劈的速度达到最大值时,对应的是下列情况中的()A.滑块在到达斜劈的最高位置时B.滑块从斜劈上开始下滑时C.滑块与斜劈速度相等时D.滑块与斜劈开始分离时8.一同学在地面上立定跳远的最好成绩是x(m),假设他站在车的A端,如图所示,想要跳上距离为l(m)远的站台上,不计车与地面的摩擦阻力,则()A.只要l<x,他一定能跳上站台B.只要l<x,他有可能跳上站台C.只要l=x,他一定能跳上站台D.只要l=x,他有可能跳上站台9.物体沿粗糙的斜面上滑,到最高点后又滑回原处,则()A.上滑时重力的冲量比下滑时小B.上滑时摩擦力冲量比下滑时大C.支持力的冲量为0D.整个过程中合外力的冲量为零10.下列关于动量的说法中,正确的是()A.物体的动量改变,其速度大小一定改变B.物体的动量改变,其速度方向一定改变C.物体运动速度的大小不变,其动量一定不变D.物体的运动状态改变,其动量一定改变11.如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s;乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为 4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)()A. 1 m/sB. 0.5 m/sC.-1 m/sD.-0.5 m/s12.手持铁球的跳远运动员起跳后,欲提高跳远成绩,可在运动到最高点时,将手中的铁球() A.竖直向上抛出B.向前方抛出C.向后方抛出D.向左方抛出13.一炮艇在湖面上匀速行驶,突然从船头和船尾同时水平向前和向后各发射一发炮弹,设两炮弹质量相同,相对于地的速率相同,船的牵引力和阻力均不变,则船的速度的变化情况是 ()A.速度不变B.速度减小C.速度增大D.无法确定14.如图所示,自行火炮连同炮弹的总质量为M,当炮管水平,火炮车在水平路面上以v1的速度向右匀速行驶中,发射一枚质量为m的炮弹后,自行火炮的速度变为v2,仍向右行驶.则炮弹相对炮筒的发射速度v0为()A.B.C.D.15.“娱乐风洞”是一项将科技与惊险相结合的娱乐项目,它能在一个特定的空间内把表演者“吹”起来.假设风洞内向上的风量和风速保持不变,表演者调整身体的姿态,通过改变受风面积(表演者在垂直风力方向的投影面积),来改变所受向上风力的大小.已知人体所受风力大小与受风面积成正比,人水平横躺时受风面积最大,设为S0,站立时受风面积为S0;当受风面积为S0时,表演者恰好可以静止或匀速漂移.如图所示,某次表演中,人体可上下移动的空间总高度为H,表演者由静止以站立身姿从A位置下落,经过B位置时调整为水平横躺身姿(不计调整过程的时间和速度变化),运动到C位置速度恰好减为零.关于表演者下落的过程,下列说法中正确的是()A.B点距C点的高度是HB.从A至B过程表演者克服风力所做的功是从B至C过程表演者克服风力所做的功的C.从A至B过程表演者所受风力的冲量是从A至C过程表演者所受风力的冲量的D.从A至B过程表演者所受风力的平均功率是从B至C过程表演者所受风力平均功率的16.两个具有相等动能的物体,质量分别为m1和m2,且m1>m2,比较它们动量的大小,则有()A.m2的动量大一些B.m1的动量大一些C.m1和m2的动量大小相等D.哪个的动量大不一定17.在距地面高为h处,同时以相同速率v0分别平抛、竖直上抛、竖直下抛质量相等的物体m,当它们落地时,比较它们的动量的增量Δp,有()A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大18.质量分别为2m和m的A、B两个质点,初速度相同,均为v1.若他们分别受到相同的冲量I作用后,A的速度为v2,B的动量为p.已知A、B都做直线运动,则动量p可以表示为( )A.m(v2-v1)B. 2m(2v2-v1)C. 4m(v2-v1)D.m(2v2-v1)19.质量为m的小球A,在光滑水平面以初动能E k与质量为2m的静止小球B发生正碰,碰撞后A 球停下,则撞后B球的动能为()A. 0B.C.D.E k20.如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑斜面由静止自由滑下,下滑到达斜面底端的过程中()A.两物体所受重力做功相同B.两物体所受合外力冲量相同C.两物体到达斜面底端时时间相同D.两物体到达斜面底端时动能不同第II卷二、计算题(共4小题,每小题10.0分,共40分)21.如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.22.如图所示,质量为m的摆球用长为l的轻质细绳系于O点,O点正下方的粗糙水平地面上静止着一质量为M的钢块.现将摆球向左拉起,使细线水平,由静止释放摆球,摆球摆动至最低点时与钢块发生正碰,碰撞时间极短,碰后摆球反弹上升至最高点时与最低点的竖直高度差为l.已知钢块与水平面间的动摩擦因数为μ,摆球和钢块均可视为质点,不计空气阻力,水平面足够长.求:钢块与摆球碰后在地面上滑行的距离.23.质量为60 kg的人,不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知安全带长5 m,其缓冲时间是1.2 s,求安全带受到的平均冲力大小为多少?(取g=10 m/s2)24.如图所示是某游乐场过山车的娱乐装置原理图,弧形轨道末端与一个半径为R的光滑圆轨道平滑连接,两辆质量均为m的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起,两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点,求:(1)前车被弹出时的速度;(2)前车被弹出的过程中弹簧释放的弹性势能;(3)两车从静止下滑时距最低点的高度h.答案解析1.【答案】A【解析】动量具有瞬时性,任一时刻物体动量的方向,即为该时刻的速度方向,A正确;加速度不变,物体的速度均匀变化,故其动量也均匀变化,B错误;物体动量的大小由物体质量及速度的大小共同决定,物体的动量大,其速度不一定大,动量大,其质量也并不一定越大,C、D错误.2.【答案】B【解析】因为相碰后Q、P有获得相同速度的可能,所以A错.只有M=m且M、m发生了弹性正碰时,m才可能将动量全部传给M.若M、m发生非弹性碰撞,尽管M>m,但碰后速度仍有可能为零,所以C错.若Q被反向弹回,则Q、P不再相碰,所以D错.3.【答案】B【解析】选试管为研究对象,昆虫停在管中时整体做自由落体运动,试管只受重力,由动量定理mgt=p1-0.当昆虫加速上爬时,对管底产生一个向下的作用力F,根据动量定理得(mg+F)t=p2-0,所以p2>p1,故B正确.4.【答案】D【解析】两球碰撞前后应满足动量守恒定律并且碰后两球的动能之和不大于碰前两球的动能之和.即满足:mA v A+mB v B=mA v A′+mB v B′,①mA v+mB v≥mA v A′2+mB v B′2,②答案D中满足①式,但不满足②式,所以D选项错误.5.【答案】C【解析】原子核在放出γ光子的过程中,系统动量守恒,而系统在开始时总动量为零,因此衰变后的原子核的运动方向与γ光子运动方向相反.6.【答案】D【解析】球b做自由落体运动,球c的竖直分运动是自由落体运动,故b、c两个球的运动时间相同且加速度均为g,为t=;球a受重力和支持力,加速度为g sinθ<g,故a球运动时间长,A错误;由于重力相同,而重力的作用时间不同,故重力的冲量不同,B错误;初动能不全相同,而合力做功相同,根据动能定理,得末动能不全相同,C错误;b、c球合力相同,运动时间相同,故合力的冲量相同,根据动量定理,动量变化量也相同;a、b球机械能守恒,末速度相等,故末动量大小相等,初动量为零,故动量增加量的大小相等,D正确.7.【答案】D【解析】滑块和斜劈组成的系统,在水平方向上所受的合力为零,水平方向上动量守恒,根据动量守恒定律知,当滑块的速度沿斜劈向下达到最大时,斜劈向右的速度最大,此时滑块与斜劈开始分离.故D正确,A、B、C错误.8.【答案】B【解析】人起跳的同时,小车要做反冲运动,所以人跳的距离小于x,故l<x时,才有可能跳上站台.9.【答案】A【解析】上滑过程中mg sinθ+F f=ma1,下滑过程中mg sinθ-F f=ma2,a1>a2可知上滑运动时间较短,重力冲量较小,A对;同理可知上滑时摩擦力冲量比下滑时小,上滑时支持力冲量比下滑时小, B、C错;合外力不为零,合外力的冲量不为零,D错.10.【答案】D【解析】动量是矢量,有大小也有方向.动量改变是指动量大小或方向的改变,而动量的大小与质量和速度两个因素有关,其方向与速度的方向相同.质量一定的物体,当速度的大小或方向有一个因素发生变化时,动量就发生变化,故A、B、C错;物体运动状态改变是指速度大小或方向的改变,因此物体的动量一定发生变化,故D正确.11.【答案】D【解析】两车碰撞过程动量守恒,m1v1-m2v2=(m1+m2)v得v==m/s=-0.5 m/s.12.【答案】C【解析】欲提高跳远成绩,则应增大水平速度,即增大水平方向的动量,所以可将铁球向后抛出,人和铁球水平方向的总动量守恒,因为铁球的动量向后,所以人向前的动量增加.13.【答案】C【解析】因船受到的牵引力及阻力不变,且开始时船匀速运动,故整个系统动量守恒;设炮弹质量为m,船(不包括两炮弹)的质量为M,则由动量守恒可得:Mv+mv1-mv1=(M+2m)v0,可得发射炮弹后船(不含炮弹)的动量增大,速度增大,C正确.14.【答案】B【解析】将自行火炮和炮弹看做一个系统,自行火炮水平匀速行驶时,牵引力与阻力平衡,系统动量守恒设向右为正方向,发射前系统动量之和为Mv1,发射后系统的动量之和为(M-m)v2+m(v0+v2).由Mv1=(M-m)v2+m(v0+v2)解得v0=.15.【答案】B【解析】设人水平横躺时受到的风力大小为F m,由于人体受风力大小与正对面积成正比,故人站立时风力为F m.由于受风力有效面积是最大值的一半时,恰好可以静止或匀速漂移,故可以求得人的重力G=F m,即有F m=2G.从A至B过程表演者的加速度大小为a1===0.75g从B至C过程表演者的加速度大小为a2===g,由速度位移公式得:从A至B过程表演者的位移x1=,从B至C过程表演者的位移x2=,故x1∶x2=4∶3,x2=H,A错误;表演者从A至B克服风力所做的功为W1=F m·H=F m H;从B至C过程克服风力所做的功为W2=F m·H=F m H,得=,B正确;设B点的速度为v,则从A至B过程表演者的运动时间t1==.从B至C过程表演者的运动时间t2==,根据动量定理,I1=F m t1=mv,I2=F m t2=2mv,=,C错误;根据P=,又=,=,联立解得=,D错误.16.【答案】B【解析】动能E k=mv2,动量p=mv,则p=,因为初动能相等,m1>m2,则动量p1>p2,B正确.17.【答案】B【解析】物体在空中只受重力作用,三种情况下从抛出到落地竖直上抛时间最长,竖直下抛时间最短,由动量定理:I=mgt=Δp得竖直上抛过程动量增量最大,B正确.18.【答案】D【解析】对A由动量定理:I=2m(v2-v1),对B由动量定理:I=p-mv1,则p=I+mv1=m(2v2-v1),D正确.19.【答案】B【解析】两球碰撞过程动量守恒,有mv A=2mv B,所以由动量和能量的关系有=,故E kB=,B项正确.20.【答案】A【解析】从光滑的斜面下滑,设斜面倾角为θ,高h,则有加速度a=g sinθ,位移x=,根据匀变速直线运动则有x==at2=g sinθt2,运动时间t=,两个斜面高度相同而倾角不同所以运动时间不同,选项C错;沿斜面运动合力为mg sinθ,所以合力的冲量I=mg sinθt=mg,虽然大小相等,但是倾角不同,合力方向不同,合外力冲量不同,B错;下滑过程重力做功mgh相等,A对;根据动能定理,下滑过程只有重力做功,而且做功相等,所以到达斜面底端时动能相同,选项D错.21.【答案】(m+M)g+【解析】子弹射入木块的瞬间,子弹和木块组成的系统动量守恒.取水平向左为正方向,由动量守恒定律得0+mv=(m+M)v1解得v1=.随后子弹和木块整体以此初速度向左摆动做圆周运动.由牛顿第二定律得(取向上为正方向)F-(m+M)g=(m+M)将v1代入解得F=(m+M)g+22.【答案】【解析】摆球从下落过程机械能守恒,设下落到最低点速度大小为v1,则由动能定理得:mgl=mv摆球与钢块碰撞极短,设碰撞后摆球速度大小为v2,钢块速度大小为v3,以水平向右为正方向,由动量守恒得:mv1=-mv2+Mv3由于碰撞后小球反弹至l高处,则小球上升过程由动能定理得:-mg×l=0-mv碰撞后钢块沿水平面做匀减速运动,由动能定理得:-μMgs=0-Mv得s=.23.【答案】1100 N【解析】人自由下落5 m,由运动学公式v2=2gh,则v==m/s=10 m/s.人和安全带作用时,人受到向上的拉力和向下的重力,设向下为正,由动量定理(mg-F)t=0-mv得F=mg+=(60×10+) N=1100 N.24.【答案】(1)(2)mgR(3)【解析】(1)设前车在最高点速度为v2,依题意有mg=①设前车在最低位置与后车分离后速度为v1,根据机械能守恒mv+mg·2R=mv②由①②得:v1=(2)设两车分离前速度为v0,由动量守恒定律2mv0=mv1得v0==设分离前弹簧弹性势能为E p,根据系统机械能守恒定律得E p=mv-·2mv=mgR (3)两车从h高处运动到最低处机械能守恒,有2mgh=·2mv,解得:h=.。
一、选择题1.(0分)[ID :127065]人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
人坐在静止于水平冰面的冰车上,以速度v (相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v (相对地面)将球推向挡板。
人推多少次后不能再接到球( ) A .6次 B .7次 C .8次 D .9次2.(0分)[ID :127052]如图所示,将一光滑的质量为4m 半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨有一个质量为m 的物块,今让一质量也为m 的小球自左侧槽口A 的正上方高R 处从静止开始落下,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次到最低点B 的运动过程中,槽的支持力对小球不做功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为4:1C .小球第一次从C 点滑出后将做竖直上抛运动D .物块最终的动能为15mgR 3.(0分)[ID :127035]光滑绝缘水平桌面上存在与桌面垂直方向的匀强磁场,有一带电粒子在桌面上做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子发生正碰合为一体(碰撞时间极短),则粒子的运动轨迹应是图中的哪一个(实线为原轨迹,虚线为碰后轨迹)( )A .B .C .D . 4.(0分)[ID :127031]如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止。
若救生员相对小船以速率v 水平向左跃入水中,则救生员跃出后小船相对水面的速率为( )A .0m v v M +B .0m v v M-C .0m v v M m ++D .00()m v v v M+- 5.(0分)[ID :127026]如图,A 、B 两个小球沿光滑水平面向右运动,取向右为正方向,则A 的动量p A =10kg·m/s ,B 的动量p B =6kg·m/s ,A 、B 碰后A 的动量增量△p A =-4kg·m/s ,则关于A 、B 的质量比应满足的条件为( )A .53AB m m > B .315A B m m ≤≤C .3553A B m m ≤<D .1A Bm m ≤ 6.(0分)[ID :127020]在如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能不守恒D .动量不守恒,机械能守恒7.(0分)[ID :127017]如图所示,轻弹簧的一端固定在竖直墙上,一个光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,让一个物块从槽上高h 处由静止开始下滑。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理-《动量守恒定律》章末测试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分110分,时间90分钟。
第Ⅰ卷(选择题 共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段D.静止不动2.如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( )A .21E E =B .01E E =C .22E E =D .02E E =3.光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。
假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。
忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( )A.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
木箱和小木块都具有一定的质量。
现使木箱获得一个向右的初速度v 0,则( )A .小木块和木箱最终都将静止B .小木块最终将相对木箱静止,二者一起向右运动C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动PvQ5.质量为m a=1kg,m b=2kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移—时间图象如图所示,则可知碰撞属于()A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,不能确定6.人的质量m=60kg,船的质量M=240kg,若船用缆绳固定,船离岸1.5m时,人可以跃上岸。
若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为(不计水的阻力,两次人消耗的能量相等)()A.1.5m B.1.2mC.1.34m D.1.1m7.如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑。
当两物体被同时释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒8.如图所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上。
c车上有一小孩跳到b车上,接着又立即从b车跳到a车上。
小孩跳离c车和b车时对地的水平速度相同。
他跳到a车上相对a车保持静止,此后()A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系v c>v a>v bD.a、c两车运动方向相反9.如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。
现使B瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由压缩状态恢复到原长C.两物体的质量之比为m1∶m2=1∶2D.在t2时刻A与B的动能之比为E k1∶E k2=8∶110.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。
g取10m/s2。
则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8N·s第Ⅱ卷(非选择题共60分)二、填空题(共2小题,共16分。
把答案直接填在横线上)11.(6分)如图所示,在橄榄球比赛中,一个质量为95kg的橄榄球前锋以5m/s的速度跑动,想穿越防守队员到底线触地得分。
就在他刚要到底线时,迎面撞上了对方两名质量均为75kg 的队员,一个速度为2m/s,另一个为4m/s,然后他们就扭在了一起。
(1)他们碰撞后的共同速率是________(结果保留一位有效数字)。
(2)在框中标出碰撞后他们动量的方向,并说明这名前锋能否得分:________。
12.(10分)如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O。
接下来的实验步骤如下:步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。
重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞,重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、O P、ON的长度。
(1)对于上述实验操作,下列说法正确的是________。
A.应使小球每次从斜槽上相同的位置自由滚下B.斜槽轨道必须光滑C.斜槽轨道末端必须水平D.小球1质量应大于小球2的质量(2)上述实验除需测量线段OM、OP、ON的长度外,还需要测量的物理量有________。
A.A、B两点间的高度差h1B.B点离地面的高度h2C.小球1和小球2的质量m1、m2D.小球1和小球2的半径r(3)当所测物理量满足表达式____________(用所测物理量的字母表示)时,即说明两球碰撞遵守动量守恒定律。
如果还满足表达式______________(用所测物理量的字母表示)时,即说明两球碰撞时无机械能损失。
(4)完成上述实验后,某实验小组对上述装置进行了改造,如图2所示。
在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接。
使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′。
用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1,l2、l3。
则验证两球碰撞过程中动量守恒的表达式为________________(用所测物理量的字母表示)。
三、计算题(共4小题,共54分。
解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)13.(8分)如图所示,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连。
将弹簧压紧到不能再压缩时用细线把B和C 紧连,使弹簧不能伸展,以至于B、C可视为一个整体。
现A以初速v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起。
以后细线突然断开,弹簧伸展,从而使C与A、B分离。
已知C离开弹簧后的速度为v0。
求弹簧释放的势能。
14.(10分)40kg的女孩骑自行车带30kg的男孩(如图所示),行驶速度2.5m/s。
自行车行驶时,男孩要从车上下来。
(1)他知道如果直接跳下来,他可能会摔跤,为什么?(2)男孩要以最安全的方式下车,计算男孩安全下车的瞬间,女孩和自行车的速度。
(3)以自行车和两个孩子为系统,试比较计算在男孩下车前、后整个系统的动能值,并解释之。
15.(8分)如图所示,甲车的质量是m甲=2.0kg,静止在光滑水平面上,上表面光滑,右端放一个质量为m=1.0kg可视为质点的小物体,乙车质量为m乙=4.0kg,以v乙=9.0m/s的速度向左运动,与甲车碰撞以后甲车获得v甲′=8.0m/s的速度,物体滑到乙车上,若乙车上表面与物体的动摩擦因数为0.50,则乙车至少多长才能保证物体不从乙车上滑下?(g取10m/s2)16.(12分)在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙.动摩擦因数为,滑块CD上表面是光滑的1/4圆弧,其始端D点切线水平且在木板AB上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为v0/2,又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求:(1)物块滑到B处时木板的速度v AB;(2)木板的长度L;(3)滑块CD圆弧的半径17.(16分)如图1所示,木板A静止在光滑水平面上,一小滑块B(可视为质点)以某一水平初速度从木板的左端冲上木板。
(1)若木板A的质量为M,滑块B的质量为m,初速度为v0,且滑块B没有从木板A的右端滑出,求木板A最终的速度v。
(2)若滑块B以v1=3.0m/s的初速度冲上木板A,木板A最终速度的大小为v=1.5m/s;若滑块B以初速度v2=7.5m/s冲上木板A,木板A最终速度的大小也为v=1.5m/s。
已知滑块B与木板A间的动摩擦因数μ=0.3,g取10m/s2。
求木板A的长度L。
(3)若改变滑块B冲上木板A的初速度v0,木板A最终速度v的大小将随之变化。
请你在图2中定性画出v-v0图线。
参考答案1.【答案】C【解析】:木板和木块组成的系统动量守恒,设它们相对静止时的共同速度为v,以木板运动的方向为正方向,则:Mv1-mv2=(M+m)vv==2m/s,方向与木板运动方向相同.在这之前,木板一直做匀减速运动,木块先做匀减速运动,当相对地面的速度为零时,再反向向右做匀加速运动,直到速度增大到2m/s.设当木块对地速度为零时,木板速度为v′,则:Mv1-mv2=Mv′,v′==2.67m/s,大于2.4 m/s,故木板的速度为2.4 m/s时,木块处在反向向右加速运动阶段,C正确.2.【答案】AD【解析】:P、Q相互作用的过程中满足动量守恒和机械能守恒,当P、Q速度相等时,系统的动能损失最大,此时弹簧的弹性势能最大,根据动量守恒和机械能守恒可以求得A项正确,由于P、Q的质量相等,故在相互作用过程中发生速度交换,当弹簧恢复原长时,P的速度为零,系统的机械能全部变为Q的动能,D正确。