高分子成型加工
- 格式:doc
- 大小:85.00 KB
- 文档页数:5
高分子材料成型加工是将高分子材料通过一系列的工艺操作和设备,使其转变成所需形状和尺寸的过程。
以下是高分子材料成型加工的一些常见方法:
1. 注塑成型:将高分子材料以固体或液态形式注入到模具中,在高压和高温下使其熔化并充满模具腔体,然后冷却固化,最终得到所需形状的制品。
注塑成型广泛应用于塑料制品的生产,如塑料容器、零件等。
2. 挤出成型:将高分子材料通过挤出机加热熔化,然后通过模具的挤压作用将熔融物料挤出成连续的型材,经冷却固化后得到所需形状的制品。
挤出成型常用于生产管道、板材、薄膜等产品。
3. 吹塑成型:利用吹塑机将高分子材料加热熔化,然后通过气流将其吹成空气袋状,同时在模具中形成所需形状,最后冷却固化得到制品。
吹塑成型常用于生产塑料瓶、塑料薄膜等。
4. 压延成型:将高分子材料以固体或液态形式置于两个或多个辊子之间,通过辊子的旋转和挤压,使其逐渐变薄并得到所需形状和尺寸,最后冷却固化。
压延成型常用于生产塑料薄膜、塑料板材等。
5. 注塑吹塑复合成型:将注塑成型和吹塑成型结合在一起,先通过
注塑将制品的大部分形状成型,然后通过吹塑将其膨胀、加压并使得内部空腔形成所需形状。
注塑吹塑复合成型常用于生产中空制品,如玩具、塑料容器等。
除了上述常见的成型加工方法外,还有其他方法如压缩成型、发泡成型、旋转成型等,不同的高分子材料和产品要求会选择适合的成型加工方法。
成型加工过程中需要考虑材料的熔化温度、流动性、冷却速度等因素,同时也要注意模具设计和工艺参数的优化,以获得良好的成型效果和制品质量。
高分子材料成型加工简介高分子材料成型加工是指通过加热、挤压、拉伸等工艺将高分子材料转变成所需形状和尺寸的过程。
高分子材料广泛应用于各个领域,如塑料制品、橡胶制品、纤维材料等。
本文将介绍高分子材料成型加工的基本原理、常用的加工方法以及在实际应用中的注意事项。
基本原理高分子材料成型加工是利用高分子材料的可塑性进行加工的过程。
高分子材料的可塑性是指在一定的温度和压力下,可以被加工成各种形状的性质。
其基本原理可以归纳为以下几点:1.熔融:高分子材料在一定的温度范围内可以被熔化成流体状态,使得材料更易于流动和变形。
2.成型:将熔融的高分子材料注入到模具中,通过模具的形状和尺寸限制,使得熔融材料在冷却后得到所需的形状和尺寸。
3.冷却固化:熔融材料在模具中冷却后逐渐固化成固体,成为最终的成型品。
常用的加工方法注塑成型注塑成型是一种常用的高分子材料成型加工方法,适用于制造各种塑料制品。
其基本流程包括:1.材料准备:选择合适的塑料颗粒作为原料,将其加入注塑机的进料口中。
2.加热熔融:注塑机将原料加热、熔融,并将熔融的塑料材料注入到模具中。
3.冷却固化:模具中的熔融塑料材料在冷却后逐渐固化成固体,形成最终的成型品。
4.取出成品:将固化的成型品从模具中取出,并进行后续加工,如修整边缘、打磨表面等。
挤出成型挤出成型是另一种常用的高分子材料成型加工方法,适用于制造各种管材、板材等长型产品。
其基本流程包括:1.材料准备:将高分子材料以颗粒形式加入到挤出机的料斗中。
2.加热熔融:挤出机将颗粒状的高分子材料加热、熔融,并通过螺杆将熔融的材料挤出。
3.模具成型:挤出的熔融材料通过模具的形状和尺寸限制,被冷却成所需的形状和尺寸。
4.冷却固化:在模具中冷却后,熔融材料逐渐固化成固体,形成最终的成型品。
5.切割成品:挤出机会根据需要将成型品切割成所需的长度,以便后续使用。
除了注塑成型和挤出成型,还有许多其他的高分子材料成型加工方法,如压延成型、注射拉伸成型等,根据材料和产品的需求选择合适的加工方法。
高分子材料加工技术
高分子材料加工技术是指将高分子材料(如塑料、橡胶)通过一系列的加工工艺,使其变成所需的产品或零部件的过程。
它包括以下几种常见的加工技术:
1. 注塑成型:将高分子材料加热熔融后,通过注塑机将熔融物注入模具中,然后冷却固化成型。
2. 吹塑成型:将高分子材料加热熔融后通过吹塑机,将其吹入充气的模具中,然后冷却固化成型。
3. 挤出成型:将高分子材料加热熔融后,通过挤出机将熔融物挤出成型。
4. 压延成型:将高分子材料通过双辊压延机,经过连续的冷却和压延,使其变成薄膜或板材。
5. 注塑拉伸吹塑成型:将高分子材料通过注塑机注塑成形后,再通过拉伸和吹塑成型,制成透明的容器或瓶子。
6. 焊接和粘接:在高分子材料表面使用热焊或化学粘接剂
将两个或多个零部件连接在一起。
此外,还有其他加工技术如热压、胎具法、模压、拉伸成
型等。
这些加工技术都有各自的特点和适用范围,根据实
际需求选择合适的加工技术可以提高生产效率和产品质量。
高分子材料成型加工高分子材料成型加工是指对高分子材料进行加工和塑造的过程。
高分子材料是由聚合物组成的材料,具有重要的物理性能和化学性能。
高分子材料成型加工可以通过不同的方法进行,包括热塑性成型、热固性成型和加工液态聚合物等。
热塑性成型是最常见的高分子材料成型加工方式,其中包括挤出、注塑、压塑、吹塑等方法。
挤出是将高分子材料通过加热和压力作用,从挤出机的模具中挤出成所需的形状和尺寸。
注塑是将熔融的高分子材料注入到注射模具中,然后快速冷却硬化成所需的形状。
压塑是将熔融的高分子材料放入模具中,然后通过压力使其充满整个模具并形成所需的形状。
吹塑是将热塑性聚合物通过气压吹塑成所需的形状。
热固性成型是另一种常见的高分子材料成型加工方式,其中包括热压成型、热镶嵌、热熔覆、模塑等方法。
热压成型是将预浸有热固性树脂的纤维布料放入模具中,然后在高温和高压下固化成所需的形状。
热镶嵌是将热固性树脂涂在基材上,然后将纤维布料放在上面,再通过高温和压力使其固化成一体。
热熔覆是将热固性树脂熔融后涂覆在基材上,然后通过加热使其固化成一体。
模塑是将热固性树脂放置在模具中,然后通过加热使其固化成所需的形状。
加工液态聚合物是一种新兴的高分子材料成型加工方式,其中包括3D打印、光固化、涂覆等方法。
3D打印是利用计算机控制将液态聚合物逐层堆叠成所需的形状。
光固化是将液态聚合物暴露在紫外线下,通过光引发剂的作用使其固化成所需的形状。
涂覆是将液态聚合物均匀涂覆在基材上,然后通过加热或光固化使其固化成一体。
总之,高分子材料成型加工是将高分子材料加工和塑造成所需的形状和尺寸的过程。
不同的加工方式适用于不同类型的高分子材料和产品要求。
浅谈高分子材料成型加工技术以及应用前景高分子材料是一种具有分子量较高的聚合物材料,其种类繁多,具有结构多样性和性能优越性,因此在各个领域都得到了广泛的应用。
高分子材料的成型加工技术是将高分子材料加工成各种形状和尺寸的工艺技术,它包括熔融成型、溶液成型、模压成型、注射成型、吹塑成型、挤出成型等多种加工方法。
本文将从高分子材料的成型加工技术和应用前景两个方面进行探讨。
一、高分子材料成型加工技术高分子材料成型加工技术是将高分子材料通过加工方式成为具有一定形状和性能的制品过程。
目前,高分子材料的成型加工技术主要分为以下几种:1. 熔融成型熔融成型是将高分子材料加热到熔点后,通过挤出、压延、注射等方式使其成型的方法。
常见的熔融成型方法有挤出成型和注射成型。
挤出成型是将熔化的高分子材料通过挤出机挤压成型,适用于生产各种塑料管材、板材、型材等。
注射成型是将熔化的高分子材料注入模具中,冷却后得到成型制品,适用于生产各种塑料制品。
2. 溶液成型溶液成型是将高分子材料溶解在溶剂中,然后通过浇铸、浸渍等方式使其成型的方法。
溶液成型适用于生产薄膜、纤维、涂层等制品,如溶液浇铸法生产聚醚脂薄膜、溶液浸渍法生产纤维增强复合材料等。
3. 模压成型模压成型是将高分子材料加热软化后,放入模具中施加压力成型的方法。
模压成型适用于生产各种塑料制品,如家具、日用品、电器外壳等。
4. 吹塑成型6. 管材挤出成型管材挤出成型是将高分子材料通过管材挤出机挤出成型的方法。
管材挤出成型适用于生产各种塑料管材。
二、高分子材料的应用前景高分子材料因其种类繁多、性能优越、加工成型方便等特点,在各个领域都得到了广泛的应用。
在建筑领域,高分子材料可用于生产各种隔热、隔声、耐候、耐腐蚀的建筑材料;在汽车领域,高分子材料可用于生产汽车外饰件、内饰件、发动机零部件等;在电子领域,高分子材料可用于生产电子产品外壳、线缆、电路板等;在包装领域,高分子材料可用于生产塑料包装袋、瓶、箱等。
高分子材料加工及表面改性技术高分子材料,其实就是具有很高分子量的化合物。
这种材料具有比较高的强度和韧性,可以应用在很多领域中,例如工业、医学、电子等等方面,而高分子材料加工及表面改性技术,则是围绕着这种材料的处理技术而展开的研究和实践。
在这篇文章中,我将针对高分子材料的加工和表面改性技术进行探讨。
一、高分子材料加工技术高分子材料的加工技术,主要包括成型加工、加工工艺以及加工装备等三个方面。
1. 成型加工成型加工,是指将高分子材料加工成所需形状和尺寸的工艺过程。
其中,最常见的成型加工方法,便是注塑成型。
注塑成型是一种通过芯棒将熔化的高分子塑料注入模具中冷却成型的方法。
该方法在整个加工处理过程中,需要用到注塑机、机械手等设备。
此外,还有挤出成型、吹塑成型、压缩成型等不同的成型加工方法。
这些方法,适用于不同的高分子材料以及不同的加工需求。
2. 加工工艺加工工艺,则是指通过调节加工参数,使高分子材料达到最佳加工状态。
对于不同的高分子材料,其加工参数也会有所不同。
举例来说,在进行注塑加工处理时,需要考虑高分子材料的注塑温度、注塑压力、注塑速度、模具温度等因素。
3. 加工装备高分子材料加工中,加工装备则是重要的辅助性因素。
相应的,加工装备的维护保养,以及开展相应的技术培训,也是加工成功的关键之一。
二、高分子材料表面改性技术除了高分子材料加工技术以外,改善高分子材料表面性能的技术也受到了广泛的关注。
表面改性技术,可以通过物理、化学、生物等多种途径,将高分子材料的表面性能得到改进。
1. 物理方法物理方法,指的是通过物理手段来进行表面改性。
例如,通过使用阳极氧化、喷砂处理以及激光加工等方法,对高分子材料的表面进行改良。
在这些方法中,激光加工则属于一种比较高效的表面处理技术。
通过使用激光加工设备,可以在材料表面形成微米级别的表面结构和纳米级别的结晶区域,从而达到更好的表面改性。
2. 化学方法化学方法,指的是在高分子材料表面添加化学物质,从而起到改性的作用。
1.高分子材料成型加工:通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所摇的形状并保持其已经取得的形状,最终得到制品的工艺过程。
2.热塑性塑料:是指具有加热软化、冷却硬化特性的塑料(如: ABS、PP、POM、PC、PS、PVC、PA、PMMA等),它可以再回收利用。
具有可塑性可逆热固性塑料:是指受热或其他条件下能固化或具有不溶(熔)特性的塑料(如:酚醛树脂、环氧树脂、氨基树脂、聚胺酯、发泡聚苯乙烯、不饱和聚酯树脂等)具有可塑性,是不可逆的、不能再回收利用。
3. 通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料工程塑料:指拉伸强度大于50MPa,冲击强度大于6KJ/m2,长期耐热温度超过100°C 的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等的、可代替金属用作结构件的塑料.4.可挤压性:材料受挤压作用形变时,获取和保持形状的能力。
可模塑性:材料在温度和压力作用下,产生形变和在模具中模制成型的能力。
可延展性:材科在一个或两个万向上受到压延或拉伸的形变能力。
可纺性:材料通过成型而形成连续固态纤维的能力。
5.塑化效率:高分子化合物达到某一柔软程度时增塑剂的用量定义为增塑剂的塑化效率。
定义DOP的效率值为标准1,小于1的则较有效,大于1的较差.6.稳定流动:凡在输送通道中流动时,流体在任何部位的流动状况及一切影响流体流动的因素不随时间而变化,此种流动称为稳定流动。
不稳定流动:凡流体在输送通道中流动时,其流动状况及影响流动的各种因素都随时间而变化,此种流动称之不稳定流动。
7. 等温流动是指流体各处的温度保持不变情况下的流动。
(在等温流动情况下,流体与外界可以进行热量传递,但传入和输出的热量应保持相等)不等温流动:在塑料成型的实际条件下,由于成型工艺要求将流道各区域控制在不同的温度下:而且由于粘性流动过程中有生热和热效应,这些都使其在流道径向和轴向存在一定的温度差,因此聚合物流体的流动一般均呈现非等温状态。
浅谈高分子材料成型加工技术以及应用前景高分子材料是一类结构中带有大量的高分子化合物的材料,具有分子量大、成分多样、形态丰富等特点。
高分子材料的加工技术是指将高分子材料通过一系列方法进行形状的加工、成型和加工,制成各种所需的工业制品或成品。
高分子材料的成型加工技术一般可分为熔融加工和溶液加工两种方式。
熔融加工是指将高分子材料加热至熔融状态后,通过模具或挤出机等设备进行塑料成型。
常见的熔融加工方法有注塑、挤出、吹塑等。
注塑是最为常见的熔融加工方法,适用于制造各种尺寸和形状的塑料制品,如家电外壳、塑料容器等。
挤出是将熔化的高分子材料从模具中挤出,通过拉伸、冷却等方法形成固体材料,适用于制造连续长度的塑料型材,如塑料管材和塑料薄膜等。
吹塑是将熔融的高分子材料通过气流吹入模具内形成空腔,经过冷却后形成各种形状的容器,如瓶子、塑料箱等。
溶液加工是指将高分子材料溶解在适当的溶剂中,通过涂布、浸渍或喷涂等方法对材料进行成型加工。
常见的溶液加工方法有涂布成膜、纺丝、浸渍和胶云等。
涂布成膜是将高分子材料溶液涂布在基材上,并通过干燥、固化等工艺形成膜;纺丝是将高分子材料溶液通过纺纱机械设备拉丝成线,可用于制造纱线、织物等;浸渍是将高分子材料溶液浸渍到纤维或纱线等基材上,获得具有特殊性能的复合材料;胶云是将高分子材料溶液通过喷雾等方式形成粒子状状况,在固体表面形成一层薄膜。
高分子材料成型加工技术在各个领域都有广泛应用,并且应用前景非常广阔。
在制造业方面,高分子材料加工技术已经成为塑料、橡胶、纺织、涂料、粘合剂等行业的重要组成部分。
随着科学技术的不断发展,高分子材料的应用前景更加广泛,高分子材料在医疗器械、电子电气、航空航天等高科技领域中也有着重要的应用。
高分子材料在医疗器械领域中可以制造人工骨骼、人工血管等,广泛应用于生物医学工程;在电子电气领域,高分子材料可以制造电子元件、柔性显示屏等,为电子工业的发展提供了重要支撑;在航空航天领域中,高分子材料可以制造飞机零部件、导热材料等,提高了航空器的安全性和使用寿命。
高分子材料成型加工原理
高分子材料成型加工是一种将高分子材料加工成所需要形状并赋予特定性能的过程。
这类材料具有高分子化学键的共价键,通过化学交联或物理交联可以具有不同的物理、力学和化学性质。
高分子材料成型加工的原理是利用热、化学或/和机械能对高分子材料进行重构,形成所需形状和特性。
高分子材料成型加工可分为热成型和冷成型两类。
热成型是在高温和高压下加工材料,形成所需形状和性质。
这类材料通常被称为热塑性材料。
冷成型是在正常温度和压力下进行加工,这种材料通常被称为热固性材料。
两种材料的加工方法略有不同。
热成型加工的主要方法包括挤出法、注射法、吹塑法、热压缩法和热成型法等。
这些方法的共同点是使用高温和高压,使高分子材料流动并具有所需形状。
与热成型不同,冷成型是通过化学反应或光固化将高分子材料固化成所需形状。
这些加工方法包括浇注、压制、浸渍、喷涂和光固化等。
在实践中,选择合适的高分子材料加工方法非常重要。
通过了解高分子材料的特性和与加工方法相关的因素,可以选择出最适合的成型加工方法。
这种方法可以提高产量,保证产品质量和降低成本。
高分子材料成型加工综述高分子材料是一类具有广泛应用前景的材料,其主要特点是分子链结构较长,具有良好的可塑性和变形性能。
高分子材料成型加工是将原料经过一系列加工技术,制成所需要的成品制品的过程,是高分子材料应用的重要环节。
本文将就高分子材料成型加工的工艺方法、应用领域以及发展趋势进行综述。
一、高分子材料成型加工的工艺方法1.注塑成型注塑成型是一种用于制作高分子材料制品的主要方法,其原理是将加热熔化的高分子材料通过注射器注入模具中,经冷却后形成所需的成品制品。
这种方法适用于生产批量较大的制品,成品具有较高的精度和表面质量。
2.挤出成型挤出成型是将加热的高分子材料通过挤出机挤压成型,是一种连续生产的方法。
挤出成型适用于生产各种型材、板材、管材等,具有成本低、生产效率高等优点。
3.压缩成型吹塑成型是将高分子材料挤出成管状,再通过内部加压气体吹出成型,适用于生产一些薄壁产品,如塑料瓶、塑料薄膜等。
5.旋转成型旋转成型是将液态高分子材料置于模具中,在模具旋转过程中形成所需的成品制品。
这种方法适用于生产一些中空、对称形状的制品。
1.包装领域高分子材料在包装领域得到了广泛的应用,如塑料瓶、塑料袋、泡沫塑料等,这些制品都是通过高分子材料的成型加工制成的。
高分子材料包装制品具有成本低、制造周期短、重量轻、抗冲击性好等优点,因此得到了包装行业的青睐。
2.建筑领域高分子材料在建筑领域应用也十分广泛,如塑料管道、塑料隔热材料、弹性地板等。
这些制品通过高分子材料成型加工制成,具有耐腐蚀、耐老化、绝缘性能好等特点,因此在建筑领域有着重要的作用。
3.汽车领域4.医疗领域1.绿色环保随着人们对环境保护意识的增强,高分子材料成型加工也趋向于绿色环保。
未来的高分子材料成型加工将更加注重材料的可降解性和可循环利用性,研发出更环保的成型加工工艺和材料。
2.智能化生产随着信息技术的发展,高分子材料成型加工也将实现智能化生产。
未来的高分子材料成型加工将更加注重自动化、数字化生产,提高生产效率和成品质量。
高分子材料成型加工高分子材料是一类具有高分子量的聚合物材料,其在工业生产中具有广泛的应用。
高分子材料的成型加工是指通过热塑性或热固性高分子材料在一定温度条件下,通过模具或其他成型工艺,将其加工成所需形状的过程。
在高分子材料的成型加工过程中,需要考虑材料的性能、加工工艺、设备和环境等多个因素,以确保最终产品的质量和性能。
首先,高分子材料的成型加工需要考虑材料的性能。
不同种类的高分子材料具有不同的物理、化学性能,这直接影响着其成型加工的方式和条件。
例如,热塑性高分子材料在一定温度范围内具有可塑性,可以通过加热和压力加工成型;而热固性高分子材料在加工过程中需要考虑其固化过程,通常需要在一定温度下进行模压或注塑成型。
因此,在进行高分子材料的成型加工前,需要对材料的性能进行充分的了解和评估。
其次,成型加工的工艺对最终产品的质量和性能有着重要影响。
在高分子材料的成型加工中,常见的工艺包括挤出成型、注塑成型、压延成型、模压成型等。
每种工艺都有其适用的材料和产品类型,需要根据具体情况选择合适的工艺。
同时,工艺参数的控制也是关键,如温度、压力、速度等参数的调节都会直接影响成型产品的质量。
因此,在成型加工过程中,需要严格控制各项工艺参数,确保产品的稳定性和一致性。
另外,成型加工设备的选择和维护也是影响成型加工质量的重要因素。
不同的成型工艺需要不同的设备支持,如挤出机、注塑机、模具等。
这些设备的性能和状态直接关系到成型产品的质量和产能。
因此,需要对设备进行定期的维护和保养,确保其正常运行和稳定性。
最后,成型加工环境对成型产品的质量和性能同样具有重要影响。
在高分子材料的成型加工过程中,温湿度、清洁度、通风等环境因素都会对产品造成影响。
特别是在一些对产品表面质量要求较高的成型加工中,环境因素更是需要重点关注。
综上所述,高分子材料的成型加工是一个复杂的过程,需要综合考虑材料性能、加工工艺、设备和环境等多个因素。
只有在这些因素都得到充分重视和控制的情况下,才能够生产出高质量、高性能的成型产品。
高分子聚合物的加工方式高分子聚合物是一种具有高分子量的化合物,由许多重复单元组成。
这些材料在日常生活中被广泛应用,例如塑料制品、橡胶制品、纤维和涂料等。
为了将高分子聚合物转化为实际的产品,需要经过一系列加工步骤。
本文将介绍一些常见的高分子聚合物加工方式。
1. 注塑成型。
注塑成型是一种常见的高分子聚合物加工方式,特别适用于生产塑料制品。
在注塑成型过程中,高分子聚合物颗粒被加热融化,然后通过注射机注入模具中,经过冷却后形成所需的产品形状。
这种加工方式适用于生产各种尺寸和形状的塑料制品,如杯子、盒子、零件等。
2. 挤出成型。
挤出成型是另一种常见的高分子聚合物加工方式,特别适用于生产塑料薄膜、管材和型材等产品。
在挤出成型过程中,高分子聚合物颗粒被加热融化,并通过挤出机的螺杆挤压成型,然后经过冷却后形成所需的产品形状。
这种加工方式适用于生产连续长度的产品,如塑料薄膜、管道等。
3. 压延成型。
压延成型是一种用于生产塑料薄膜和薄片的加工方式。
在压延成型过程中,高分子聚合物颗粒被加热融化,并通过压延机的辊子压延成所需的薄膜或薄片形状,然后经过冷却后形成最终产品。
这种加工方式适用于生产塑料包装薄膜、薄片等产品。
4. 注塑发泡。
注塑发泡是一种常见的高分子聚合物加工方式,特别适用于生产泡沫塑料制品。
在注塑发泡过程中,高分子聚合物颗粒与发泡剂一起被加热融化,然后通过注射机注入模具中,经过发泡后形成所需的泡沫塑料制品。
这种加工方式适用于生产泡沫塑料包装、填充材料等产品。
总的来说,高分子聚合物的加工方式有很多种,每种加工方式都有其特定的适用范围和优势。
通过选择合适的加工方式,可以实现高效、精确地生产出各种高分子聚合物制品,满足市场和消费者的需求。
希望本文对高分子聚合物的加工方式有所帮助。
1.高分子材料成型加工:通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所摇的形状并保持其已经取得的形状,最终得到制品的工艺过程。
2.热塑性塑料:是指具有加热软化、冷却硬化特性的塑料(如:ABS、PP、POM、PC、PS、PVC、PA、PMMA等),它可以再回收利用。
具有可塑性可逆热固性塑料:是指受热或其他条件下能固化或具有不溶(熔)特性的塑料(如:酚醛树脂、环氧树脂、氨基树脂、聚胺酯、发泡聚苯乙烯、不饱和聚酯树脂等)具有可塑性,是不可逆的、不能再回收利用。
3. 通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料工程塑料:指拉伸强度大于50MPa,冲击强度大于6KJ/m2,长期耐热温度超过100°C 的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等的、可代替金属用作结构件的塑料.4.可挤压性:材料受挤压作用形变时,获取和保持形状的能力。
可模塑性:材料在温度和压力作用下,产生形变和在模具中模制成型的能力。
可延展性:材科在一个或两个万向上受到压延或拉伸的形变能力。
可纺性:材料通过成型而形成连续固态纤维的能力。
5.塑化效率:高分子化合物达到某一柔软程度时增塑剂的用量定义为增塑剂的塑化效率。
定义DOP的效率值为标准1,小于1的则较有效,大于1的较差.6.稳定流动:凡在输送通道中流动时,流体在任何部位的流动状况及一切影响流体流动的因素不随时间而变化,此种流动称为稳定流动。
不稳定流动:凡流体在输送通道中流动时,其流动状况及影响流动的各种因素都随时间而变化,此种流动称之不稳定流动。
7. 等温流动是指流体各处的温度保持不变情况下的流动。
(在等温流动情况下,流体与外界可以进行热量传递,但传入和输出的热量应保持相等)不等温流动:在塑料成型的实际条件下,由于成型工艺要求将流道各区域控制在不同的温度下:而且由于粘性流动过程中有生热和热效应,这些都使其在流道径向和轴向存在一定的温度差,因此聚合物流体的流动一般均呈现非等温状态。
高分子材料成型加工
高分子材料成型加工是指通过热压、冷压、注塑、挤出等
成型技术,将高分子材料转变成所需形状和尺寸的产品的
过程。
高分子材料成型加工可以分为热固性塑料成型和热
塑性塑料成型两种形式。
热固性塑料成型是指在加热过程中,高分子材料经化学交
联形成三维网络结构的过程。
常见的热固性塑料成型加工
方式有热压、注塑和挤出。
热压是通过将高分子材料置于
加热板之间,加热和加压使其熔融并填充模具中,然后冷
却硬化成形。
注塑是将高分子材料加热熔融后注入模具中,冷却硬化成形。
挤出是通过高分子材料在加热和压力的作
用下,从模具口中挤出成型,然后冷却硬化形成。
热塑性塑料成型是指高分子材料在一定温度范围内,经过
塑化加工后,能够通过冷却形成所需产品的过程。
常见的
热塑性塑料成型加工方式有注塑、挤出和吹塑。
注塑的原
理与热固性塑料成型相似,但材料在加热过程中并不发生
交联反应。
挤出是通过高分子材料在加热和压力的作用下,从模具口中挤出成型,然后冷却硬化形成。
吹塑是将高分
子材料加热熔融后,通过压缩空气使其膨胀成薄壁容器形状,然后冷却硬化成型。
总之,高分子材料成型加工是将高分子材料通过加热、压力、塑化等工艺,转变成所需形状和尺寸的产品的过程,广泛应用于各个领域的塑料制品生产中。
探析高分子材料成型加工技术高分子材料成型加工技术是应用于高分子材料加工领域的一种重要技术。
高分子材料具有良好的可塑性、可溶性、变形性以及化学稳定性等特点,因此在工业制造、生活用品、医疗健康等领域都有广泛应用。
本文将从高分子材料成型加工的原理、常见的成型加工方法、加工精度控制和质量管理等方面进行分析。
一、高分子材料成型加工的原理高分子材料成型加工的原理是将高分子材料通过加热、压力、拉伸、挤出等加工方式进行成型。
在加工过程中,高分子材料的分子链会发生改变,形成新的物理结构,从而达到所需的形状和性能。
常见的高分子材料成型加工方法包括挤出、注塑、吹塑、压延、热成型、胶接等。
二、常见的高分子材料成型加工方法1.挤出加工:将高分子材料加入挤出机的筒仓中,通过螺杆的旋转使材料在加热筒中加热熔化,然后将熔融的高分子材料通过模具挤出成型,最后冷却固化形成所需的形状。
2.注塑加工:将高分子材料加入注塑机的料斗中,通过螺杆将材料熔化后压入模具中形成所需的形状,最后冷却固化后取出成品。
3.吹塑加工:将高分子材料加热熔化后,通过枪头将熔融的材料喷射到模具中,随着模具的旋转和吹气的作用形成中空的容器,最后冷却固化后取出成品。
4.压延加工:将高分子材料加热熔化后,通过制动器使材料通过压延辊,形成所需厚度和宽度,最后冷却固化后取出成品。
5.热成型加工:将高分子材料加入加热炉中加热软化,然后通过特定模具压制或拉伸成型,最后冷却固化后取出成品。
6.胶接加工:将两个高分子材料部分加热软化后,通过粘接剂将两个材料粘接在一起,最后冷却固化形成一体化的成品。
三、加工精度控制和质量管理在高分子材料成型加工中,加工精度的控制和质量管理非常重要。
加工精度的控制主要包括温度控制、压力控制、速度控制和模具形状等方面。
而在质量管理方面,则包括检测、调整和孔板法控制等方法。
其中,检测方法主要有外观质量检验、尺寸检验、力学性能测试、环境耐久性测试等;调整方法主要包括加工参数调整、模具调整、工艺改进等;孔板法控制则是将固定孔板放在产品的粘接面上,在湿度和温度条件下进行测试,测试结果评估产品的接触面积和粘接强度。
浅谈高分子材料成型加工技术以及应用前景高分子材料是一类具有高分子结构的材料,常见的有塑料、橡胶、纤维等。
高分子材料成型加工技术是将高分子材料通过加热、压力等工艺加工成形的过程。
这项技术在工业生产中有着广泛的应用,因为高分子材料具有优良的性能,能够满足各种需求。
高分子材料成型加工技术主要包括注塑、挤出、吹塑、压延、模压等多种加工方法。
注塑是最常用的一种方法,通过将高分子材料加热融化后注入模具中,经过冷却凝固后取出得到所需产品。
这种方法适用于制作各种复杂形状的产品,如塑料盒、汽车配件等。
挤出是将高分子材料加热融化后通过挤出机挤出成形的方法,适用于制作长条状产品,如塑料管道、板材等。
吹塑是将高分子材料加热融化后通过喷嘴喷吹成形的方法,适用于制作中空产品,如瓶子、容器等。
压延是将高分子材料加热融化后通过辊压机进行连续压制成形的方法,适用于制作薄膜、薄板等产品。
模压是将高分子材料加热融化后注入模具中,经过冷却凝固后取出得到所需产品,适用于制作各种复杂形状的产品,如手机壳、电器壳等。
高分子材料成型加工技术的应用前景非常广阔。
高分子材料成型加工技术可以应用于各个领域的制造业中。
如汽车行业,高分子材料可以制作汽车配件,如悬挂件、内饰件等,具有降低重量、提高强度、降低噪音等优点;电子电器行业,高分子材料可以制作各种电子产品外壳、连接器等,具有绝缘、耐高温等优点;航空航天行业,高分子材料可以制作航空器的结构件、隔热材料等,具有轻质、耐高温等优点;医疗器械行业,高分子材料可以制作各种医疗器械、器皿等,具有生物相容性等优点。
高分子材料成型加工技术还可以应用于环保领域。
高分子材料可以通过成型加工技术制作可降解的塑料制品,如餐具、袋子等,可以减少传统塑料制品对环境的污染。
高分子材料还可以应用于再生资源利用,通过回收利用废旧高分子制品,再经过适当的加工处理,可以得到具有一定性能的再生材料,用于制造新的高分子制品。
高分子材料成型加工技术还可以应用于新材料研究领域。
合肥学院
Hefei University
高分子成型加工论文
学号: 1203012024
姓名:安绵伟
专业:粉体材料科学与工程
系别:化工系
摘要:高分子复合材料的制备和加工方法繁多,不同的材料有不同的加工方
法,同一种材料也可能对应好几种方法。
本文主要讨论了塑料成型加工技术的现状,介绍了挤出成型加工工艺原理与技术特点,综述了高分子材料成型加工技术的新进展。
关键词:塑料,挤出,成型
1 前言
随着工业化技术的发展和人民生活水平的提高,人们对塑料产品种类和质量的需求也越来越高。
高分子材料是通过制造成各种制品来实现其使用价值的,因此从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义。
高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型等,本文主要介绍了挤出成型加工技术的最新进展。
2 挤出成型
挤出成型在塑料加工中又称为挤塑,在非橡胶挤出机加工中利用液压机压力于模具本身的挤出称压出。
是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。
该工艺主要用于热塑性塑料制品的成型。
挤出工艺流程如图1所示[1]。
图1热固性塑料模压成型工艺流程
挤出成型主要包括加料、塑化、成型、定型等过程。
要获得外观和内在质量均优良的型材制品,是与原材料配方、挤出设备水平、机头模具设计与加工精度、型材断面结构设计及挤出成型工艺条件等分不开的。
挤出成型工艺参数的控制包括成型温度、挤出机工作压力、螺杆转速、挤出速度、牵引速度、排气、加料速度及冷却定型等。
挤出工艺条件又随挤出机的结构、塑料品种、制品类型、产品的质量要求等的不同而改变[2]。
2.1 共挤出技术
共挤出技术是用两台或者两台以上单螺杆挤出机或双螺杆挤出机将两种或
多种聚合物同时挤出并在一个机头中成型多层板式或片状结构等的一步法加工过程。
共挤出技术避免了传统的高代价且复杂的多步层压或涂层工艺,可容易地成型为具有特殊性能的薄层或超薄层,使之具有着色、遮蔽紫外线、提供阻隔性、控制薄膜表面特性等,也可方便地将各种添加剂如抗结块剂、抗滑移剂和抗静电剂等加入到需要的任何一层。
按照共挤物料的特性,可将共挤出技术分为软硬共挤、芯部发泡共挤、废料共挤、双色共挤等。
共挤出技术可以在一个工序内完成多层复合制品的挤出成型,绝大多数共挤出复合制品不需要基材和粘合剂,具有生产成本低、工艺简单、能耗低、生产效率高、制品种类多等特点,特别适合于生产复合薄膜、板材、管材等复合制品,是目前多层复合制品最有发展前景的复合成型技术之一,可供共挤出的物料不仅有聚合物,还可以是金属、无机材料等。
共挤出技术是当代广泛应用的先进的聚合物加工方法,共挤出技术已广泛应用于复合管材、复合薄膜、板材、异型材、光纤、电线、电缆等复合制品的生产,随着共挤出技术的发展,其应用领域会进一步拓宽。
多层共挤复合机头是研究和开发的热点,也是共挤复合研究的难点。
开发高效、节能的多层结构单机共挤出设备是共挤出设备的发展趋势[3]。
2.2 挤出注射组合技术
挤出和注射成型组合的直接成型技术可将聚合物粉料与磁粉、无机颜料、玻璃纤维等通过双螺杆挤出机混合后直接注塑成型。
其突出优点是可以更加灵活地调节复合物的配方。
省去了造粒、包装、干燥等工序,大幅度地降低了设备费用和减少了生产时间、从而降低了成品的成本。
Krauss Mallei公司推出了型号KMl000-6100IMC的这种组合设备,一个特殊的注射装置与双螺杆挤出机相结合代替了传统的塑化单元,计量器将连续操作的挤出机和间歇操作的成型装置连接在一起。
Husky公司也推出了与阳模相连的Operion Werner & Pfleiderer 40 m 双螺杆的挤出注射组合机。
该技术适用于多种材料的成型,即可为单个的聚合物,如ABS 、AS、EV A 、PA、PC、PE、PET 、PBT 、POM、PP、PS、PMMA、LCP等;也可为复合材料,如聚合物与玻璃纤维(GF) 、CaCO3、云母、滑石粉、硅石、颜料、Fe2O3的混合物;还可为聚合物合金。
如ABS 、AS、PS、PVC 、SAN合金;PA/HDPE、PBT 、PET合金及PC/ABS、PET 、PBT 合金等。
2.3 挤胀成型技术
挤胀成型技术是一种塑性成型方法,主要适用于加工细口制件或一些较复杂的中空制品,这些制品通常是采用旋转模塑、注塑或吹塑方法成型的。
其基本过程是:预成型的管坯在组合外力的作用下沿径向外扩张,通过塑性变形形成与模具型腔相一致的制品。
挤胀成型的基本工艺过程为:将管坯放入模具并在管坯内填入胀形介质;对管坯及其内部的胀形介质施加挤压力,使管坯材料在一定的应力状态下变形并流向其径向的模腔自由空间;管坯在胀形介质产生的内压作用下不断变形,得到与模腔形状相同的制件;外力撤消后,胀形介质恢复原状或散开,从制品内部取出[4]。
挤胀成型技术出现于20世纪40年代的金属成型加工领域,虽然没有在塑料加工领域获得广泛的应用,但与常规的塑料成型技术相比,这种方法具有以下特点:成型设备结构相对简单,成型模具的结构简洁;被加工材料不产生相变而且
成型过程通常都是在较低温度下进行,能耗低;控制系统比较简单,工艺控制十分灵活,通过控制挤胀行程,利用同一副模具有可能得到不同尺寸的制品;能充分利用挤出制型坯的高生产率和低成本;在生产批量较小的情况下能大幅度降低生产成本。
2.4 反应挤出工艺
反应挤出工艺是连续地将单体聚合并对现有聚合物进行改性的一种方法,因可以使聚合物性能多样化、功能化且生产连续、工艺操作简单和经济适用而普遍受到重视。
该工艺的最大特点是将聚合物的改性、合成与聚合物加工这些传统工艺中分开的操作联合起来。
反应挤出成型技术是可以实现高附加值、低成本的新技术,已经引起世界化学和聚合物材料科学与工程界的广泛关注,在工业方面发展很快。
与原有的成型挤出技术相比,有明显的优点:节约加工中的能耗;避免了重复加热;降低了原料成本;在反应挤出阶段,可在生产线上及时调整单体、原料的物性,以保证最终制品的质量。
反应挤出机是反应挤出的主要设备,一般有较长的长径比、多个加料口和特殊的螺杆结构。
它的特点是熔融进料预处理容易;混合分散性和分布性优异;温度控制稳定;可控制整个停留时间分布;可连续加工;未反应的单体和副产品可以除去;具有对后反应的控制能力;可进行粘流熔融输送;可连续制造异型制品。
2.5 固态挤出工艺
固态挤出有直接固态挤出和静液压挤出两种方法,是指使聚合物在低于熔点的条件下被挤出口模。
固态挤出一般使用单柱塞挤出机,柱塞式挤出机为间歇性操作。
柱塞得移动产生正向位移和非常高的压力,挤出时口模内的聚合物发生很大的变形,使得分子严重取向,其效果远大于熔融加工,从而使得制品的力学性能大大提高。
3 结语
近年来,塑料加工成型的技术取得了显著的进步。
高分子复合材料的制备和加工方法繁多,不同的材料有不同的加工方法,同一种材料也可能对应好几种方法。
应根据实际情况进行斟酌和选择,在降低生产成本的同时获得优质产品,以达到最佳性价比。
此外还应看到,高分子复合材料性能好,应用范围越来越广,但是还存在着一些缺点:如耐高温性能、耐老化性能及材料强度一致性等。
其发展总趋势是不断满足高分子制品向高度集成化、高度精密化、高产量等方面发展的要求,实现对制品材料的聚集态、相形态、组织形态等方面的控制,或实现对制品进行异质材料的复合,最大程度地发挥聚合物的特性,达到制品高性能的目的。
深入研究塑料成型加工技术与装备,克服制品中的缺陷,对科技进步与人们高标准的生活要求有重要意义。
参考文献
[1]周祖. 福复合材料学[M]. 武汉: 武汉工业大学出版社, 2002.
[2]高峰. 塑料成型加工实用技术讲座( 第七讲) 塑料异型材的挤出成型[J]. 工程塑料应用,
2003, 31(9): 58-62.
[3]贾明印. 共挤出技术在聚合物成型加工中的应用及其设备的最新进展[J]. 工程塑料应
用, 2006, 34(1): 66-69.
何亚东. 一种新的塑料加工技术-塑料挤胀成型方法[J]. 塑料, 2003, 32(3), 20-25。