28.1 第4课时 用计算器求锐角三角函数值及锐角
- 格式:pptx
- 大小:142.69 KB
- 文档页数:20
28.1.4锐角三角函数用计算器求锐角三角函数值和锐角【教学目标】1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题.【教学重难点】教学重点:会使用科学计算器求锐角的三角函数值,会根据锐角的三角函数值,借助科学计算器求锐角的大小.教学难点:熟练运用计算器解决锐角三角函数中的问题.【课时安排】 1课时【教学过程】一、导入环节(一)复习导入新课填写下表:锐角a/度数30°45°60°sin acos atan a通过前面的学习,我们知道当锐角A 是30°、45°、60°等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角A 不是这些特殊角,怎样得到它的锐角三角函数值呢?二、先学环节(一)出示自学指导1.用计算器求sin18°的值;2.用计算器求tan30°36′ 的值;解:第一步:按计算器sin键;方法①第二步:输入角度值18;第一步:按计算器 tan键屏幕显示结果sin18°= 0.309 016 994第二步:输入角度值30.6 (因为30°36′ = 30.6°)注意:不同计算器操作的步骤可能不同哦!屏幕显示答案:0.591 398 351方法②:第一步:按计算器 tan键第二步:输入角度值30, (使用 DM’S 键)输入分值36屏幕显示答案:0.591 398 351(二)自学检测反馈1.用计算器求下列各式的值(精确到0.0001):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数 (结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.三、后教环节合作探究一、通过计算 (可用计算器),比较下列各对数的大小,并提出你的猜想:① sin30°____2sin15°cos15°;② sin36°____2sin18°cos18°;③ sin45°____2sin22.5°cos22.5°;④ sin60°____2sin30°cos30°;⑤ sin80°____2sin40°cos40°.猜想:已知0°<α<45°,则sin2α___2sinαcosα.合作探究二、利用计算器求值,并提出你的猜想:sin20°= ,cos20°= ,sin220°= , cos220°= ;sin35°= ,cos35°= ,sin235°= ,cos235°= ;猜想:(1)已知0°<α<90°,则 sin2α + cos2α = .(2) 如图,在 Rt△ABC中,∠C=90°,请验证你在 (1)中的结论.质疑问难:四、训练环节1.用计算器求sin24°37′18″的值,以下按键顺序正确的是 ( )A. sin,24,DM’S,37 ,DM’S,18,DM’S,=B. 24,DM’S,37 DM’S,18,DM’S,sin,=C. 2ndF,sin,24,DM’S,18,DM’S,=D. sin,24,DM’S,37,DM’S,18 DM’S,2ndF,=2.下列式子中,不成立的是 ( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13.利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到 0.0001);(3) 若sinα = 0.5225,则α≈ (精确到0.1°);(4) 若sinα = 0.8090,则α≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5. 用计算器比较大小:20sin87°___tan87°.课堂总结教师总结:已知锐角角度求函数值计算器求函数已知函数值求锐角角度【板书设计】28.1.4 用计算器求锐角三角函数值和角度1.已知锐角角度求函数值2.已知函数值求锐角角度【教学反思】学生在这堂课回答问题比较积极,绝大部分学生都能算出正确答案,而且兴趣都很高,课上已经没有学生再说与学习无关的内容,听课都挺认真,只有几个学生由于网速等原因没有上课,也已经要求去看回放,课下问题的学生比较多,都是单发私信,辅导时间都是一整天,中午都不敢休息。
新苏版数学初三下册第28章28第4课时用运算器求锐角三角函数值及锐角1.初步把握用运算器求三角函数值的方法;(重点)2.熟练运用运算器求三角函数值解决实际问题.(难点)一、情境导入教师讲解:通过上面几节课的学习我们明白,当锐角∠A是30°、45°或60°等专门角时,能够求得这些专门角的正弦值、余弦值和正切值;假如锐角∠A不是这些专门角,如何样得到它的三角函数值呢?我们能够借助运算器来求锐角的三角函数值.二、合作探究探究点一:用运算器求锐角三角函数值及锐角【类型一】已知角度,用运算器求函数值用运算器求下列各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用运算器,对运算器给出的结果,依照有效数字的概念用四舍五入法取近似数.解:依照题意用运算器求出:(1)sin47°≈0.7314;(2)sin12°30′≈0.2164;(3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用运算器,使用运算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值,用运算器求锐角的度数已知下列锐角三角函数值,用运算器求锐角∠A,∠B的度数(结果精确到0.1°):(1)sinA=0.7,sinB=0.01;(2)cosA=0.15,cosB=0.8;(3)tanA=2.4,tanB=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sinA=0.7,得∠A≈44.4°;sinB=0.01得∠B≈0.6°;(2)cosA=0.15,得∠A≈81.4°;cosB=0.8,得∠B≈36.9°;(3)由tanA=2.4,得∠A≈67.4°;由tanB=0.5,得∠B≈26.6°.方法总结:解决此类问题的关键是熟练使用运算器,在使用运算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】利用运算器验证结论(1)通过运算(可用运算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请依照提示,利用面积方法验证结论.解析:(1)利用运算器分别运算①至⑤各式中左边与右边,比较大小;(2)通过运算△ABC 的面积来验证.解:(1)通过运算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sin αcos α.(2)∵S △ABC =12AB ·sin2α·AC =12sin2α,S △ABC =12×2ABsin α·ACcos α=sin α·cos α,∴sin2α=2sin αcos α.方法总结:本题要紧运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】 用运算器比较三角函数值的大小用运算器比较大小:20sin87°________tan87°. 解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.方法总结:利用运算器求值时,要注意运算器的按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:用运算器求三角函数值解决实际问题如图,从A 地到B 地的公路需通过C 地,图中AC =20km ,∠CA B =25°,∠CBA =37°,因都市规划的需要,将在A 、B 两地之间修建一条笔直的公路.(1)求改直的公路AB 的长;(2)公路改直后比原先缩短了多少千米?解析:(1)作CH ⊥AB 于H.在Rt △ACH 中依照CH =AC ·sin ∠CAB 求出CH 的长,由AH =AC ·cos ∠CAB 求出AH 的长,同理可求出BH 的长,依照AB =AH +BH 可求得AB 的长;(2)在Rt △BCH 中,由BC =CH sin ∠CBA可求出BC 的长,由AC +BC -AB 即可得出结论.解:(1)作CH ⊥AB 于H.在Rt △ACH 中,CH =AC ·sin ∠CAB =AC ·s in25°≈20×0.42=8.4km ,AH =AC ·cos ∠CAB =AC ·cos25°≈20×0.91=18.2km.在Rt △BCH 中,BH =CH tan ∠CBA ≈8.4tan37°=11.1km ,∴AB =A H +BH =18.2+11.1=29.3km.故改直的公路AB 的长为29.3km ;(2)在Rt △BCH 中,BC =CH sin ∠CBA =CH sin37°≈8.40.6=14km ,则AC +B C -AB =20+14-29.3=4.7km.答:公路改直后比原先缩短了4.7km.方法总结:依照题意作出辅助线,构造出直角三角形是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.已知角度,用运算器求函数值;2.已知三角函数值,用运算器求锐角的度数;3.用运算器求三角函数值解决实际问题.备课时尽可能站在学生的角度摸索问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验摸索的过程,体验成功的欢乐和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.。
28.1锐角三角函数教案四——利用计算器求三角函数值教学内容本节课主要学习28.1利用计算器求三角函数值教学目标知识技能利用计算器求锐角三角函数值,或已知锐角的三角函数值求相应的锐角。
数学思考体会角度与比值之间对应关系,深化对三角函数概念的理解。
解决问题借助计算器求锐角三角函数值以及根据三角函数值求锐角的练习,让学生充分体会锐角与三角函数值之间的关系。
情感态度在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。
重难点、关键重点:借助计算器来求锐角的三角函数值.难点:体会锐角与三角函数值之间的关系。
关键:利用计算器求三角函数值。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、复习引入填表当锐角A是30°、45°或60•°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A•不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值【活动方略】学生思考,小组合作求解,教师诱导.【设计意图】复习特殊三角函数值,引入新课.二、探索新知(一)已知角度求函数值=0.309016994.又如求tan30°36′,•键,并输入角的度、分值,就可以得到答案0.591398351.利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30°36′=30.6°,所以也可以利用30.6,•同样得到答案0.591398351.(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作:依次按键0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°).还可以利用A=30°07′08.97″(如果锐角A•精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,•然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,•则我们原先的计算结果就是正确的.【活动方略】先教师示范,学生观察;再学生尝试,教师指导.【设计意图】指导学生利用计算器求锐角三角函数值,已知锐角的三角函数值求相应的锐角。
441.用计算器计算c o s 44°的结果是( ).(精确到0.01) A .0.90B .0.72(3)3c o s 62°15′+ 3t a n 18°47″. C .0.69 , D .0.662.在 R t △A B C 中 ∠C =90°,a ∶b =3∶4.运用计算器计算 课内与课外的桥梁是这样架设的.∠A 的度数约为( ). A .30°B .37°13.如图,在坡屋顶的设计图中,A B =A C ,屋顶的宽度l 为 10m ,坡角α 为35°,则坡屋顶的高度h 为 m .C .45° ,锐角D .55° ,则 与 的大 (结果精确到0.1m )3.若锐角A =54°32′ 小关系为( ).B =25°32′ s i n A s i n B A .s i n A >s i n BB .s i n A <s i n BC .s i n A =s i n BD .无法确定4.在下列不等式中,不正确的是( ). A .s i n 25°-s i n 24°>0B .c o s 25°-c o s 24°<0(第13题)C .t a n 25°-t a n 24°>0D .t a n 65°-t a n 66°>0 5.下列式子中,正确的是( ).①0<c o s α<1(0°≤α≤90°); ②s i n 78°>c o s 78°; ③s i n 35°=c o s 55°; ④s i n 0°>t a n 45°. A .①②B .① ③14.在一次夏令营活动中,小亮从位于点 A 的营地出发,沿 北偏东60°方向走了5k m 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得 A 地在C 地南偏西30°方向,则A 、C 两地的距离为( ).C .② ③ :D .②④ 6.用计算器求 若s i n A =0.6749,则锐角 A =°;若 c o s B =0.0789,则锐角B = °;若t a n C =3506,则锐角C = °.(精确到0.01°) 7.在 R t △A B C 中,∠C =90°,B C =10m ,∠A =15°,用计算(第14题)A .10 3k mB .5 3k m器算得A B 的长约为m .(精确到0.1m )8.用计算器计算:3s i n 38°- 2≈.(结果保留三个 3 C .5 2 k m ,3 D .5 3 k m 有效数字)15.在△A B C 中 ∠C 为直角,直角边B C =3c m ,A C =4c m .9.如果∠A 是锐角,c o s A =0.618,那么s i n (90°-A )的值为.10.用计算器求:s i n 32°= ,c o s 58°=,比较大小:s i n 32° c o s 58°. 11.用 计算器求:t a n 64.07°=,比 较大小:t a n 62°(1)求s i n A 的值; (2)若 C D 是斜边 A B 上的高线,与 A B 交于点D ,求 s i n ∠B C D 的值; (3)比较s i n A 与s i n ∠B C D 的大小,你发现了什么?1.12.利用计算器求下列各式的值 (精确到 0.001): (1)s i n 52°18′44″-t a n 40°7′48″;(2)c o s 57°15′- 3t a n 74°33′;先相信自己,然后别人才会相信你.——— 罗曼罗兰 第4课时 锐角三角函数(4) 1.熟识计算器一些功能键的使用.2.会运用计算器求锐角的三角函数值和由三角函数值来求角.夯实基础,才能有所突破() ,13t a n20°16.(1)锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化.试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;(2)根据你探索到的规律,试比较18°,34°,50°,62°,88°这些锐角的正弦值和余弦值的大小;(3)比较大小:(填“>”“<”或“=”)若α=45°,则s i nαc o sα;若α<45°,则s i nαc o sα;若α>45°,则s i nαc o sα.4利用互为余角的两个角的正弦和余弦的关系试比较下列正弦值和余弦值的大小:s i n10°,c o s30°,s i n50°,c o s70°.18.用计算器计算: (1)c o s10°,c o s20°,c o s30°,,c o s90°的值; (2)s i n80°,s i n70°,s i n60°,,s i n0°的值; (3)比较(1)(2),你能得到什么规律?对未知的探索,你准行!17.如图,在△A B C中,A D是边B C上的高,t a n B=c o s∠D A C.(1)试说明:A C=B D;(2)若s i n C=12,求∠B的大小.(精确到1″)(第17题)解剖真题,体验情境.19.(2011贵州毕节)如图,将一个R t△A B C形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8c m(如箭头所示),则木桩上升了().(第19题)A.8t a n20°B.8C.8s i n20°D.8c o s20°20.(2011山东滨州)在△A B C中,∠C=90°,∠A=72°,A B=10,则边A C的长约为().(精确到0.1)A.9.1B.9.5C.3.1D.3.5) , ,21.(2012江西如图从点C测得树的顶角为33°B C=20m,则树高AB=m.(用计算器计算,结果精确到0.1m)(第21题)读过一本好书,就像交了一个益友.———臧克家第二十八章锐角三角函数A C13BD A C第4课时 锐角三角函数(4) 1 B 2.B 3.A 4 D 5 C 642.45 85.47 89.98738.6 8.0.43390.618 提示:s i n (90°-A )=c o s A =0.618. 100.5299 0.5299 = 112.0567 >12 (1)-0.052 (2)-2.353 (3)1.652 133.5 14.As i n 70°≈0.9397,s i n 60°≈0.8660,s i n 50°≈ 0.7660,s i n 40°≈0.6428,s i n 30°=0.5, s i n 20°≈0.3420,s i n 10°≈0.1736,s i n 0°= 0. (3)由(1)(2),得c o s α=s i n (90°-α). 19 A 20.C 2113.015 (1)s i n A = 3 (2)s i n ∠B C D = 3(3)s i n A55BCD() =s i n ∠ ,16 1 正弦值随着角度的增大而增大 余弦值随着角度的增大而减小.(2)s i n 18°< s i n 34°< s i n 50°< s i n 62°< s i n 88°; c o s 88°<c o s 62°<c o s 50°<c o s 34°<c o s 18°. (3)= < > (4)s i n 10°<c o s 70°<s i n 50°<c o s 30°. 17 (1)在 R t △A B D 和 R t △A D C 中,∵ t a n B =A D ,c o s ∠D A C =A D, BD A C 又 t a n B =c o s ∠D A C , ∴AD =AD . ∴ AC =BD .(2)在 R t △A D C 中,s i n C = A D=c o s ∠D A C , ∴ s i n C =t a n B . ∴ t a n B =12. ∴ ∠B ≈42°42′34″.18 (1)由计算器计算,可得c o s 10°≈0.9848, c o s 20°≈0.9397,c o s 30°≈0.8660,c o s 40°≈0.7660,c o s 50°≈0.6428,c o s 60°=0.5, c o s 70°≈0.3420,c o s 80°≈0.1736,c o s 90° =0.(2)由计算器计算,可得s i n 80°≈0.9848,。
28.1锐角三角函数第1课时 正弦函数1.在Rt △ABC 中,∠C =90°,∠A =30°,则sin 30︒的值是A .12 B.2 CD .2.在Rt △ABC 中,∠C =90°,AC =4,BC =3,则sin A 是A .35 B .45 C .34D .433.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于 A.34B .43C .35D .454.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34 B . 34C .45D .355.在Rt △ABC 中,∠C =90°,若ABBC =2,则sin B 的值为ABC .12D .2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为A.12B.55 C.1010 D.255第6题图 第7题图7.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边上有一点P (3,4),则sin α的值是A.25B.55C.35D.45A8.如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条切线,切点为D ,若AC =7,AB =4,则sin C 的值为____.9.Rt △ABC 中,若∠C =90°,a =15,b =8,求 sin A +sin B .10.如图所示,△ABC 中,∠C =90°,sin A =13,AC =2,求AB ,BC 的长.13.如图,⊙O 的半径为3,弦AB 的长为4,求sin A 的值.28.1锐角三角函数第2课时 余弦函数和正切函数1.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( ) A.35 B.34 C.45 D.432. 如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是()A.23B.32C.21313D.313133.如图是教学用直角三角板,边AC =30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( ).10 3 cm D .5 3 cm4.在Rt △ABC 中,∠C =90°,cos B =45,则AC ∶BC ∶AB =( )A .3∶4∶5B .5∶3∶4C .4∶3∶5D .3∶5∶45.如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( )A .4B .2 5 C.181313 D.1213136.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( )A.513B.1213C.512D.1257.在Rt △ABC 中,∠C =90°,BC =8,AC =6,则sin B =____,cos B =____,sin A =___,cos A =____,tan A =____,tan B =____.8. 在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sin A =32;②cos B =12;③tan A =33;④tan B =3,其中正确的结论是____.(只需填上正确结论的序号) 9. 在Rt △ABC 中,∠C =90°,tan A =43,BC =8,则Rt △ABC 的面积为___.10.(1)在△ABC 中,∠C =90°,BC =2,AB =5,求sin A ,cos A ,tan A .(2)在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,求sin A ,cos B ,tan A .11.(1)若∠A 为锐角,且sin A =35,求cos A ,tan A .(2)已知如图,在Rt △ABC 中,∠C =90°,tan A =12,求∠B 的正弦、余弦值.28.1锐角三角函数第3课时 特殊角的三角函数1. 3tan30°的值等于( )A. 3 B .3 3 C.33 D.322. 计算6tan45°-2cos60°的结果是( ) A .4 3 B .4 C .5 3 D .53.如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( ) A.12 B.22 C.32D .1第3题图 第5题图 4.如果在△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A .△ABC 是直角三角形B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形5.如图,当太阳光线与水平地面成30°角时,一棵树的影长为24 m ,则该树高为( ) A .8 3 m B .12 3 m C .12 2 m D. 12 m6.(1)3cos30°的值是____.(2)计算:sin30°·cos30°-tan30°=____(结果保留根号).(3)cos 245°+tan30°·sin60°=____. 7.根据下列条件,求出锐角A 的度数. (1)sin A =32,则∠A =____;(2)cos A =12,则∠A =____; (3)cos A =22,则∠A =____;(4)cos A =32,则∠A =____. 8.如图是引拉线固定电线杆的示意图,已知CD⊥AB ,CD =3 m ,∠CAD =∠CBD =60°,求拉线AC 的长.9.计算:(1)cos45°sin45°+2sin60°tan60°-1tan30°+tan45°; (2)sin45°+cos30°3-2cos60°-sin60°(1-sin30°).10.已知α是锐角,且sin(α+15°)=32,计算8-4cos α-(π-3.14)0+tan α+⎝ ⎛⎭⎪⎫13-1的值.28.1锐角三角函数第4课时 用计算器求锐角三角函数值及锐角1.利用计算器求下列各式的值: (1) 43sin ''; (2)6544sin ''';(3) 820348sin '''︒; (4)7575sin57'''︒.2.利用计算器求下列各式的值: (1)01 cos ''; (2)635 cos ''';(3)436253 cos '''︒; (4)253378 cos '''︒.3.利用计算器求下列各式的值: (1)23tan '';(2)6305tan'''; (3)144567tan'''︒; (4)535185tan'''︒. 4.如图,甲、乙两建筑物之间的水平距离为100 m ,∠α=32°,∠β=50°,求乙建筑物的高度(结果精确到0.1 m).28.2.1 解直角三角形1.如图,在△ABC 中,∠C=900,AB=5,BC=3,则sinA 的值是( )A.34 B.43C.35D.45第1题图 第3题图 第4题图 2.在Rt △ACB 中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC 的长为( ) A.6 B.7.5 C.8 D.12.53.如图,在△ABC 中,∠C=900,AD 是BC 边上的中线,BD=4,52 AD ,则tan ∠CAD 的值是( )A.2B.2C.3D.5 4.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A.43 B.35 C.34 D.455.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC=6.△ABC 中,∠C=900,AB=8,cosA=43,则BC 的长 7.如图,在△ABC 中,∠A=300,∠B=450,AC=32,则AB 的长为 .第7题图 第8题图8.如图,在Rt △ABC 中,∠ACB=900,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,sinA=35,则DE= .10.如图,在Rt △ABC 中,∠C=900,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF ). (1)求证:△ACE ≌△AFE ; (2)求tan ∠CAE 的值.28.2.2 应用举例第1课时 解直角三角形的简单应用1.某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ).A .450a 元B .225a 元C .150a 元D .300a 元15020米30米第1题图 第2题图2.某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD = 1米,∠A=27°, 则跨度AB 的长为 (精确到0.01米).3.如图,从A 地到B 地的公路需经过C 地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路. (1)求改直的公路AB 的长;(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)4.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=300,∠CBD=600. (1)求AB 的长;(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.5.如图,在同一平面内,两条平行高速公路l 1和l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成300角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km,求两高速公路间的距离.6.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h (精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)28.2.2 应用举例第2课时利用仰俯角解直角三角形1.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为A. 40D. 1602.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).为米含α的代数式表示).第3题图第4题图4.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.5.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC=米.第5题图第6题图第7题图6.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为300,底部D处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)7.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为 米.7.如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为300,然后沿AD 方向前行10m,到达B 点,在B 处测得树顶C 的仰角高度为600(A 、B 、D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度.8.为申办2010年冬奥会,须改变哈尔滨市的交通状况。