用二次函数模型 = 2 + + ( , , 为常数, > 0).
(3)幂函数模型: = + (, , 为常数, ≠ 0, ≠ 1).
(4)反比例函数模型: = + (, 为常数, ≠ 0 ).
(5)分段函数模型:一种比较复杂的函数模型,可以用来描述在不同区间上有不同变化规
得最大纯利润,并求出最大纯利润.(均精确到0.1万元)
解析
以投资额为横坐标,纯利润为纵坐标,画出散点图,如图所示:
典例讲解
例3、某个体经营者把前六个月试销A,B两种商品的逐月投资与所获纯利润制成
下表:
解析
据此,可考虑用函数 = − − 4
2
+ 2( > 0)
①表示投资A种商品的
金额与其纯利润的关系,用函数 = ( > 0)
每辆每月要维护费50 元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
解析
(1)当每辆车的月租金定为3600元时,未租出的车辆数为(3600 − 3000) ÷ 50 = 12,所以这
时租出了100 − 12 = 88辆车.
1200.
由①②知 = 1225.故该种商品的日销售额的最大值为1225元.
典例讲解
例3、某个体经营者把前六个月试销A,B两种商品的逐月投资与所获纯利润制成
下表:
该经营者准备下个月投入12万元经营这两种商品,但不知投入A,B两种商品
各多少万元才最合算.请你帮他制订一个资金投入方案,使得该经营者能获
5
2
1
2 ,即