微分电路工作原理共51页
- 格式:ppt
- 大小:4.66 MB
- 文档页数:51
微分电路和积分电路微分电路和积分电路是电子技术中应用最为广泛的两种回路。
一、微分电路微分电路是指将输入信号与另一输入电压做差分后取得输出脉冲信号,即将输入信号变化部分分离出来,而其基本结构是由一对反向连接的发射极。
它有一个特殊的性能,即输入时相的变化,会引起输出电压的变化,而不依赖输入信号的绝对大小,所以它又称为变相放大器。
1、特点(1) 结构简单:微分电路的结构简单,只由一对对联不反向连接的发射极组成。
(2) 调节准确:采用微分电路进行放大,所得出的放大值可以精确调节。
(3) 信号完整:输入的信号得到的输出信号完整不可缺失。
(4) 信号隔离能力强:发射极之间有绝缘,因此可以有效隔离输入信号和输出信号。
2、用途(1) 在UART通信线路电路中,通常采用微分电路实现放大和信号隔离。
(2) 在数字仪表中,微分电路也被广泛应用,用来传输信号,放大信号抗扰。
(3) 在连续检测信号中,也经常使用微分电路,以提取有效信号。
二、积分电路积分电路是电子技术中一种重要的回路,它由一对对联不反向连接在开关之上,通过利用电容与整流器来改变输入信号的大小,最终获得输出电压。
它可以把低频周期的电压变化的幅度增大成高频的电压变化,所以也又称为积分放大器。
1、特点(1) 结构简单:积分电路的结构非常简单,只由一对对联不反向连接的发射极、一个整流器和一个电容组成。
(2) 调节性能良好:积分电路可以调整输入信号的大小,而不受输入信号本身的幅度限制。
(3) 抗扰性强:采用积分电路进行放大时,输入端口电容会有抗扰功能,能够有效降低外部干扰。
2、用途(1) 用于智能的可控硅机电控制。
(2) 在放大低频变化信号的场合,可以使用积分电路来实现,放大出高频信号。
(3) 用于检测脉冲宽度,比如温度传感器等等。
什么是积分电路输出信号与输入信号的积分成正比的电路,称为积分电路。
基本积分电路:积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。
电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。
原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c) / icdt=(1/RC) / Uidt这就是输出Uo正比于输入Ui的积分(/ Uidt )RC电路的积分条件:RO Tk积分电路的作用:积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。
积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。
此外,积分电路还可用于延时和定时。
在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。
微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。
此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。
积分电路这里介绍积分电路的一些常识。
下面给出了积分电路的基本形式和波形图R=10Ko輸出匚=0-3F=5OHZo ----当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。
而其充电电流则随着电压的上升而减小。
电流通过电阻(R)、电容(C)的特性可有下面的公式表达:i = (V/R)e -(t/CR)i--充电电流(A);V--输入信号电压(V);C--电阻值(欧姆);e--自然对数常数();t--信号电压作用时间(秒);CR--R、C常数(R*C);由此我们可以找输出部分即电容上的电压为V-i*R ,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图):Vc = V[1-e -(t/CR)]微分电路微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。
(二)输出信号与输入信号的积分成正比的电路,称为积分电路。
1原理:从图 2 得,U O U C — iCdt ,因U i U R U O ,当 t t o 时,U o U C随后C 充电,由于RO Tk,充电很慢,所以认为U i U R R i C ,即iC S,故RU O — iCdt — iCdt C RC这就是输出U O Uo 正比于输入U i 的积分iCdt.RC 电路的积分条件:RO Tk(三)积分电路和微分电路的特点 积分电路和微分电路的特点1:积分电路可以使输入方波转换成三角波或者斜波微分电路可以使使输入方波转换成尖脉冲波2:积分电路电阻串联在主电路中,电容在干路中1无源微、积分电路(一).输出信号与输入信号的微分成正比的电路, 原理:从图1得:U o RC RC (dU ^),因U i dt 称为微分电路。
U C U O ,当,t t o 时,U C 0,所以U O U io 随后C 充电,因RCKTk,充电很快, 可以认为U c U i ,则有:U O RC 叫RC 鯉 dt dt 这就是输出U O 正比于输入U i 的微分罟RC 电路的微分条件: RCc TkTii'J图1k1 hLi>・f Ik----图2Wlb - 0微分则相反3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度4:积分电路输入和输出成积分关系微分电路输入和输出成微分关系微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。
此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。
一、矩形脉冲信号在数字电路中,经常会碰到如图4-16所示的波形,此波形称为矩形脉冲信号。
其中为脉冲幅度,为脉冲宽度,为脉冲周期。
当矩形脉冲作为RC串联电路的激励源时,选取不同的时间常数及输出端,就可得到我们所希望的某种输出波形,以及激励与响应的特定关系。
图4-16 脉冲信号二、微分电路在图4-17所示电路中,激励源为一矩形脉冲信号,响应是从电阻两端取出的电压,即,电路时间常数小于脉冲信号的脉宽,通常取。
图4-17 微分电路图我的定性分析(非定量):视Ui在从变高电平瞬间为一个恒压源,由于RC的值设定得很小,所以充电很快完成,在这个很短的充电期间内,C的右边需要“搬运大量”正离子到C的左边,期间经过R的电压Uo可视为正向地突变为Ui,充电完成之后,电路里面不再有电流,Uo变为0。
直到等到Ui变为0(非断路,相当于短接,恒压源的内阻可视为0)时候,C的“搬运正离子”又经过了一个相对于充电的逆过程来放电,同样的,放电也很快,期间经过R的电压Uo可视为逆向地突变为-Ui,这样就得到了跳变脉冲。
定量分析:因为t<0时,,而在t = 0 时,突变到,且在0< t < t1期间有:,相当于在RC串联电路上接了一个恒压源,这实际上就是RC串联电路的零状态响应:。
由于,则由图4-17电路可知。
所以,即:输出电压产生了突变,从0 V突跳到。
因为,所以电容充电极快。
当时,有,则。
故在期间内,电阻两端就输出一个正的尖脉冲信号,如图4-18所示。
在时刻,又突变到0 V,且在期间有:= 0 V,相当于将RC串联电路短接,这实际上就是RC串联电路的零输入响应状态:。
由于时,,故。
因为,所以电容的放电过程极快。
当时,有,使,故在期间,电阻两端就输出一个负的尖脉冲信号,如图4-18所示。
图4-18 微分电路的ui与uO波形由于为一周期性的矩形脉冲波信号,则也就为同一周期正负尖脉冲波信号,如图4-18所示。
尖脉冲信号的用途十分广泛,在数字电路中常用作触发器的触发信号;在变流技术中常用作可控硅的触发信号。
微分器电路
微分器电路是一种电路,它可以对输入信号进行微分运算。
它的输出信号是输入信号的导数。
微分器电路通常用于信号处理和滤波、自动控制、通讯系统和仪器测量等领域。
微分器电路的基本构成是一个电容和一个电阻,它们串联在一起。
输入信号通过电容向电阻流动,电阻随着输入信号的变化而改变阻值,导致输出电压发生变化。
当输入信号的变化速度很快时,微分器电路的输出将会频繁地变化。
微分器电路因为对高频信号响应迅速,所以可以作为高通滤波器来使用。
它可以滤除低频信号,因此在通信、音频和视频等领域中广泛应用。
其缺点是它对噪声和抖动也会进行放大,因此需要慎重使用和设计。
一、微分电路输出信号与输入信号的微分成正比的电路,称为微分电路。
原理:从图一得:Uo=Ric=RC(duc/dt),因Ui=Uc+Uo,当,t=to时,Uc=0,所以Uo=Uio随后C充电,因RC≤Tk,充电很快,可以认为Uc≈Ui,则有:Uo=RC(duc/dt)=RC(dui/dt)---------------------式一这就是输出Uo正比于输入Ui的微分(dui/dt)RC电路的微分条件:RC≤Tk图一、微分电路二、积分电路输出信号与输入信号的积分成正比的电路,称为积分电路。
原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫icdt这就是输出Uo正比于输入Ui的积分(∫icdt)RC电路的积分条件:RC≥Tk图2、积分电路微分电路电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。
此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。
积分电路电路结构如图J-1,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。
电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。
名盛汽车电子发表于2005-11-10 21:37:00限幅电路图X是一个限幅电路,在输入端没信号输入时由于二极管D反向连接,所以输出电压为零。
电路中的积分器与微分器的原理与应用电路是我们日常生活中不可或缺的重要元素,从小到大,我们都在接触各种各样的电子设备。
而电子设备中的电路则是电子元件相互连接而成的网络,起到传输和处理信号的作用。
而其中的积分器和微分器则是两种重要的电路类型,本文将对其原理和应用进行探讨。
首先,我们来了解积分器的原理和应用。
积分器是一种电路,能够对输入信号进行积分运算。
其基本原理是通过将输入信号与电容器相连接,并通过电阻来控制电荷的流动,从而实现对信号的积分运算。
积分器主要应用于信号处理领域,特别是在模拟电路中常用于波形整形、滤波和计算等方面。
在波形整形方面,积分器常用于将方波信号转换为锯齿波信号。
通过将方波信号输入到积分器中,由于电容的充放电特性,输出信号将变为锯齿波形。
这种转换可以有效地减小方波信号的高频部分,从而使信号更加平滑。
而在滤波方面,积分器常用于去除高频噪声。
通过将输入信号输入到积分器中,高频部分将被积分器削弱,从而实现滤波效果。
此外,积分器还常用于计算方波信号的面积。
通过测量输出信号的幅度,可以得到方波信号的面积大小。
接下来,我们来了解微分器的原理和应用。
微分器是一种电路,能够对输入信号进行微分运算。
其基本原理是通过将输入信号与电容器相连接,并通过电阻来控制电荷的流动,从而实现对信号的微分运算。
微分器主要应用于信号处理领域,在模拟电路中常用于波形分析、滤波和计算等方面。
在波形分析方面,微分器常用于测量波形的斜率。
通过将输入信号输入到微分器中,输出信号的幅度将与输入信号的斜率成正比。
这种转换可以帮助我们更好地了解信号的变化规律。
在滤波方面,微分器常用于去除低频噪声。
通过将输入信号输入到微分器中,低频部分将被微分器削弱,从而实现滤波效果。
此外,微分器还常用于计算正弦信号的相位差。
通过测量输出信号的幅度和频率,可以得到正弦信号的相位差大小。
总结起来,积分器和微分器在电路中起着非常重要的作用。
它们能够对输入信号进行积分和微分运算,从而实现信号的处理和分析。
微分与积分电路1、电路的作用,与滤波器的区别和相同点。
2、微分和积分电路电压变化过程分析,画出电压变化波形图。
3、计算:时间常数,电压变化方程,电阻和电容参数的选择。
积分电路和微分电路的特点:积分电路、微分电路可以分别产生尖脉冲和三角波形的响应 1:积分电路可以使输入方波转换成三角波或者斜波微分电路可以使使输入方波转换成尖脉冲波2:积分电路电阻串联在主电路中,电容在干路中微分则相反3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 4:积分电路输入和输出成积分关系微分电路输入和输出成微分关系积分电路:1.延迟、定时、时钟2.低通滤波3.改变相角(减)微分电路:1.提取脉冲前沿2.高通滤波3.改变相角(加)微分图像(在单位阶跃响应的前提下)微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与RC有关(即电路的时间常数),RC越小,尖脉冲波形越尖,反之则宽。
积分图像(在单位阶跃响应的前提下)积分电路是使输出信号与输入信号的时间积分值成比例的电路RC电路的分类(1)RC 串联电路电路的特点:由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。
RC 串联有一个转折频率: f0=1/2πR1C1当输入信号频率大于 f0 时,整个 RC 串联电路总的阻抗基本不变了,其大小等于 R1。
(2)RC 并联电路RC 并联电路既可通过直流又可通过交流信号。
它和 RC 串联电路有着同样的转折频率:f0=1/2πR1C1。
当输入信号频率小于f0时,信号相对电路为直流,电路的总阻抗等于 R1;当输入信号频率大于f0 时 C1 的容抗相对很小,总阻抗为电阻阻值并上电容容抗。
当频率高到一定程度后总阻抗为 0。
微分与积分电路原理
微分与积分电路原理是电路理论中的两个重要概念。
微分电路能够对输入信号进行微分运算,将输入信号的斜率放大输出;积分电路则能够对输入信号进行积分运算,将输入信号的面积放大输出。
微分电路的基本组成是由电容和电阻构成的RC电路。
当输入
信号通过电容充电或放电时,输出信号的幅度与输入信号的变化率成比例。
具体而言,当输入信号急剧变化时,电容充电或放电的速率会增加,导致输出信号幅度的增加;当输入信号变化缓慢时,电容充电或放电的速率减小,导致输出信号幅度的减小。
因此,微分电路适用于信号的变化率较大的情况,常应用于滤波器和调制解调器等电路中。
积分电路的基本组成是由电感和电阻构成的RL电路。
当输入
信号通过电感时,电感中会产生一个与输入信号幅度成比例的电势,从而实现对输入信号的积分运算。
具体而言,当输入信号幅度增加时,电感中储存的能量增加,输出信号幅度也增加;当输入信号幅度减小时,电感中储存的能量减小,输出信号幅度也减小。
因此,积分电路适用于信号的累积效应较大的情况,常应用于功率放大器和滤波器等电路中。
总之,微分与积分电路原理能够实现对输入信号的微分与积分运算,具有广泛的应用价值。
通过合理设计和选择电路元件,我们可以根据实际需求构建出各种功能的微分与积分电路。