现代电力电子技术学习笔记
- 格式:pdf
- 大小:806.55 KB
- 文档页数:18
以下笔记是我个人总结的针对考研的复试笔记,包括全部的考研的重点难点,希望学弟学妹们,好好把握取得优异成绩!第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
(重点内容)2 电力变换的种类(重点内容)(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
第2章电力电子器件1 电力电子器件与主电路的关系(重点内容)(1)主电路:指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
2 电力电子器件一般都工作于开关状态,以减小本身损耗。
3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类(重点内容)根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
如电力二极管。
根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。
如SCR、GTO、GTR。
(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。
对电力电子技术的认识(五篇范例)第一篇:对电力电子技术的认识电力电子技术就是对电力的变换,控制,具体的说有直流变直流,直流变交流,交流变直流,交流变交流,还有功率的变换,其中交流变交流还包括,变频,变相等。
电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。
半导体整流控制、半导体硅整流的小型化等的出现,产生一个新的电力电子应用领域。
半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。
半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。
电力电子技术创新电力电子技术的创新与电力电子器件制造工艺,已成为世界各国工业自动化控制和机电一体化领域竞争最激烈的阵地,各发达国家均在这一领域注入极大的人力,物力和财力,使之进入高科技行业,就电力电子技术的理论研究言,目前日本、美国及法国、荷兰、丹麦等西欧国家可以说是齐头并进,在这些国家各种先进的电力电子功率量不断开发完善,促进电力电子技术向着高频化迈进,实现用电设备的高效节能,为真正实现工控设备的小型化,轻量化,智能化奠定了重要的技术基础,也为电力电子技术的不断拓展创新描绘了广阔的前景。
我国开发研制电力电子器件的综合技术能力与国外发达国家相比,仍有较大的差距,要发展和创新我国电力电子技术,并形成产业化规模,就必须走有中国特色的产学创新道路。
电力电子器件在其发展的初期(上世纪60年代-80年代)主要应用于工业和电力系统。
而近20年来,随着通信、计算机、消费电子、汽车等产业的蓬勃发展,电力电子器件的应用范围有了大幅度的扩展,其技术己成为航空、航天、火车、汽车、通信、计算机、消费电子、工业自动化及其他科学与工业部门至关重要的基础。
当前,发展电力电子产业的首要意义在于节约电能,电力电子技术是实现高效节能、改造传统产业并促进机电一体化的关键技术。
它是弱电控制与强电运行之间、信息技术与先进制造技术之间的桥梁,是我国国民经济的重要基础技术,是现代科学、工业和国防的重要支撑技术。
电力电子技术实训心得(精选5篇)电力电子技术实训心得(篇1)我从中学到了很多宝贵的经验和知识。
通过这次电子工艺实习,我深刻的认识到了,理论知识和实践相结合是教学环节中相当重要的一个环节,只有这样才能提高自己的实际操作能力,并且从中培养自己的独立思考、勇于克服困难。
这次实习我真的很高兴,主要是自己亲自参与并弄好了一个收音机。
虽然是第一次自己亲手做实验,但是我在这次实习中认识到,只有自己亲手做了,才会明白其实很多事是很简单的,只要你敢做,就没有你做不到的事。
谁都有第一次,谁都会认为第一次是最难的。
在我刚刚拿到零件的时候,看到那么多的东西,还是很手忙脚乱的。
尤其是电阻那么的小,要是丢上一个,那就是前功尽弃了。
通过这一次的电子器件实习我不仅对成功有了更大向往,而且对于失败我也明白坦然的好处和换个角度想的态度。
一切的技术与经验都是在实践中一点一滴的积累来的,这次我又知道了不少电路元件与如何安装的知识。
实习是培养我们动手能力的一个好机会,通过这次的工艺实习,我们学会了基本的焊接技术,收音机的检测与调试,知道了电子产品的装配过程,我们还学会了电子元器件的识别及质量检验,知道了整机的装配工艺,这些为我们的培养动手能力及严谨的工作作风,也为我们以后的工作打下了良好的基矗总之,在实习过成中,要时刻保持清醒的头脑,出现错误,一定要认真的冷静的去检查分析错误!在实习过程中最挑战我动手能力的一项训练就是焊接。
焊接是金属加工的基本方法之一。
其基本操作五步法——准备施焊,加热焊件,熔化焊料,移开焊锡,移开烙铁(又三步法 )——看似容易,实则需要长时间练习才能掌握。
但焊接考核逼迫我们用仅仅一天的时间完成考核目标,可以说是必须要有质的飞跃。
于是我耐下心思,戒骄戒躁,慢慢来。
在不断挑战自我的过程中,我拿着烙铁的手不抖了,送焊锡的手基本能掌握用量了,焊接技术日趋成熟。
当我终于能用最短时间完成一个合格焊点时,对焊接的恐惧早已消散,取而代之的是对自己动手能力的信心。
电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。
其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。
2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。
可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。
3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。
4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。
5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。
以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。
二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。
常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。
2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。
常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。
3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。
《电力电子技术》读书笔记通过这学期十几周对于《电力电子技术》这本教材的学习,我对电力电子学有了简单地了解。
采用半导体电力开关器件构成各种开关电路,按一定的规律,周期性地,实时、适式的控制开关器件的通、断状态,可以实现电子开关型电力变化和控制。
这种电力电子变换和控制,被称为电力电子学或电力电子技术。
至于,什么是电力电子,强电与弱电的联系是什么,它有什么用途等等。
这些都将是阅读这本书的需要解决的主要问题和传达给我们的知识和要点,通过阅读这本书我们队这些问题都将会有一个比较深刻的理解和学习,为我们以后的学习和工作都会有一定的基础积累。
阅读这本书所提供我们的不仅仅知识课本上的那一点点知识要点,更可贵的是它为我们提供了许多我们在自己专业上以及以后工作的道路上的方向。
它就像一盏指明灯一样,虽只是星星点灯,但它却为我们的前进方向指明了航行的方向,起到的作用是非常巨大的。
如今,关于电力电子有关新能源的利用的话题越来越热烈,有关新能源的利用有很大的前景和客观的效益。
世界能源结构正在发生巨大的变革。
以资源有限、污染严重的石化能源为主的能源结构将逐步转变为以资源无限,清洁干净的可再生能源为主的多样性,复合型的能源结构。
太阳能作为一种新兴的绿色能源,以其永不枯竭、无污染、不受地域资源限制等优点,正得到迅速的推广应用。
随着太阳能光伏发电应用的发展,太阳能光伏发电已经不再只是作为偏远无电地区的能源供应,而是向逐渐取代常规能源的方向发展。
在国外,并网发电逐渐成为太阳能光伏发电的主要应用领域,太阳能光伏产业已经逐渐形成,并持续高速发展。
目前国外并网逆变器技术发展十分迅速。
目前的研究主要集中在空间矢量PWM技术、数字锁相控制技术、数字DSP控制技术、最大功率点跟踪和孤岛检出技术,以及综合考虑以上方面的系统总体设计等。
国外的有些并网逆变器还设计同时具有独立运行和并网运行功能。
国内太阳能光伏应用仍以独立供电系统为主,并网系统则刚刚起步。
电力电子技术1.以电力为处理对象的电子技术称为电力电子技术。
它是一门利用电力电子器件对电能进行控制和转换的学科。
2.电力交换分为:交直变换(AC-DC 整流)直交变换(DC-AC 逆变)交交变换(AC-AC 交交变换)直直变换(DC-DC 斩波)3.1957年美国的通用电气公司研制出第一个晶闸管。
4.电源:直流电源,恒压恒频交流电源,变压变频电源。
5.电源涉及不间断电源、电解电源、电镀电源、开关电源(SMPS)、计算机及仪器仪表电。
6.高压直流输电(HVDC)晶闸管控制电抗器(TCR)晶闸管投切电容器(SVC)有源电力滤波(APF)7.为了减小本身的损耗,提高效率,电力电子器件一般工作在开关状态。
8.低频时通态损耗电力电子器件功率损耗的主要成因;器件开关频率较高,开关损耗随增大而成为器件功率损耗主要因素。
9.电力二极管:螺栓型和平板型两种封装。
10.当施加的反向电压过大时,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就是反向击穿。
反向电流未被限制住,使得反向电流和反向电压的乘积超过了PN 结所容许的耗散功率,就会因热量散发不出去而导致PN结温度上升,直至过热而烧毁,这就是热击穿。
PN结的电荷量随外加电压而变化,呈现一定的电容效应。
11.正向平均电流IF(Av)是指电力二极管长期运行时,在指定的管壳温皮平均值取标散热条件下,其允许流过的最大工频正弦平波电流的平均值。
肖特基二极管是单极器件12.为保证可靠,安全触发,触发电路所提供的触发电压、电流和功率都限制在可靠触发区。
13.实际中,应对晶闸管施加足够长时间的反向电压,使其充分恢复对正向电压的阻断能力,才能使晶闸管可靠关断。
14.GTR一般采用共发射极接法。
为了保证安全,最高工作电压Ucem要比BUceo低的多。
15.当GTR的集电极电压升高至一次击穿电压临界值BUcEo时,集电极电流Ic会迅速增大,出现雪崩击穿,称之为一次击穿,一次击穿也称为电压击穿。
1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。
2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。
对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。
4、70年代后期,以门极可关断晶闸管(GTO )、电力双极型晶体管(BJT )和电力场效应晶体管(Power-MOSFET )为代表的全控型器件迅速发展。
5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。
6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC )。
第二章1、电力电子器件的特征◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。
◆为了减小本身的损耗,提高效率,一般都工作在开关状态。
◆由信息电子电路来控制 ,而且需要驱动电路。
◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器 2、电力电子器件的功率损耗3、电力电子器件的分类(1)按照能够被控制电路信号所控制的程度 ◆半控型器件:☞主要是指晶闸管(Thyristor )及其大部分派生器件。
☞器件的关断完全是由其在主电路中承受的电压和电流决定的。
◆全控型器件:☞目前最常用的是 IGBT 和Power MOSFET 。
☞通过控制信号既可以控制其导通,又可以控制其关断。
◆不可控器件: ☞电力二极管(Power Diode ) ☞不能用控制信号来控制其通断。
(2)按照驱动信号的性质 ◆电流驱动型 :☞通过从控制端注入或者抽出电流来实现导通或者关断的控制。
◆电压驱动型 ☞仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。
(3)按照驱动信号的波形(电力二极管除外 ) ◆脉冲触发型 ☞通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。
电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。
在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。
它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。
电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。
1. 电力电子器件电力电子器件是实现电力电子技术的基础。
常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。
晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。
可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。
IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。
2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。
常见的电力电子电路包括整流电路、逆变电路、斩波电路等。
整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。
这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。
3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。
常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。
这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。
二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。
而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。
1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。
通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。
现代电力电子技术理论 Snubber什么是 Snubber?在电路中,Snubber 又称为降压电路,用于消除开关电路中峰值电压的过冲和过流。
Snubber 能够有效地减少电路中储能电容和电感的运动。
它主要是通过加入电容来稳定电压,消除过冲和过流现象,从而保护开关管和半导体器件。
Snubber 的工作原理在开关管的关闭瞬间,由于开关管引起的电感的储能,将会产生电压峰值。
这个电压峰值可能会超出开关管的击穿电压,导致开关管被烧毁。
Snubber 回路主要的作用是消除这个过冲电压。
Snubber 回路由电阻和电容器组成,并在开关管的引脚中间串联一个电压限制器电阻,使得开关管在断开时不会被强大的电压击穿。
在电压限制器电阻的帮助下,Snubber 回路能够消除过冲电压并保护开关管。
Snubber 的应用场景Snubber 回路在电子设备中的应用十分广泛,如:1.逆变器输出过滤回路中2.稳压电源输出滤波回路中3.电力电子变流器输出回路中4.交流电机启动回路中5.直流电机刹车回路中等Snubber 回路在控制开关电路中起着至关重要的作用,它可以消除电压过冲和过流现象,保护电子设备和电路元件,提高电路的可靠性和稳定性。
Snubber 回路的优缺点Snubber 回路的优点主要体现在以下方面:1.可以消除电路中的峰值电压,保护半导体器件2.在稳定各种电路时十分有效3.可以降低电路中噪音干扰Snubber 回路的缺点同样存在,主要包括:1.Snubber 回路会消耗一部分电源能量,从而导致损失2.Snubber 回路的设计需要考虑到额外的元件和电路布局的复杂性,这会增加设计和制造成本Snubber 回路的设计方法Snubber 回路的设计方法一般包括:1.根据 circuit requirements 确定电感和电容的值2.选取正确的电容和电压等级,以满足电路要求3.定义一个大小合适的电阻,以限制电压过冲4.最后进行电路布局和元件放置Snubber 回路的设计方法需要考虑到电路的性能特点,包括频率、功率、损耗等等。
《电气工程概论》第二章电力电子技术(第1节)课堂笔记及练习题主题:第二章电力电子技术(第1节)学习时间: 2015年11月23日--11月29日内容:我们这周主要学习电力电子技术第1节中的晶闸管的驱动、功率场效应管、绝缘栅型双极性晶体管、功率半导体器件的保护,通过学习我们要了解掌握晶闸管的驱动,掌握功率场效应管的结构、工作原理、特性、主要参数、安全工作区,掌握绝缘栅型双极性晶体管的结构、工作原理、特性、擎住效应和安全工作区,掌握功率半导体器件的过压、过流保护。
第一节功率半导体器件2.1.6 晶闸管的驱动1.晶闸管触发电路的基本要求:1)触发脉冲信号应有一定的功率和宽度。
2)为使并联晶闸管元件能同时导通,触发电路应能产生强触发脉冲。
3)触发脉冲的同步及移相范围。
4)隔离输出方式及抗干扰能力。
2.常见的触发电路图3-12为常见的触发电路。
它由2个晶体管构成放大环节、脉冲变压器以及附属电路构成脉冲输出环节组成。
当2个晶体管导通时,脉冲变压器副边向晶闸管的门极和阴极之间输出脉冲。
脉冲变压器实现了触发电路和主电路之间的电气隔离。
脉冲变压器原边并接的电阻和二极管是为了脉冲变压器释放能量而设的。
2.1.7 功率场效应晶体管功率场效应晶体管是一种单极型电压控制半导体元件,其特点是控制极静态内阻极高、驱动功率小、开关速度快、无二次击穿、安全工作区宽,开关频率可高达500kHZ,特别适合高频化的电力电子装置。
但由于电流容量小、耐压低,一般只适用小功率的电力电子装置。
1.结构与工作原理(1)结构功率场效应晶体管按导电沟道可分为P沟道和N沟道;根据栅源极电压与导电沟道出现的关系可分为耗尽型和增强型。
功率场效应晶体管一般为N沟道增强型。
从结构上看,功率场效应晶体管与小功率的MOS管有比较大的差别。
图3-13给出了具有垂直导电双扩散MOS结构的VD-MOSFET单元的结构图及电路符号。
(2)工作原理如图3-13 所示,功率场效应晶体管的三个极分别为栅极G、漏极D和源极S。