3第三章 能控性和能观测性
- 格式:pdf
- 大小:399.76 KB
- 文档页数:89
第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
第三章:控制系统的能控性及能观测性(第五讲)内容介绍:能控性和能观测性定义、判据、对偶关系、标准型、结构分解。
能控性和能观测性是现代控制理论中最基本概念,是回答:“输入能否控制状态的变化”及“状态的变化能否由输出反映出来”这样两个问题。
换句话说,能控性是“能否找到一向量u(t)有效控制x(t)变化”。
能观测性问题是:“能否通过输出y(t)观测到状态的变化。
”一、能控性定义及判据 给出一个多变量系统(多输入、多输出)若系统G(s)在适当的控制u(t)作用下,每个状态都受影响,亦在有限的时间内能使系统G 由任意初始状态转移到零状态,或者说在有限的时间内能使系统由零状态转移到任意指定状态。
这说明:输入对状态的控制能力强,反之若G 的某一状态根本不受影响,那么在有限时间内就无法利用控制使这个状态变量发生变化。
说明输入对状态控制能力差。
可见:反映输入对状态控制能力的概念是能控性概念。
1. 定义:若对系统,在时刻的任意状态x()都存在一个有限的时间区间(ξt t ,0)(0t t 〉ξ)和定义在[]ξt ,t 0上适当的控制u(t),使在u(t)作用下x()=0。
则称系统在时刻是状态能控的。
如果系统在有定义的时间区域上的每一时刻都能控,称系统为完全能控。
()x u x 01011012=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=考查能控性?状态变量图(信号流图):y2由于u 的作用只影响不影响,故()t x 2为不能控。
某一状态不能控,则称系统不能控。
2.判据:u 1 : y1:对线性定常系统=Ax+Bu ,若对某一时刻能控,则称系统完全能控。
设: p输出 n n A *、p n B *、n m C *给出一定理:由=Ax+Bu 所描述的系统是状态完全能控的必要且充分条件为下列n ×np 阵的秩等于n 。
=BAB ……B A n 1-称为能控性阵。
换言之:系统的状态完全能控的必要且充分的条件是能控性阵的秩为n 。
3.1 线性定常系统的能控性线性系统的能控性和能观测性概念是卡尔曼在1960年首先提出来的。
当系统用状态空间描述以后,能控性、能观测性成为线性系统的一个重要结构特性。
这是由于系统需用状态方程和输出方程两个方程来描述输入-输出关系,状态作为被控量,输出量仅是状态的线性组合,于是有“能否找到使任意初态转移到任意终态的控制量”的问题,即能控性问题。
并非所有状态都受输入量的控制,有时只存在使任意初态转移到确定终态而不是任意终态的控制。
还有“能否由测量到的由状态分量线性组合起来的输出量来确定出各状态分量”的问题,即能观测性问题。
并非所有状态分量都可由其线性组合起来的输出测量值来确定。
能控性、能观测性在现代控制系统的分析综合中占有很重要的地位,也是许多最优控制、最优估计问题的解的存在条件,本章主要介绍能控性、能观测性与状态空间结构的关系。
第一节线性定常系统的能控性能控性分为状态能控性、输出能控性(如不特别指明便泛指状态能控性)。
状态能控性问题只与状态方程有关,下面对定常离散系统、定常连续系统分别进行研究(各自又包含单输入与多输入两种情况):一、离散系统的状态可控性引例设单输入离散状态方程为:初始状态为:用递推法可解得状态序列:可看出状态变量只能在+1或-1之间周期变化,不受的控制,不能从初态转移到任意给定的状态,以致影响状态向量也不能在作用下转移成任意给定的状态向量。
系统中只要有一个状态变量不受控制,便称作状态不完全可控,简称不可控。
可控性与系统矩阵及输入矩阵密切相关,是系统的一种固有特性。
下面来进行一般分析。
设单输入离散系统状态方程为:(3-1)式中,为维状态向量;为纯量,且在区间是常数,其幅值不受约束;为维非奇异矩阵,为系统矩阵;为维输入矩阵:表示离散瞬时,为采样周期。
初始状态任意给定,设为;终端状态任意给定,设为,为研究方便,且不失一般性地假定。
单输入离散系统状态可控性定义如下:在有限时间间隔内,存在无约束的阶梯控制信号,,,能使系统从任意初态转移到任意终态,则称系统是状态完全可控的,简称是可控的。