2021年广东省普通高中学业水平考试数学模拟测试题(八) 解析版
- 格式:docx
- 大小:152.75 KB
- 文档页数:7
2021届广东省高三普通高中学业水平考试模拟考试数学试卷(七)★祝考试顺利★ (含答案)(时间:90分钟 满分:150分)一、选择题(本大题共15小题.每小题6分,满分90分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={-1,0,1,2},N={x|-1≤x<2},则M ∩N= ( )A.{0,1,2}B.{-1,0,1}C.MD.N2.对任意的正实数x ,y ,下列等式不成立的是 ( ) A.lg y-lg x=lg yx B.lg (x+y )=lg x+lg yC.lg x 3=3lg xD.lg x=lnxln103.已知函数f (x )={x 3-1,x ≥02x ,x <0,设f (0)=a ,则f (a )=( )A.-2B.-1C.12D.04.定义在R 上的函数f (x )的图象关于直线x=2对称,且f (x )在(-∞,2)上是增函数,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (3)D .f (0)=f (3)5.圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A .(x -32)2+y 2=254 B .(x +34)2+y 2=2516C .(x -34)2+y 2=2516 D .(x -34)2+y 2=2546.已知向量a =(1,1),b =(0,2),则下列结论正确的是 ( )A.a ∥bB.(2a -b )⊥bC.|a |=|b |D.a ·b =37.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是 ( )A.6和9B.9和6C.7和8D.8和78.如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为 ( )A.1B.2C.4D.89.若实数x ,y 满足{x -y +1≥0,x +y ≥0,x ≤0,则z=x-2y 的最小值为( ) A.0B.-1C.-32D.-210.如图,O 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是 ( )A.DA ⃗⃗⃗⃗⃗ −DC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗B.DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =DO ⃗⃗⃗⃗⃗⃗C.OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =DB⃗⃗⃗⃗⃗⃗ D.AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a=√3,b=2,c=√13,则C= ( ) A.5π6B.π6C.2π3D.π312.函数f (x )=4sin x cos x ,则f (x )的最大值和最小正周期分别为 ( )A.2和πB.4和πC.2和2πD.4和2π。
2021年广东省普通高中学业水平考试数学测试卷(时间:90分钟满分:150分)一、选择题(共15小题,每小题6分,共90分)1.集合{0,1,2}的所有真子集的个数是()A.5B.6C.7D.82.函数f(x)=lg(x-1)的定义域是()A.(2,+∞)B.(1,+∞)C.[ 1,+∞)D.[2,+∞)3.已知平面向量a=(3,1),b=(x,-3),若a⊥b,则实数x等于()A.-1B.1C.-9D.94.若函数f(x)=sin(0≤φ≤2π)是偶函数,则φ=()A. B. C. D.5.已知直线的点斜式方程是y-2=-(x-1),那么此直线的倾斜角为()A. B. C. D.6.如图是2019年在某电视节目中七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()798446479 3A.84,4.84B.84,1.6C.85,1.6D.85,47.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.函数y=log a x(a>0,a≠1)的反函数的图象过,则a的值为()A.2B.C.2或D.310.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8B.10C.12D.1411.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A.6B.9C.18D.3612.已知0<a<b,且a+b=1,则下列不等式中正确的是()A.log2a>0B.2a-b<C.log2a+log2b<-2D.213.设x,y满足约束条件则z=x-2y的最小值为()A.-10B.-6C.-1D.014.=()A.-B.-C.D.15.小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲、乙两地的平均速度为v,则()A.v=B.v=C.<v<D.b<v<二、填空题(共4小题,每小题6分,共24分)16.首项为1,公比为2的等比数列的前4项和S4=.17.将一枚质地均匀的一元硬币抛3次,恰好出现一次正面的概率是.18.已知函数f(x)=则f的值是.19.锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=b,则角A等于.三、解答题(共3小题,每小题12分,共36分)20.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.21.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥平面ABC,BE∥CD,F为AD的中点.(1)求证:EF∥平面ABC;(2)求证:平面ADE⊥平面ACD;(3)求四棱锥A-BCDE的体积.22.已知等差数列{a n}满足a2+a5=8,a6-a3=3.(1)求数列{a n}的前n项和S n;(2)若b n=+3·2n-2,求数列{b n}的前n项和T n.答案:1.C【解析】真子集个数为23-1=7,故选C.2.B【解析】由题意得,x-1>0,x>1,即函数的定义域是(1,+∞),故选B.3.B【解析】a·b=3x-3=0,即x=1,故选B.4.C【解析】只需+kπ⇒φ=3kπ+(k∈Z),而φ∈[0,2π],所以φ=,选C.5.C【解析】∵k=tan α=-,∴α=π-.故选C.6.C【解析】由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据为84,84,86,84,87,平均数为=85,方差为[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]==1.6.故选C.7.C【解析】y=cos 2x→y=cos(2x+1)=cos.故选C.8.D【解析】A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.9.B【解析】函数y=log a x(a>0,a≠1)的反函数为y=a x,过点,即,解得a=,故选B.10.C【解析】设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d==2,a1=a2-d=2-2=0,所以S4==2×(0+6)=12.故选C.11.C【解析】由题意可知,几何体是以正视图为底面的三棱柱,其底面面积S=×4×=6,高是3,所以它的体积为V=Sh=18.故选C.12.C【解析】由题意知0<a<1,故log2a<0,A错误;由0<a<1,0<b<1,故-1<-b<0.又a<b,所以-1<a-b<0,所以<2a-b<1,B错误;由a+b=1>2得ab<,因此log2a+log2b=log2ab<log2=-2,C正确;由0<a<b可知>2=2,因此2>22=4,D错误.13.B【解析】由z=x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分),平移直线y=x-,由图象可知,当直线y=x-过点B时,直线y=x-的截距最大,此时z最小,由解得即B(2,4).代入目标函数z=x-2y,得z=2-8=-6,∴目标函数z=x-2y的最小值是-6.故选B.14.C【解析】===sin 30°=.故选C.15.D【解析】设甲地到乙地的距离为s.则他往返甲、乙两地的平均速度为v=,∵a>b>0,∴>1,∴v=>b.v=.∴b<v<.故选D.16.15【解析】S4==15.17.【解析】试验结果有:(正正正)(正正反)(正反正)(反正正)(反反正)(反正反)(正反反)(反反反)共8种情况,其中出现一次正面情况有3种,即P=.18.【解析】f=log2=-2,f=f(-2)=3-2=.19.【解析】因为2a sin B=b,由正弦定理有2sin A sin B=sin B.因为△ABC中sin B≠0,从而sin A=,而A是锐角,故A=.20.【解】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.21.【解】(1)证明:如图所示,取AC中点G,连接FG,BG.∵F,G分别是AD,AC的中点,∴FG∥CD,且FG=DC=1.∵BE∥CD,∴FG与BE平行且相等,∴EF∥BG.又∵EF⊄平面ABC,BG⊂平面ABC,∴EF∥平面ABC.(2)证明:由题意知△ABC为等边三角形,∴BG⊥AC.又∵DC⊥平面ABC,BG⊂平面ABC,∴DC⊥BG,∴BG垂直于平面ADC的两条相交直线AC,DC,∴BG⊥平面ADC.∵EF∥BG,∴EF⊥平面ADC.又∵EF⊂平面ADE,∴平面ADE⊥平面ACD.(3)连接EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.×1+×1×.22.【解】(1)由a6-a3=3得数列{a n}的公差d==1, 由a2+a5=8,得2a1+5d=8,解得a1=,∴S n=na1+d=.(2)由(1)可得,∴T n=b1+b2+b3+…+b n=+…+(1+2+…+2n-1)=+=×(2n-1)=3·2n-1-.。
2021年广东省东莞市七校联考中考数学模拟试卷一.选择题(共10小题).1.下列实数中,无理数是()A.0B.﹣4C.D.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣83.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.804.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.107.不等式组的解集在数轴表示正确的是()A.B.C.D.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.3610.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=.12.分式有意义的条件是.13.分解因式:1﹣16n2=.14.若2m+n=4,则代数式6﹣2m﹣n的值为.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有根小棒.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.参考答案一.选择题(共10小题,满分30分,每小题3分)1.下列实数中,无理数是()A.0B.﹣4C.D.解:0,﹣4是整数,属于有理数;是分数,属于有理数;无理数是.故选:C.2.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8解:0.0000000099=9.9×10﹣9,故选:C.3.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.4.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)解:∵点A关于原点的对称点A1(3,﹣2),∴点A的坐标为(﹣3,2),故选:A.5.正多边形的内角和是1440°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形是正十边形.故选:D.6.若关于x的方程x2+6x﹣a=0无实数根,则a的值可以是下列选项中的()A.﹣10B.﹣9C.9D.10解:∵关于x的方程x2+6x﹣a=0无实数根,∴△=62﹣4×1×(﹣a)<0,解得:a<﹣9,∴只有选项A符合,故选:A.7.不等式组的解集在数轴表示正确的是()A.B.C.D.解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.8.在半径为3的圆中,150°的圆心角所对的弧长是()A.πB.πC.πD.π解:弧长==π,故选:A.9.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为()A.18B.25C.32D.36解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由折叠的性质得:∠AFE=∠D=90°,EF=ED,AF=AD,∴tan∠EFC==,设CE=3k,则CF=4k,由勾股定理得DE=EF==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF==tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36(cm),故选:D.10.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.计算:20210+=﹣2.解:原式=1+3﹣6=﹣2.故答案为:﹣2.12.分式有意义的条件是x≠﹣1.解:要使分式有意义,必须x+1≠0,解得,x≠﹣1,故答案是:x≠﹣1.13.分解因式:1﹣16n2=(1﹣4n)(1+4n).解:1﹣16n2=(1﹣4n)(1+4n).故答案为:(1﹣4n)(1+4n).14.若2m+n=4,则代数式6﹣2m﹣n的值为2.解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.15.已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.解:作OC⊥AB于C,连接OA,如图,∵OC⊥AB,∴AC=BC=AB=×4=2,在Rt△AOC中,OA=5,∴OC===,即圆心O到AB的距离为.故答案为:.16.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是①④.(把所有正确结论的序号都填在横线上)①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;不正确;正确的是①④.故答案为:①④.17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有31根小棒.解:观察图形的变化可知:第1个图案中有6根小棒,即5×1+1=6;第2个图案中有11根小棒,即5×2+1=11;第3个图案中有16根小棒,即5×3+1=16;…,则第6个图案中有:5×6+1=31(根)小棒.故答案为:31.三.解答题(共8小题,满分62分)18.先化简,再求值:()÷,其中x=﹣1.解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.19.如图,△ABC是等边三角形,D,E分别是BA,CB延长线上的点,且AD=BE.求证:AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠BAC=60°,∴∠ABE=∠CAD=180°﹣60°=120°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS),∴AE=CD.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)画树状图如下:共有12个等可能的结果,恰好抽到同性别学生的结果有4个,∴恰好抽到同性别学生的概率为=.21.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品30件,B种物品20件,共需680元;如果购买A种物品50件,B种物品40件,共需1240元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共300件,总费用不超过4000元,那么A种防疫物品最少购买多少件?解:(1)设A种防疫物品x元/件,B种防疫物品y元/件,依题意得:,解得:.答:A种防疫物品12元/件,B种防疫物品16元/件.(2)设A种防疫物品购买m件,则B种防疫物品购买(300﹣m)件,依题意得:12m+16(300﹣m)≤4000,解得:m≥200.答:A种防疫物品最少购买200件.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.解:(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,,解得,,∴一次函数的关系式为y=2x﹣4,当x=3时,y=2×3﹣4=2,∴点C(3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=,答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,),点Q(n,2n﹣4),∴PQ=﹣(2n﹣4),∴S△PDQ=n[﹣(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,∵﹣1<0,∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.23.如图,已知点P是⊙O外一点,直线PA与⊙O相切于点B,直线PO分别交⊙O于点C、D,∠PAO=∠PDB,OA交BD于点E.(1)求证:OA∥BC;(2)当⊙O的半径为10,BC=8时,求AE的长.【解答】证明:(1)如图,连接OB,∵PA与⊙O相切于点B,∴∠ABO=90°,∴∠ABE+∠OBE=90°,∵OB=OD,∴∠OBD=∠ODB,∵∠PAO=∠PDB,∴∠PAO=∠OBD,∴∠ABE+∠PAO=90°,∴∠AEB=90°,∵CD是直径,∴∠CBD=90°,∴∠CBD=∠AEB,∴OA∥BC;(2)∵CD=2OD=20,BC=8∴BD===4,∵OE⊥BD,∴BE=DE=2,∵∠BAE=∠D,∠AEB=∠CBD=90°∴△ABE~△DCB,∴∴∴AE=21.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,D为第一象限内抛物线上一点,过D做DT⊥x轴交x轴于T,交BC于点K,设D点横坐标为m,线段DK的长为d,求d与m之间的关系式;(3)如图3,在(2)的条件下,D在对称轴右侧,Q、H为直线DT上一点,Q点纵坐标为4,H在第四象限内,且QD=TH,过D作x轴的平行线交抛物线于点E,连接EQ 交抛物线于点R,连接RH,tan∠ERH=2,求点D的坐标.解:(1)对于y=a(x+1)(x﹣3),令y=a(x+1)(x﹣3)=0,解得x=3或﹣1,令x=0,则y=﹣3a,∴A(﹣1,0),B(3,0),C(0,﹣3a),∵OB=OC=3,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3;(2)由点BC的坐标得:直线BC解析式为y=﹣x+3,∴设D(m,﹣m2+2m+3),K(m,﹣m+3),∴d=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3);(3)连接EH,∵QH平行y轴,Q点的纵坐标为4,QD=TH,∴QT=DH=4,∴QD=4﹣(﹣m2+2m+3)=m2﹣2m+1,∵ED=2m﹣2,∴tan∠QED=,∴tan∠EHD=,∴∠QED=∠EHD,∴∠QEH=90°,过E作y轴平行线l,过R、H分别作直线l的垂线交l于M和N,连接EH,∵∠QEH=90°,∴∠REM+∠HEN=90°,∵∠EHN+∠HEN=90°,∴∠REM=∠EHN,∴Rt△RME∽Rt△ENH,∴=tan∠ERH=2,∵NH=DE=2m﹣2,∴ME=m﹣1,∴RF=﹣m2+3m+2,∵EN=DH=4,∴RM=2,∴FT=NH﹣MR=2m﹣4,∴OF=OT﹣OF=4,∴R(4﹣m,﹣m2+3m+2),将R点代入抛物线表达式得:﹣m2+3m+2=﹣(4﹣m)2+2(4﹣m)+3,解得:m=,当x=时,y=﹣x2+2x+3=,∴D(,).25.如图1,在平面直角坐标系中,已知矩形OABC的顶点A(6,0),C(0,2),将矩形OABC绕点O逆时针旋转得到矩形ODEF,使得点A的对应点D恰好落在对角线OB上,OE交BC于点G.(1)求证:△BGO是等腰三角形;(2)求点E的坐标;(3)如图2,矩形ODEF从点O出发,沿OB方向移动,得到矩形O′D′E′F′,当移动到点O′与点B重合时,停止运动,设矩形O'D'E′F′与△OBC重叠部分的面积为y,OO′=x,求y关于x的函数关系式.解:(1)由题意知:tan∠CBO=,∴∠CBO=30°,∵AO∥BC,∴∠BOA=∠CBO=30°,∵∠GOB=∠GBO=30°,∴GO=GB,∴△BGO是等腰三角形;(2)在Rt△BCO中,OC=2,BC=OA=6,∴OB=OE==4,作EH⊥x轴于点H,∵∠BOA=∠EOB=30°,∴∠EOH=∠BOA+∠EOB=60°,在Rt△EOH中,OE=4,∴OH=2,EH=6,故E点坐标为(2,6);(3)OO′=x,O′D′=6,D'B=4﹣x﹣6,令F'O'与CO交点为点M.,E'D'与CB交点为点N,S△OMO′=x2,S△ND′B=,S△OCB=6,当0≤x﹣6,y=6﹣x2﹣,当4﹣6<x,y=6﹣x2,当,y=.。
专题06:分式-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广州市第十六中学九年级二模)下列计算正确的是( ) A .()22239pq p q -=- B .22a ab b-=-C 0=D .933b b b ÷=【答案】C【解析】A 、根据积的乘方运算法则判断;B 、根据分式的基本性质判断;C 、根据二次根式的性质判断;D 、根据同底数幂的除法法则判断.【解答】解:A 、222(3)9pq p q -=,故本选项不合题意;B 、当a b 时,22a ab b-≠-,故本选项不合题意;C 、由题意可得0a =0=,故本选项符合题意;D 、936b b b ÷=,故本选项不合题意; 故选:C .【点评】本题考查了积的乘方,分式的基本性质,二次根式的性质以及同底数幂的除法,掌握相关定义与运算法则是解答本题的关键.2.(2021·广东惠州市·x 应满足的条件是( )A .2x ≥B .2x >C .2x ≠D .2x -≤【答案】B【解析】根据二次根式有意义的条件即可求出答案. 【解答】解:由题意可知:20x ->,2x ∴>,故选:B .【点评】本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型. 3.(2021·广东惠州市·)随着科技不断发展,芯片的集成度越来越高,我国企业中芯国际已经实现14纳米量产,14纳米0000014=.毫米,0.000014用科学记数法表示为( ) A .-61410⨯ B .-51.410⨯C .-71.410⨯D .-40.1410⨯【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:将0.000014用科学记数法表示为51.410-⨯. 故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2021·广东华侨中学九年级二模)下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+- D .21628x x -+【答案】B【解析】根据最简分式的定义逐项判断即可得. 【解答】A 、21111(1)(1)1x x x x x x ++==-+--,此项不是最简分式,不符题意; B 、2211x x -+是最简分式,符合题意;C 、22222()()x xy y x y x yx xy x x y x-+--==--,此项不是最简分式,不符题意;D 、216(4)(4)4282(4)2x x x x x x -+--==++,此项不是最简分式,不符题意;故选:B .【点评】本题考查了最简分式,熟记定义是解题关键. 5.(2021·广东肇庆市·九年级一模)分式22x -在实数范围内有意义,则x 的取值范围是( ) A .2x > B .2x <C .2x =D .2x ≠【答案】D【解析】根据分式分母不为零,计算即可【解答】解:根据分式有意义的条件为分母不为零得:20x -≠∴2x ≠ 故选:D【点评】本题考查分时有意义的条件,正确理解分式的定义是关键 6.(2021·广东深圳市·九年级一模)下列运算正确的是( )A .(﹣2a 2b ﹣1)2=424a bB .(a +b )2=a 2+b 2C 2D .222a a b -+222b b a-=2a b - 【答案】A【解析】直接利用积的乘方运算法则以及完全平方公式、二次根式的加减、分式的加减运算法则分别计算得出答案.【解答】解:A 、(﹣2a 2b ﹣1)2=424a b,故此选项正确;B 、(a +b )2=a 2+2ab +b 2,故此选项错误;C D 、222222a b a b b a +--=222a a b -﹣222ba b -=2a b+,故此选项错误; 故选:A .【点评】此题主要考查了积的乘方运算以及完全平方公式、二次根式的加减、分式的加减运算,正确掌握相关运算法则是解题关键.7.(2021·广东广州市·九年级一模)若分式2545x x x ---的值为0,则x 的值为( ) A .-5 B .5C .-5和5D .无法确定【答案】A【解析】根据分式值为0的条件:分子为0,分母不为0列方程或不等式即可. 【解答】解:∵分式2545x x x ---的值为0, ∴5x -=0且245x x --≠0, 解方程得,5x =±; 解不等式得,1,5x x ≠-≠; 故5x =-, 故选:A .【点评】本题考查了分式值为0和解一元二次方程,解题关键是根据已知列出方程和不等式,准确求解. 8.(2021·广东惠州市·九年级二模)某种冠状病毒的直径120纳米,1纳米910-=米,则这种冠状病毒的直径(单位是米)用科学记数法表示为( ) A .912010-⨯米 B .81.210-⨯米C .71.210-⨯米D .61.210-⨯米【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】120纳米=120×10-9米=1.2×10-7米,故选:C .【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2021·广东广州市·西关外国语学校九年级一模)一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣ B .5510⨯﹣ C .4210⨯﹣ D .5210⨯﹣【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】150000=0.00002=2×10﹣5.故选D .【点评】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2021·广东广州市·九年级一模)下列运算正确的是( ) A .222()a b a b +=+ B .55a a -= C .2122a a a+=-- D .2363(2)6a b a b -=-【答案】C【解析】根据完全平方公式判断A ;根据合并同类项的法则判断B ;根据分式的加法运算法则判断C ;根据幂的乘方与积的乘方法则判断D .【解答】A 、222()2a b a ab b +=++,故错误;B 、54a a a -=,故错误;C 、2212222a a a a a a +=-=----,正确; D 、()326328a ba b -=-,故错误.【点评】此题主要考查了整式和分式的运算等知识,正确运用运算法则是解题关键.二、填空题11.(2021·广东汕头市·九年级一模)新型冠状病毒也叫2019-nCOV ,该病毒比细胞小得多,大小约为150nm (纳米),即为0.00000015米,约为一根头发丝直径的千分之一,数据0.00000015米用科学记数法表示为______米.【答案】1.5×10-7 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.00000015=1.5×10-7, 故答案为:1.5×10-7. 【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 12.(2021·广东东莞市·九年级其他模拟)分式261x x -+有意义的条件是________. 【答案】1x ≠-【解析】根据分式的分母不为0列出不等式,解不等式得到答案. 【解答】解:要使分式261x x -+有意义,必须x +1≠0, 解得,x ≠﹣1, 故答案是:x ≠﹣1.【点评】此题主要考查分式有意义的条件,解题的关键是熟知分式的分母不为0. 13.(2021·有意义,则x 的取值范围是______.【答案】3x <.【解析】直接根据二次根式有意义的条件为根号下的数大于等于0,分式有意义的条件为分母不为0;有意义,则30x -> , ∴ 3x < , 故答案为:3x <.【点评】本题考查了二次根式有意义的条件和分式有意义的条件,正确掌握知识点是解题的关键 . 14.(2021·广东广州市·九年级一模)已知xx 可取__________(只需填满足条件的一个自然数). 【答案】1(答案不唯一)【解析】根据分式的分母不能为0、二次根式的定义即可得. 【解答】解:由题意得:40x ->, 解得4x <,x 为自然数,x 可取1,故答案为:1(答案不唯一).【点评】本题考查了分式的分母不能为0、二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.15.(2021·广东东莞市·九年级一模)计算:20210+1213-⎛⎫- ⎪⎝⎭=_____.【答案】﹣2.【解析】利用零指数幂、负指数幂及乘方的运算法则进行计算即可. 【解答】原式=1+3﹣6=﹣2. 故答案为:﹣2.【点评】本题考查了实数的相关运算,解题关键是熟练运用零指数幂、负指数幂及乘方的运算法则. 16.(2021·广东肇庆市·九年级一模)011(2021)()2π---=_____________.【答案】-1;【解析】根据零指数幂和负整数指数幂的意义计算即可. 【解答】原式121=-=-. 故答案为:1-.【点评】本题考查了零指数幂和负整数指数幂,关键是掌握零指数幂和负整数指数幂的意义. 17.(2021·广东汕头市·π﹣3)0=_____. 【答案】5【解析】首先计算二次根式的乘法、零指数幂,再计算减法即可解答.﹣(π﹣3)0 =6﹣1 =5. 故答案为:5.【点评】本题考查了二次根式的乘法及零指数幂的性质,解题的关键是熟练运用所学知识.18.(2021·广东九年级一模)当x =_____时,分式293x x -+的值为零.【答案】3【解析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【解答】∵分式293x x -+的值为零,∴x 2-9=0,且x+3≠0, 解得:x=3, 故答案为:3【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.(2021·广东深圳市·九年级其他模拟)若代数式14x -有意义,则实数x 的取值范围是____. 【答案】4x ≠【解析】根据分式有意义的条件,分母不能等于0,列不等式求解即可. 【解答】因为分式有意义的条件是分母不能等于0, 所以40x -≠, 所以4x ≠. 故答案为: 4x ≠.【点评】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.20.(2021·内蒙古赤峰市·中考真题)在函数21y x =-中,自变量x 的取值范围是_____. 【答案】x≥-1且x≠12【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:x 10{2x 10,+≥-≠ 解得:x≥-1且x≠12故答案为:x≥-1且x≠12. 【点评】本题考查函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.三、解答题21.(2021·广东中考真题)已知m n A n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若0m n +-=,求A 的值.【答案】(1)m n +;(2)6.【解析】(1)先通分合并后,因式分解,然后约分化简即可;(2)先把式子移项求m n +=,然后整体代入,进行二次根式乘法运算即可.【解答】解:(1)()())22m n m n m n A m n mn nm mn +-⎛⎫=-==+ ⎪⎝⎭;(2)∵0m n +-=,∴m n +=∴)A m n =+.【点评】本题考查分式化简计算,会通分因式分解与约分,二次根式的乘法运算,掌握分式化简计算,会通分因式分解与约分,二次根式的乘法运算是解题关键.22.(2021·广东梅州市·九年级二模)先化简,再求值:22111211x x x x x x -+÷+-+-,其中1x =.【答案】11x x +-,1 【解析】先根据分式运算法则进行化简,再代入求值即可. 【解答】解:原式()()()2111111x x x x x x +-=⋅++-- 111x x x =+-- 11x x +=-将1x =+代入上式得原式==1=. 【点评】本题考查了分式化简求值和二次根式计算,解题关键是熟练运用相关法则进行准确计算.23.(2021·广东广州市·九年级二模)已知直线3y =-与x 轴的交点横坐标为m ,求214242m m m m ⎛⎫+÷ ⎪+--⎝⎭的值.【解析】令解析式中的0y =,求出x 的值,则m 的值确定,再化简原式,最后代入m 的值,结论可求.【解答】解:令0y =30-=.解得:x =33y x =-与x 轴的交点横坐标为m ,m x ∴==原式1422(2)(2)m m m m m ⎡⎤-=+⨯⎢⎥++-⎣⎦242(2)(2)m m m m m-+-=⨯+-1m=. 把m =代入得:原式==. 【点评】本题考查了一次函数与坐标轴的交点,因式分解,分式的化简求值,熟练求函数与坐标轴的交点,合理进行因式分解,分式的化简是解题的关键.24.(2021·广东广州市第二中学九年级二模)已知关于x 的方程220x x a -+=有两个不相等的实数根,请化简2111a a a++--【答案】2【解析】先根据220x x a -+= 有两个不相等的实数根可知△>0,即可得出a 的取值范围;然后再将原式化简求值即可;【解答】∵220x x a -+=有两个不相等的实数根, ∴ 2=4440b ac a ∆-=-> , ∴ 1a < ,原式=211a a--=1a ++()=11a a ++-=2∴ 原式=2.【点评】本题考查了一元二次方程根的判别式以及分式和二次根式的化简求值,正确掌握运算方法是解题的关键.25.(2021·广东肇庆市·九年级一模)先化简,再求值:211111a a a a -⎛⎫-⋅ ⎪-+⎝⎭,其中a =【答案】2a【解析】根据分式的混合运算顺序,先算括号里的减法,再算乘法,化简即可,把a 的值代入化简后的式子中计算可求得结果的值.【解答】211111a a a a -⎛⎫-⋅ ⎪-+⎝⎭ 22211a a a -=⋅- 2a=当a ===【点评】本题是分式的化简求值题,考查了分式的混合运算及实数的运算,注意运算顺序不能出错,本题也可用乘法的分配律计算.26.(2021·广东佛山市·九年级一模)先化简,再求值:224442x xx x x --+++,其中2x =.【答案】22x -+,. 【解析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案. 【解答】原式()()()2222222222x x x x x x x x x x +--=-=-=-+++++当2x =时,原式===.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.27.(2021·广东佛山市·九年级二模)先化简,后求值:2111224x x x x +⎛⎫+÷ ⎪-+-⎝⎭,其中2x =.【答案】21xx +,-【解析】利用通分和约分,进行化简,再代入求值,即可求解. 【解答】解:原式=222221444x x x x x x +-+⎛⎫+÷ ⎪---⎝⎭ =222144x x x x +÷-- =222441x x x x -⋅-+ =21xx +,当2x=时,原式() 4141==-.【点评】本题主要考查分式化简求值,二次根式的化简,熟练掌握通分和约分,分母有理化,是解题的关键.28.(2021·广东惠州市·九年级三模)先化简,再求值.2211121a aa a a,其中1a=+【答案】11a--;2-.【解析】根据分式的运算法则进行化简,然后将1a=代入原式即可求出答案.【解答】解:原式2111111a aa aa a a211111a a aa a a211111aa aa a a211111aa aa11a=--.当1a=时,原式2===-.【点评】本题考查分式的化简求值,熟悉相关运算法则是解题的关键.29.(2021·广东深圳市·九年级二模)计算:02114sin60320213-⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭︒【答案】13【解析】先分别化简锐角三角函数,绝对值,零指数幂和负整数指数幂,然后再计算.【解答】解:02114sin60320213-⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭︒=43192-+⨯-+=()4319-++=4192⨯-++=19++=13.【点评】本题考查锐角三角函数,绝对值,零指数幂和负整数指数幂,掌握运算顺序和计算法则准确计算是解题关键.30.(2021·广东广州市·九年级一模)已知()2211202a ab b H a b b a ab -+⎛⎫=-÷≠≠ ⎪⎝⎭. (1)化简H ;(2)若点(),P a b 在直线2y x =-上,求H 的值.【答案】(1)2H a b=-;(2)1H =. 【解析】(1)根据分式的减法和除法可以化简题目中的式子;(2)根据点P (a ,b )在直线y =x ﹣2上,可以得到a ﹣b 的值,然后代入(1)中化简后的式子即可解答本题.【解答】解:(1)H 221122a ab b b a ab -+⎛⎫=-÷ ⎪⎝⎭ 22()a b ab ab a b -=⋅- 2a b=-; (2)∵点P (a ,b )在直线y =x ﹣2上,∴b =a ﹣2,∴a ﹣b =2,当a ﹣b =2时,原式22==1, 即H 的值是1.【点评】本题考查分式的化简求值和一次函数图象上点的坐标特点,解答本题的关键是明确分式化简求值的方法.。
湛江市2021年普通高考测试(一)数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知()RA B =∅,则下面选项中一定成立的是( )A. AB A = B. AB B =C. A B B ⋃=D. A B R =【答案】B 【解析】【分析】通过取特殊集合,依次分析各选项即可. 【详解】对于A 选项,由AB A =得A B ⊂,不妨设{}{}1,0A x x B x x =>=>,则(){}01RA B x x ⋂=<≤≠∅,故不满足,故A 选项错误;对于B 选项,由AB B =得B A ⊂,显然()R A B =∅,满足,故B 选项正确;对于C 选项,由A B B ⋃=得A B ⊂,由A 选项知其不满足,故C 选项错误; 对于D 选项,由AB R =,不妨设{}{}1,0A x x B x x =≤=>,显然(){}1R A B x x ⋂=>≠∅,故不满足,故D 选项错误.故选:B.2. 中国数学奥林匹克由中国数学会主办,是全国中学生级别最高、规模最大、最具影响力的数学竞赛.某重点高中为参加中国数学奥林匹克做准备,对该校数学集训队进行一次选拔赛,所得分数的茎叶图如图所示,则该集训队考试成绩的众数与中位数分别为( )A. 85,75B. 85,76C. 74,76D. 75,77【答案】B 【解析】【分析】根据成绩出现次数最多的为众数,根据从小到大第七个和第八个数据的平均数为中位数求解即可. 【详解】解:由茎叶图知,出现的数据最多的是85,故众数为85; 由于数据总数为14个,故中位数为第七个和第八个数据的平均数,即:7577762+= 故选:B.3. 已知圆锥的轴截面是边长为8的等边三角形,则该圆锥的侧面积是( ) A. 64π B. 48πC. 32πD. 16π【答案】C 【解析】【分析】由题意可得,圆锥的侧面展开图是扇形,半径为母线8,弧长为圆锥底面周长,进而可得结果. 【详解】由题意可得,圆锥底面直径为,8半径为4,母线长为8,圆锥的侧面展开图是扇形,半径为母线8,弧长为圆锥底面周长248ππ=⨯=l 扇形面积为:1=88322ππ=S 故选:C4. 将函数f (x )=sin x 的图象上所有点的横坐标变为原来的1ω(ω>0),纵坐标不变,得到函数g (x )的图象,若函数g (x )的最小正周期为6π,则( ) A. ω=13B. ω=6C. ω=16D. ω=3【答案】A 【解析】【分析】由伸缩变换求出()g x 的解析式,再由周期公式得出答案. 【详解】由题意可知()sin g x x ω=,由26ππω=,解得13ω=故选:A5. 已知等比数列{a n }的前n 项和为S n ,则“S n +1>S n ”是“{a n }单调递增”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】D 【解析】【分析】由110++>⇒>n n n S S a ,举反例102=>n n a 和12n na =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n n a ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n n a =-,但是1n n S S +<,故不必要; 故选:D6. 已知抛物线C :x 2=-2py (p >0)的焦点为F ,点M 是C 上的一点,M 到直线y =2p 的距离是M 到C 的准线距离的2倍,且|MF |=6,则p =( ) A. 4 B. 6C. 8D. 10【答案】A 【解析】【分析】利用已知条件结合抛物线的定义求解即可.【详解】设()00,M x y ,则0026262p y p y -=⨯⎧⎪⎨-=⎪⎩,解得4p =故选:A7. 已知a =3.20.1,b =log 25,c =log 32,则( ) A. b >a >c B. c >b >aC. b >c >aD. a >b >c【答案】A 【解析】【分析】由指数函数和对数函数得单调性即可得出结果. 【详解】00.10.51=3.2 3.2 3.2212<<<⇒<<a22log 5log 422>=⇒>b3330=log 1<log 2log 3101<=⇒<<c所以b a c >> 故选:A8. 已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆C 于A ,B 两点,若2BA BF ⋅=0,且|BF 2|,|AB |,|AF 2|成等差数列,则C 的离心率为( )A.B.C.D.12【答案】A 【解析】【分析】由向量知识得出290ABF ∠=︒,再由等差数列的性质、勾股定理、椭圆的定义得出2a c =,最后由离心率公式得出答案.【详解】因为2BA BF ⋅,所以290ABF ∠=︒由|BF 2|,|AB |,|AF 2|成等差数列,设22,||,2BF x AB x d AF x d ==+=+ 在2Rt ABF 中,222()(2)x x d x d ++=+,解得3x d = 即223,||4,5BF d AB d AF d ===由椭圆的定义得2ABF 的周长为1212224BF BF AF AF a a a +++=+= 即3454,3d d d a a d ++==在直角三角形12BF F 中,21BF a BF ==,122FF c =,则222(2)a a c +=,故2a c =即2c e a ==故选:A【点睛】关键点睛:解决本题的关键在于利用勾股定理、等差中项的性质、椭圆的定义得出,a c 的齐次方程,进而得出离心率.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若复数3z i =,则( ) A. |z |=2B. |z |=4C. z 的共轭复数z 3iD. 2423z i =-【答案】AC 【解析】【分析】根据复数的知识对选项进行分析,由此确定正确选项.【详解】依题意2z==,故A选项正确,B选项错误.z i=,C选项正确.)22232z i i ==-+=-,D选项错误.故选:AC 10. 已知(1-2x)2021=a o+a1x+a2x2+a3x3+…+a2021x2021.()A. 展开式中所有项的二项式系数和为22021 B. 展开式中所有奇次项系数和为2021312-C. 展开式中所有偶次项系数和为2021312- D. 320211223202112222a a a a+++⋅⋅⋅=-【答案】ABD 【解析】【分析】由二项式系数之和,当1x=-,2021012320213=-+-+-a a a a a①当1x=,202101232021(1)-=+++++a a a a a②,由①+②,①-②;令0x=,则0=1a,令12x=,则2021120220210222=++++a a a a ,即可得结果. 【详解】A .二项式系数之和为0120212021202120212021=2+++C C C,故A正确;B.2021220210122021(12)x a a x a x a x-=++++当1x=-,2021012320213=-+-+-a a a a a①当1x=,202101232021(1)-=+++++a a a a a②①+②,可得当20212021022*********31312()2--=+++⇒+++=a a a a a a,故B正确;C.①-②202120211320211320213+13+12()2=-+++⇒+++=-a a a a a a,故C错误;D.2021220210122021(12)x a a x a x a x-=++++令0x=,则=1a令12x=,则202112022021222=++++aa aa20211222021=-1222+++a a a ,故D 正确 故答案为:ABD11. 已知函数f (x )=x 3-3ln x -1,则( ) A. f (x )的极大值为0 B. 曲线y =f (x )在(1,f (1))处的切线为x 轴 C. f (x )的最小值为0 D. f (x )在定义域内单调【答案】BC 【解析】【分析】直接对f (x )=x 3-3ln x -1,求出导函数,利用列表法可以验证A 、C 、D;对于B:直接求出切线方程进行验证即可.【详解】f (x )=x 3-3ln x -1的定义域为()0+∞,,()()23333=1f x x x x x'=-- 令()()23333=1=0f x x x x x'=--,得1x =, 列表得:所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调;故C 正确,A 、D 错误; 对于B:由f (1)=0及()10f '=,所以y =f (x )在(1,f (1))处的切线方程()001y x -=-,即0y =.故B 正确. 故选:BC【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.12. 在梯形ABCD 中,AB =2AD =2DC =2CB ,将BDC 沿BD 折起,使C 到C '的位置(C 与C '不重合),E ,F 分别为线段AB ,AC '的中点,H 在直线DC '上,那么在翻折的过程中( ) A. DC '与平面ABD 所成角的最大值为6πB. F 在以E 为圆心的一个定圆上C. 若BH 丄平面ADC ',则'3DH C H =D. 当AD 丄平面BDC '时,四面体C '-ABD 的体积取得最大值 【答案】ACD 【解析】【分析】根据线面角的知识确定A 选项的正确性;根据圆锥的几何性质判断B 选项的正确性;求得''2DC C H =,由此确定C 选项的正确性;结合锥体体积求法,确定D 选项的正确性.【详解】如图,在梯形ABCD 中,因为//,222AB CD AB AD DC CB ===,E 是AB 的中点, 所以//,CD BE CD BE =,所以四边形BCDE 是菱形,所以BC DE =, 由于AD DE AE ==,所以三角形ADE 是等边三角形, 所以12DE AB =,故AD BD ⊥,6BDC DBC π∠=∠=. 在将BDC 沿BD 翻折至'BDC 的过程中,,BDC DBC ∠∠的大小保持不变,由线面角的定义可知,'DC 与平面ABD 所成角的最大值为6π,故A 正确. 因为DBC ∠大小不变,所以在翻折的过程中,'C 的轨迹在以BD 为轴的一个圆锥的底面圆周上,而EF 是'ABC 的中位线,所以点F 的轨迹在一个圆锥的底面圆周上,但此圆的圆心不是点E ,故B 不正确.当BH ⊥平面'ADC 时,BH DH ⊥.因为'3HC B π∠=,所以'''2DC BC C H ==,所以'3DH C H =,故C 正确.在翻折的过程中,'BC D 的面积不变,所以当AD ⊥平面'BDC 时,四面体'C ABD -的体积取得最大值,故D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 一条与直线x -2y +3=0平行且距离大于5的直线方程为_______________.【答案】290x y -+=(答案不唯一) 【解析】【分析】由平行关系设出直线方程,再由距离公式求出b 的范围,进而得出其方程. 【详解】设该直线方程为20x y b -+=由距离公式可知55>,解得2b <-或8b >则该直线可为290x y -+=故答案为:290x y -+=(答案不唯一)14. 若向量,a b 满足()4,22,8a b a b a ==+⋅=,则,a b 的夹角为____,a b += _____.【答案】 (1). 34π(2). 22【解析】【分析】利用向量运算求得cos ,a b ,由此求得,a b ;利用()2a b a b +=+来求得结果.【详解】依题意()8a b a +⋅=,22cos ,8a a b a a b a b +⋅=+⋅⋅=,解得2cos ,2a b =-,所以3,4a b π=. ()2222222cos ,22a b a b a a b b a a b a b b +=+=+⋅+=+⋅⋅+=.故答案为:34π;2215. 若某商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x2 4 5 6 8 y2040607080根据上表,利用最小二乘法求得y 关于x 的回归直线方程为y =b x +1.5,据此预测,当投人10万元时,销售额的估计值为________万元. 【答案】106.5 【解析】【分析】先求出,x y 得到10.5b =,即得解. 【详解】由题得1(24568)5,5x =++++= 1(2040607080)545y =++++=,所以54=5b +1.5,所以10.5b =, 所以y =10.5x +1.5,当10x =时,10.510 1.5106.5y =⨯+=. 故答案为:106.5【点睛】结论点睛:回归方程经过样本中心点(,)x y ,注意灵活运用这个性质解题.16. 已知y =f (x )的图象关于坐标原点对称,且对任意的x ∈R ,f (x +2)=f (-x )恒成立,当10x -≤<时,f (x )=2x ,则f (2021)=_____________. 【答案】12- 【解析】【分析】由已知条件推出函数()f x 的周期,利用函数的周期和奇偶性求值即可. 【详解】y =f (x )的图象关于坐标原点对称,则()()f x f x =--又()()2f x f x +=-,可得()()()22f x f x f x +=-=-,即()f x 的周期为4()()()()1202145051112f f f f =⨯+==--=-故答案为:12-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .【答案】(1)cos 4ADB ∠=;(2)CD =【解析】【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD .【详解】(1)ABD △中,sin sin AB BD ADB BAD =∠∠,即2sin 2ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos 4ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅222424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =18. 已知数列{a n }满足1223n n n a a a ++=-,a 2-a 1=1. (1)证明:数列{}1n n a a +-是等比数列; (2)若a 1=12,求数列{a n }的通项公式. 【答案】(1)证明见解析;(2)1122n n a -=-. 【解析】【分析】(1)利用()2112n n n n a a a a +++-=-证得结论成立. (2)利用累加法求得{}n a 的通项公式.【详解】(1)依题意1223n n n a a a ++=-,所以()2112n n n n a a a a +++-=-,故数列{}1n n a a +-是首项为211a a -=,公比为2的等比数列,所以112n n n a a -+-=. (2)由(1)得112n n n a a -+-=,所以()2122n n n a a n ---=≥,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+23012222n n --=++++11121121222n n ---=+=--. 即1122n n a -=-. 19. 如图,平面ABCD ⊥平面ABE ,AD //BC ,BC ⊥AB ,AB =BC =2AE =2,F 为CE 上一点,且BF ⊥平面ACE .(1)证明:AE ⊥平面BCE ;(2)若平面ABE 与平面CDE 所成锐二面角为60°,求AD . 【答案】(1)见解析;(2)15【解析】【分析】(1)由平面ABCD ⊥平面ABE 证明BC ⊥面ABE ,得到BC ⊥AE ,由BF ⊥平面ACE ,得到BF ⊥AE ,从而证明AE ⊥平面BCE .(2)过A 作Ax 垂直AB ,以Ax 为x 轴正方向,以AB 为y 轴正方向,以AD 为z 轴正方向,建立直角坐标系,用向量法计算可得.【详解】(1)∵平面ABCD ⊥平面ABE ,AB 为平面ABCD 和平面ABE 的交线,BC ⊥AB , ∴BC ⊥面ABE ,∴BC ⊥AE. 又BF ⊥平面ACE ,∴BF ⊥AE . 又BCBF B =,∴AE ⊥平面BCE .(2)如图示,过A 作Ax 垂直AB ,以Ax 为x 轴正方向,以AB 为y 轴正方向,以AD 为z 轴正方向,建立空间直角坐标系,则()()()()10,0,0,0,2,0,,0,0,2,2,0,0,,22A B E C D m ⎛⎫⎪ ⎪⎝⎭∴()33,,2,0,2,222CE CD m ⎛⎫=-=-- ⎪ ⎪⎝⎭设(),,m x y z=为平面CDE 的一个法向量,则·0·0m CE m CD ⎧=⎨=⎩,即()32020220x y z x y m z ⎧++=⎪⎨⎪⨯-+-=⎩, 不妨取z =2,则3,2,23m m m ⎛⎫=+- ⎪ ⎪⎭显然平面ABE 的一个法向量()0,0,2n BC ==∴cos ,cos60m n m n m n===⨯⎛,解得:m =3. 故AD 长为3. 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.20. 某校针对高一学生安排社团活动,周一至周五每天安排一项活动,活动安排表如下: 要求每位学生选择其中的三项,学生甲决定选择篮球,不选择书法;乙和丙无特殊情况,任选三项. (1)求甲选排球且乙未选排球的概率;(2)用X 表示甲、乙、丙三人选择排球的人数之和,求X 的分布列和数学期望. 【答案】(1)415;(2)分布列见解析,2815【解析】【分析】(1)设事件,分别求出甲、乙同学选排球的概率,由相互独立事件同时发生的概率,即可得出结果.(2)求出丙同学选排球的概率,X 的可能取值为0,1,2,3,分别求出概率,进而可得结果. 【详解】(1)设A 表示事件“甲同学选排球” B 表示事件“乙同学选排球”则1224233523(),()35C C P A P B C C ====因为事件A ,B 相互独立,所以甲同学选排球且乙同学未选排球的概率为:234()()()(1)3515==⨯-=P AB P A P B(2)设C 表示事件“丙同学选排球”,则24353()5C P C C ==X 的可能取值为0,1,2,3则2334(0)(1)(1)(1)35575==-⨯-⨯-=p X ;2332332334(1)(1)(1)+(1)(1)+(1)(1)35535535515==⨯-⨯--⨯⨯--⨯-⨯=p X23323323311(2)(1)+(1)+(1)35535535525==⨯⨯--⨯⨯⨯-⨯=p X 2336(3)35525==⨯⨯=p X X 的分布列为数学期望为()01237525252515=⨯+⨯+⨯+⨯=E X 21. 已知双曲线C : 2222x y a b-=1(a ,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),其中c >0, M (c ,3)在C 上,且C 的离心率为2. (1)求C 的标准方程;(2)若O 为坐标原点,∠F 1MF 2的角平分线l 与曲线D : 2222x y c b+=1的交点为P ,Q ,试判断OP 与OQ是否垂直,并说明理由.【答案】(1)2213y x -=;(2)OP 与OQ 不垂直,答案见解析.【解析】【分析】(1)利用点在曲线上和离心率,解出,,a b c,进而得出双曲线方程;(2)利用角平分线定理求出N点坐标,联立直线MN与曲线D的方程,由根与系数的关系,结合平面向量的数量积得出结论.【详解】(1)由题意得222912cabca⎧-=⎪⎪⎨⎪=⎪⎩,即2941b-=,解得3b=,又222c a b=+,可得1,2a c==,故双曲线C的标准方程为2213yx-=;(2)设角平分线与x轴交于点N,根据角平分线性质可得1122F N MFNF MF=,()2,3M,1122515,3,,,032F NF M F M NF N⎛⎫∴===∴ ⎪⎝⎭,1:2212MN y x x⎛⎫=-=-⎪⎝⎭设()()1122,,,P x y Q x y,联立方程2221143y xx y=-⎧⎪⎨+=⎪⎩,可得2191680x x--=12121619819x xx x⎧+=⎪⎪∴⎨⎪=-⎪⎩,()()()121212122121421y y x x x x x x=--=-++()1212121281652152101919OP OQ x x y y x x x x⎛⎫∴⋅=+=-++=⨯--⨯+≠⎪⎝⎭即OP与OQ不垂直.【点睛】关键点点睛:本题考查双曲线的标准方程,考查直线与椭圆的位置关系,考查平面向量的数量积,解决本题的关键点是利用角平分线定理求出∠F1MF2的角平分线与x轴交点N,利用直线与曲线方程联立写出根与系数的关系,借助于平面向量的数量积得出结论,考查学生逻辑思维能力和计算能力,属于中档题.22. 已知函数f (x )=e x ,g (x )=2ax +1.(1)若f (x )≥g (x )恒成立,求a 的取值集合;(2)若a >0,且方程f (x )-g (x )=0有两个不同的根x 1,x 2,证明:122x x +<ln 2a . 【答案】(1)12⎫⎧⎨⎬⎩⎭;(2)见解析 【解析】【分析】(1)构造函数()()()21xu x f x g x e ax =-=--,求导,分类讨论得函数最值即可求解;(2)由题意得12122121x x e ax e ax ⎧=+⎨=+⎩,21212x x e e a x x -=-,等价证明()21212211x x x x x x e e --⎡⎤-<-⎣⎦,令2102x x t -=>,构造函数()212t t g t e te =--求导证明即可【详解】(1)令()()()21xu x f x g x e ax =-=--,()'2xu x e a =-当0,a ≤ ()'0u x >恒成立,()u x 在R 上单调递增,()00u =,当0x < ()0u x <不合题意,故舍去当0,a > ()'0u x =则()ln 2x a =,故当()ln 2,x a < ()'0u x <,()u x 单调递减;当()ln 2,x a >()'0u x >;()u x 单调递增,故()()()()max ln 222ln 210u x u a a a a ==--≥令()()'ln 1,ln 0,1h x x x x h x x x =--∴=-==,故()h x 在()0,1 递增,在()1,+∞递减,故()()10,h x h ≤=即()ln 10,h x x x x =--≤即()22ln 21a a a --0≤,故21a =即12a =故a 的取值集合为12⎫⎧⎨⎬⎩⎭(2)方程f (x )-g (x )=0有两个不同的根x 1,x 2不妨令x 1<x 2,1212121221221x x x x e ax e e a x x e ax ⎧=+-∴∴=⎨-=+⎩ , 若证122x x+<ln 2a .即证()()1212212121212222121211x x x x x x x x x x x x e e ex x e e e x x e e x x ++---⎡⎤<⇔-<-⇔-<-⎣⎦- 令2102x x t-=>,即证212t t e te ->,令()()()2'12,21ttttg t e te g t e e t =--=--因为1t e t >+,故()'0g t >,故()g t 单调递增,()()00g t g >=得证【点睛】本题关键是利用12122121xxe axe ax⎧=+⎨=+⎩,21212x xe eax x-=-,等价证明()21212211x xx xx x e e--⎡⎤-<-⎣⎦,构造函数证明。
2021年普通高中学业水平考试 科合格性考试数学仿真模拟卷07(考试时间为90分钟,试卷满分为150分)一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.已知234x -=,则x 等于( ) A .±18 B .±8C .344D .±232 1.【解析】由题意,可知234x-=,可得13x 2=4,即3x 2=14,所以x 2=164,解得x =±18.故选A .【答案】A2.若集合M ={-1,1},N ={-2,1,0},则M ∩N =( ) A .{0,-1} B .{0} C .{1} D .{-1,1} 2.【解析】M ∩N ={1},故选C . 【答案】C3.已知f (x )、g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .33.【解析】本题考查函数的奇偶性.令x =-1可得f (-1)-g (-1)=1⇒f (1)+g (1)=1,故选C . 【答案】C4.直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于( )A .2 5B .2 3C . 3D .14.【解析】利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+(3)2=1,半径r =2,∴弦长|AB |=2r 2-d 2=222-12=2 3.【答案】B5.函数f (x )=2x +1的定义域是( )A .⎝⎛⎦⎤-∞,-12B .⎣⎡⎭⎫-12,+∞C .⎝⎛⎦⎤-∞,12 D .(-∞,+∞) 5.【解析】由2x +1≥0,解得x ≥-12,故选B . 【答案】B6.已知向量a =(1,x ),b =(-1,x ),若2a -b 与b 垂直,则|a |=( ) A . 2 B . 3 C .2 D .46.【解析】(2a -b )·b =(3,x )·(-1,x )=x 2-3=0, ∴x =±3,∴|a |=2. 【答案】C7.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b7.【解析】∵a +b >0,b <0,∴a >-b >0.∴-a <0,b >-A . ∴-a <b <0<-b <A . 【答案】C8.函数y =2cos 2⎝⎛⎭⎫x -π4-1的是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数8.【解析】因为y =2cos 2⎝⎛⎭⎫x -π4-1=cos 2⎝⎛⎭⎫x -π4=sin 2x ,所以T =2π2=π,且为奇函数,故选A .【答案】A9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A .7B .8C .9D .149.【解析】由不等式组,作出可行域如下: 在点A (2,3)处,z =3x +y 取最大值为9. 【答案】C10.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-710.【解析】利用等比数列的通项公式求解.由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, ∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7. 【答案】D11.当x >0时,下列不等式正确的是( ) A .x +4x ≥4 B .x +4x ≤4 C .x +4x ≥8 D .x +4x ≤8 11.【解析】由均值不等式可知,当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时取“=”,故选A .【答案】A12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、C .已知a =5,c =2,cos A =23,则b =( ) A . 2 B . 3 C .2 D .312.【解析】由余弦定理得cos A =b 2+c 2-a 22bc =b 2+22-524b =23,∴b =3,答案选D . 【答案】D13.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A .15 B .25 C .825 D .92513.【解析】从5人中选2人共有10种选法,其中有甲的有4种选法,所以概率为410=25. 【答案】B14.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为( ) A .七尺五寸B .六尺五寸C .五尺五寸D .四尺五寸14.【解析】由已知结合等差数列的通项公式及求和公式即可直接求解. 从冬至日起,日影长构成数列{a n },则数列{a n }是等差数列,则a 5+a 6+a 7+a 8=32,S 7所以解可得,a 1=,d =﹣1.故a 10=【答案】D .15.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值为( )A .1B .2C .3D .415.【解析】在平面直角坐标系中,作出变量x ,y 的约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0表示的平面区域如图中阴影部分所示.由图可知,当z =2x +y 过点B (2,0)时,z 最大,所以z max =4,所以z =2x +y 的最大值4.故选D . 【答案】D二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上) 16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 16.【解析】f (3)=-f (-3)=-log 24=-2. 【答案】-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________. 17.【解析】设所求直线l 的方程为x a +yb =1,由已知可得⎩⎨⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求. 【答案】2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.18.【解析】由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970. 【答案】97019.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.19.【解析】由已知两相邻最高点和最低点的距离为22,由勾股定理可得T2=(22)2-22,∴T =4,∴ω=α2.【答案】α2三、解答题(本大题共3小题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤) 20.(12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .20.解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N *). (2)S n =2(12)12n --+n ×1+(1)2n n -×2=2n +1+n 2-2. 21.(12分)如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB =BC =1,PA ⊥平面ABCD ,CD ⊥PC , (1)证明:CD ⊥平面PAC ;(2)若E 为AD 的中点,求证:CE ∥平面PAB . 21.证明:(1)∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又CD ⊥PC ,PA ∩PC =P , ∴CD ⊥平面PAC .(2)∵AD ∥BC ,AB ⊥BC ,AB =BC =1, ∴∠BAC =45°,∠CAD =45°,AC = 2.∵CD ⊥平面PAC ,∴CD ⊥CA ,∴AD =2.又E 为AD 的中点,∴AE =BC =1,∴四边形ABCE 是正方形, ∴CE ∥AB .又AB ⊂平面PAB ,CE ⊄平面PAB , ∴CE ∥平面PAB . 22.(12分)如图是半径为1m 的水车截面图,在它的边缘(圆周)上有一定点P ,按逆时针方向以角速度rad /s π(每秒绕圆心转动rad 3π)作圆周运动,已知点P 的初始位置为0P ,且06xOP π∠=,设点P 的纵坐标y 是转动时间t (单位:s )的函数,记为()y f t =.(1) 求()30,2f f ⎛⎫⎪⎝⎭的值,并写出函数()y f t =的解析式; (2) 选用恰当的方法作出函数()f t ,06t ≤≤的简图; (3) 试比较13131,,345f f f ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的大小(直接给出大小关系,不用说明理由). 22.解:(1)()10sin62f π==,()32sin cos 23662f πππ⎛⎫=⨯+== ⎪⎝⎭, ()sin 36y f t t ππ⎛⎫==+ ⎪⎝⎭,0t ≥.(2)用“五点法”作图,列表得:描点画图:说明:的变化过程也可给满分.(3) 13131345f f f ⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.。
广东省2021年普通高中学业水平考试数学试题一、单选题1.设全集U ={}12345,,,,,A ={}12,,则UA =( )A .{} 12345,,,, B .{} 2345,,, C .{} 345,, D .{} 34,【答案】C【分析】根据补集的定义计算可得;【详解】解:因为{}12345U =,,,,,{}12A =, 所以{}U3,4,5A =故选:C2.已知π1cos α 22⎛⎫-= ⎪⎝⎭ ,则sin α= ( )A .12 B .-12C .32D .-32【答案】A【分析】直接利用诱导公式计算可得; 【详解】解:因为π1cos α 22⎛⎫-= ⎪⎝⎭所以1sin α 2=故选:A3.下列函数为偶函数的是( ) A .()1f x x =+ B .()221x f x x+=C .()3f x x = D .()sin f x x =【答案】B【分析】根据偶函数的定义判断即可;【详解】解:对于A :()1f x x =+为非奇非偶函数,故A 错误;对于B :()221x f x x +=定义域为{}|0x x ≠,且()()()()221x f x f x x +--==-,所以()221x f x x+=为偶函数,故B 正确;对于C :()3f x x =定义域为R ,且()()()3f x x f x -=-=-,所以()3f x x =为奇函数,故C 错误;对于D :()sin f x x =为奇函数,故D 错误; 故选:B4.已知a =0.23,b =0.32,c =0.33,则a ,b ,c 的大小关系是( ) A .a <c <b B .b <a <cC .c <a <bD .a <b <c【答案】A【分析】根据指数函数、幂函数的性质判断可得;【详解】解:因为0.3x y =在定义域上单调递减,所以230.30.3>,又3y x =在定义域上单调递增,所以330.30.2>,所以2330.30.30.2>>,即b c a >> 故选:A5.经过点(1,6),(0,2)A B -的直线的方程是( ) A .420x y --= B .420x y --=C .420x y +-=D .420x y +-=【答案】D【分析】根据直线经过两点,利用直线的两点式方程求解即可. 【详解】因为直线经过点(1,6),(0,2)A B -, 利用两点式得直线的方程为206210y x --=---, 整理得:420x y +-=. 故选:D.6.连续抛掷两枚骰子,向上点数之和为6的概率为( ) A .112B .111C .536 D .16【答案】C【分析】基本事件总数6636n =⨯=,利用列举法求出向上的点数之和为6包含的基本事件有5个,由此能求出向上的点数之和为6的概率. 【详解】解:连续抛掷两枚骰子, 基本事件总数6636n =⨯=,向上的点数之和为6包含的基本事件有: (1,5),(2,4),(3,3),(4,2),(5,1),共5个,∴向上的点数之和为6的概率是536P =. 故选:C .7.下列函数在其定义域内为减函数的是( )A .()3f x x =B .()112f x x =+C .()3log f x x =D .()13xf x ⎛⎫= ⎪⎝⎭【答案】D【分析】根据幂指对函数和一次函数的性质进行判定.【详解】由幂函数的性质,可知A 中函数为单调增函数,由一次函数性质可知B 中函数为增函数,由对数函数性质可知C 中函数为增函数,由指数函数性质,可知D 中函数为单调减函数, 故选:D.8.已知直线a ,b 与平面α,若a 平行α,b 在α内,则下列结论正确的是( ) A .//a b B .a 与b 是异面直线 C .a b ⊥D .以上情况都有可能 【答案】D【分析】根据线面平行的性质判断可得;【详解】解:因为//a α,b α⊂,则//a b ,或a 与b 是异面直线或a b ⊥, 故选:D9.不等式4-x 2≤0的解集为( ) A .{}|22x x -≤≤ B .{2x x ≤-或}2x ≥ C .{}|44x x -≤≤ D .{4x x ≤-或}4x ≥【答案】B【分析】根据一元二次不等式的求解方法直接求解即可.【详解】不等式240x -≤即()()220x x -+≥,解得2x -≤或2x ≥, 故不等式的解集为{2x x ≤-或}2x ≥. 故选:B.10.下列计算正确的是( ) A .52×5-2=0B .5225⎛⎫ ⎪⎝⎭= 1C .lg 2+lg 5=lg 7D .32log 81=【答案】D【分析】根据指数幂及对数的运算法则计算可得;【详解】解:225551-⨯==,故A 错误;0125⎛ ⎪⎝⎭=⎫,故B 错误;()lg2lg5lg 25lg101+=⨯==,故C 错误;322log 8log 21==,故D 正确;故选:D11.圆心在C (4,-3),且与直线4x -3y =0相切的圆的方程为( ) A .x 2+y 2+8x +6y =0 B .x 2+y 2+8x -6y =0 C .x 2+y 2-8x +6y =0 D .x 2+y 2-8x -6y =0【答案】C【分析】求出圆心到直线的距离,即圆的半径,即可求出方程. 【详解】由题可得圆的半径为圆心到直线的距离,即()()224433543r ⨯-⨯-==+-,所以圆的方程为()()224325x y -++=,即22860x y x y +-+=. 故选:C.12.如图是表示某班6名学生期末数学考试成绩的茎叶图,则这6名学生的平均成绩为( )A .87B .86C .85.5D .85【答案】A【分析】利用平均数公式求得平均成绩. 【详解】解:这6名学生的平均成绩为()1768585869397876x =+++++=, 故选:A.13.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏【答案】B【详解】设塔顶的a 1盏灯,由题意{a n }是公比为2的等比数列, ∴S 7=()711212a --=381,解得a 1=3. 故选B .14.为了得到sin()3y x π=-的图象,只需把函数sin y x =的图象上的所有点( )A .向右平行移动3π个单位长度 B .向左平行移动3π个单位长度 C .向右平行移动6π个单位长度D .向左平行移动6π个单位长度【答案】A【分析】根据函数图象平移“左加右减”的原则,结合平移前后函数的解析式,可得答案. 【详解】解:由已知中平移前函数解析式为sin y x =,平移后函数解析式为:sin()3y x π=-,可得平移量为向右平行移动3π个单位长度, 故选:A .15.已知a >0,b >0,a +b =1,1 a+2b 的最小值是( )A .10 3B .6C . 3+D .【答案】C【分析】利用1的代换,整理后利用基本不等式求最小值.【详解】1a +2b =()12233a b a b a b b a ⎛⎫++=++≥+ ⎪⎝⎭当且仅当1b a b ⎧=⎪⎨+=⎪⎩,即12a b ⎧=⎪⎨=⎪⎩故选:C.二、填空题16.已知向量(2,),(1,2)a m b →→==-,若a →与b →共线,则m = ______. 【答案】4-【分析】利用向量共线的坐标表示列出方程求解即可. 【详解】因为向量(2,),(1,2)a m b →→==-,且a →与b →共线,所以2(2)10m ⨯--⨯=, 解得:4m =-, 故答案为:4-.17.设tan 2θ=,则tan 4πθ⎛⎫+= ⎪⎝⎭________.【答案】3-【分析】直接利用两角和的正切公式求出tan 4πθ⎛⎫+ ⎪⎝⎭的值.【详解】tan 121tan 341tan 12πθθθ++⎛⎫+===- ⎪--⎝⎭. 故答案为:3-.【点睛】本题考查两角和的正切公式,属于基础题.18.在等差数列{}n a 中,已知a 3=6,a 5=a 2+9,则a 6 = ________. 【答案】15【分析】设出公差,根据已知建立首项公差方程即可求出. 【详解】设等差数列的公差为d , 3526,9a a a ==+,1112649a d a d a d ∴+=⎧⎨+=++⎩,解得10,3a d ==, 605315a ∴=+⨯=.故答案为:15.19.已知函数()220log 0x x f x x x ⎧≤=⎨>⎩,,;设()2f a -=,则()f a = _______.【答案】2-【分析】利用指数幂运算求得a 的值,进而利用对数运算求得结果.【详解】()21224a f -=-==, ()211log 244f a f ⎛⎫===- ⎪⎝⎭,故答案为:2-三、解答题20.食品安全问题越来越引起人们的重视,为了给消费者提供放心的蔬菜,某农村合作社搭建了两个无公害蔬菜大棚,分别种植西红柿和黄瓜,根据以往的种植经验,发现种植西红柿的年利润P (单位:万元),种植黄瓜的年利润Q (单位:万元)与投入的资金x (4≤x ≤16,单位:万元)满足P =42x + 8,Q =1124x +.现合作社共筹集了20万元,将其中8万元投入种植西红柿,剩余资金投入种植黄瓜.求这两个大棚的年利润总和. 【答案】39(万元)【分析】分别代入数据计算P 、Q ,然后求和即得 【详解】P =428824⨯+=,Q =()120812154⨯-+=,P +Q =24+15=39(万元).这两个大棚的年利润总和为39(万元).21.如图,在△ABC 中,∠A =30°,D 是边AB 上的点,CD =5,CB =7,DB =3(1)求△CBD 的面积; (2)求边AC 的长. 【答案】(1153;(2)53【分析】(1)由余弦定理求得cos B ,即可得出sin B ,再由面积公式即可求解; (2)由正弦定理即可求解.【详解】(1)在CBD 中,由余弦定理可得22237511cos 23714B +-==⨯⨯, 则253sin 1cos B B =-=, 153153372CBDS=⨯⨯=; (2)在ABC 中,由正弦定理得sin sin BC ACA B=, 即715323AC =22.如图,在四棱锥P -ABCD 中,底边ABCD 是边长为2的菱形,PA =AC =2,PA ⊥平面ABC ,E ,F 分别为PD ,BC 的中点.(1)求三棱锥P-ABD的体积;(2)证明:EF∥平面PAB(参考公式:锥体的体积公式为V= 13Sh,其中S是锥体的底面积,h是锥体的高)【答案】(123(2)证明见详解;【分析】(1)首先计算三棱锥的底面面积,根据三棱锥的体积公式求解即可;(2)根据线面平行的判定定理证明即可;【详解】(1)因为在四棱锥P-ABCD中,底边ABCD是边长为2的菱形,且AC=2,所以23BD=则1112233 244ABD ABCDS S AC BD==⨯⨯=⨯⨯,又P A⊥平面ABC,所以11232333P ABD ABDV PA S-=⨯⨯=⨯(2)取线段P A中点H,连接HE,BH, 因为E,F分别为PD,BC的中点,所以1//2HE AD,1//2BF AD,则//HE BF,所以四边形HEFB为平行四边形,所以//EF BH,又EF⊄面PAB,BH⊂面PAB,所以//EF面PAB.。
★启用前注意保密2021年普通高等学校招生全国统一考试模拟测试(一)数学本试卷共5页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的市(县、区)、学校、班级、姓名、考场号、座位号和考生号填写在答题卡上。
将条形码横贴在每张答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写 上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合M={x|-7<3x-1<2},N={x|x+1>0},则M ∪N=A.(-2,+∞)B. (-1,1)C.(-∞,1)D.(-1,+∞) 2.若复数z 满足(z-1)(1+i)=2-2i,则|z|=3.已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则f(2e)= A. 2e 2 B. 2e C. 1+ln2 D. 21n 24.函数f(x)=cos 2x+6cos(2π-x)(x ∈[0, 2π])的最大值为 A.4 B.5 C.6 D.75.已知数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前10项和等于 A. 1023 B.55 C.45 D.356.已知a,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是A. ab 的最小值是1B.ab 的最大值是1C. 11a b +的最小值是92D. 11a b +的最大值是927.《算数书》是我国现存最早的系统性数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V 的近似公式V≈2136L h .用该术可求得圆率π的近似值。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年广东省普通高中学业水平考试 数学科合格性考试模拟题(08)(考试时间为90分钟,试卷满分为150分)一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.已知集合A ={1,2},B ={1,m,3},如果A ∩B =A ,那么实数m 等于( )A .-1B .0C .2D .41.C 解析:∵A ∩B =A ,∴A ⊆B .∵A ={1,2},B ={1,m,3},∴m =2.2.下列函数中,与函数y =1x 定义域相同的函数为( ) A .y =1xB .y =xC .y =x -2D .y =ln x 解析:函数y =1x的定义域是(0,+∞),A 中的定义域是{x |x ≠0},B 中的定义域是{x |x ≥0},C 中的定义域是{x |x ≠0},D 中的定义域是(0,+∞),故选D .3.分别和两条异面直线平行的两条直线的位置关系是( )A .一定平行B .一定相交C .一定异面D .相交或异面3.D 解析:可能相交也可能异面,但一定不平行(否则与条件矛盾).4. cos 275°+cos 215°+cos 75°cos 15°的值等于( )A .62 B .32C .54D .1+344.C 解析:原式=sin 215°+cos 215°+sin 15°cos 15°=1+12 sin 30°=54. 5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( )A .π6B .π3C .2π3D .5π6解析:因为k =tan α=-3,α∈[0,π),所以α=2π3. 6.已知0<a <b <1,则下列不等式成立的是( )A .a 3>b 3B .1a <1bC .a b >1D .lg(b -a )<06.D 解析:由0<a <b <1,可得a 3<b 3,A 错误;1a >1b,B 错误;a b <1,C 错误;0<b -a <1,lg(b -a )<0,D 正确.7.已知a =(-2,2),b =(x ,-3),若a ⊥b ,则x 的值为( )A .3B .1C .-1D .-3解析:a ·b =-2x -6=0,解得x =-3.8.在同一直角坐标系xOy 中,函数y =cos x 与y =-cos x 的图象之间的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于直线y =-x 对称解析:由于当自变量相同时,它们的函数值相反,故它们的图象关于x 轴对称,故选A .9.三个数a 2,b =log 2c =2之间的大小关系是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a解析:易知0<a <1,b <0,c >1,故c >a >b .10.在公差不为0的等差数列{a n }中,a 1,a 3,a 7成等比数列,前7项和为35,则数列{a n }的通项a n 等于( )A .nB .n +1C .2n -1D .2n +1解析:S 7=12×7×(a 1+a 7)=7a 4=35,故a 4=5,又a 23=a 1a 7,即(5-d )2=(5-3d )(5+3d ),即d =1,故a n =a 4+(n -4)d =n +1.11.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y +5≥0,x -y ≤0,y ≤0,则z =2x +4y +1的最小值是( )A .-14B .1C .-5D .-9 解析:作出不等式组⎩⎪⎨⎪⎧ x +y +5≥0x -y ≤0y ≤0表示的平面区域,如图所示的阴影部分由z =2x +4y +1可得y =-12x +z 4-14,则z 4-14表示直线y =-12x +z 4-14在y 轴上的截距,截距越小,z 越小,由题意可得,当y =-12x +z 4-14经过点A 时,z 最小,由⎩⎪⎨⎪⎧x +y +5=0x -y =0,可得A ⎝⎛⎭⎫-52,-52,此时z =-2×52-4×52+1=-14,故选A . 12.圆心为(1,2)且过原点的圆的方程是( )A .(x -1)2+(y -2)2=2B .(x +1)2+(y +2)2=2C .(x -1)2+(y -2)2=5D .(x +1)2+(y +2)2=5解析:r 2=(1-0)2+(2-0)2=5,故圆的方程为(x -1)2+(y -2)2=5.13.当x >4时,不等式x +4x -4≥m 恒成立,则m 的取值范围是( ) A .m ≥8B .m >8C .m ≤8D .m <8解析:x +4x -4=⎝⎛⎭⎫x -4+4x -4+4≥424)44x x -⋅+-(=8,故m ≤8.14.已知函数f (x )是奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( ) A .-2B .0C .1D .2 解析:f (1)=12+1=2,f (-1)=-f (1)=-2.15.某学校举办校园演讲大赛,如图为七位评委为某选手打出的分数的茎叶统计图,要求去掉一个最高分和一个最低分点,求出所剩数据的平均数和方差为( )C .85,4解析:平均数x -=84+84+84+86+875=85,方差为15[(84-85)2+(84-85)2+(84-85)2+(86-85)2+(87-85)2二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上)16.设正方体的表面积为24,那么其外接球的体积是________.16.43π解析:设正方体的棱长为a ,则由题意可知,6a 2=24,∴a =2.设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π. 17.函数f (x )=12-cos 2⎝⎛⎭⎫π4-x 的单调递增区间是________.17.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) 解析:f (x )=12-cos 2⎝⎛⎭⎫π4-x =12-1+cos ⎝⎛⎭⎫π2-2x 2=-12sin 2x ,即求12sin 2x 的单调递减区间.∵2k π+π2≤2x ≤2k π+3π2(k ∈Z ), ∴k π+π4≤x ≤k π+3π4(k ∈Z ). 18.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为________.18.25解析:基本事件:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个,其中第一张大于第二张的有10个,所以P =1025=25. 19.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378 里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了 6 天后到达目的地.”则该人最后一天走的路程为________.19.6解析:记每天走的路程里数为{a n },易知{a n }是公比21=q 的等比数列,S 6=378,S 6=211)211(61--a =378∴ a 1=192,a 6=192×521=6. 三、解答题(本大题共3小题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2a sin B cos A -b sin A =0,(1)求A ;(2)当sin B +3sin ⎝⎛⎭⎫C -π6取得最大值时,试判断△ABC 的形状.20.解 (1)由正弦定理a sin A =b sin B得a sin B =b sin A ≠0, 又2a sin B cos A -b sin A =0,∴2cos A =1,即cos A =12,∵0<A <π,∴A =π3. (2)∵A =π3,∴B =2π3-C , ∴sin ⎝⎛⎭⎫2π3-C +3sin ⎝⎛⎭⎫C -π6=32cos C +12sin C +3⎝⎛⎭⎫32sin C -12cos C =2sin C , ∵0<C <2π3,∴当C =π2时,取得最大值, ∴△ABC 是直角三角形.21.(12分)如图,在底面是矩形的四棱锥P ABCD 中,P A ⊥平面ABCD ,P A =AB ,E 是PD 的中点.求证:(1)PB ∥平面EAC ;(2)平面PDC ⊥平面P AD .21.证明 (1)连接BD 交AC 于O ,连接EO ,则EO 是△PBD 的中位线,∴EO ∥PB .又PB ⊄平面EAC ,EO ⊂平面EAC ,∴PB ∥平面EAC .(2)∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD .∵四边形ABCD 是矩形,∴AD ⊥CD .而P A ∩AD =A ,∴CD ⊥平面P AD .又CD ⊂平面PDC ,∴平面PDC ⊥平面P AD .22.(12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当020x <≤时,求函数()v x 的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.22..解:(1)设()v x ax b =+,当420x ≤≤时,由题意得:200a b +=,又因为42a b +=,解得18a =-,52b =, 函数()v x 的表达式为2,04,()15,420,.82x x N v x x x x N **⎧≤≤∈⎪=⎨-+≤≤∈⎪⎩ (2)22,04,()15,420,.82x x x N f x x vx x x x x N **⎧≤≤∈⎪=⋅=⎨-+≤≤∈⎪⎩ 当04x ≤≤时,max ()(4)8f x f ==;当420x ≤≤时,max 5252()()(10)122()8f x f f =-==⨯-. 综上所述,鱼的年生长量()f x 的最大值为252。
2021年广东省中考数学仿真模拟试卷(二)一、选择题(共10小题).1.﹣2021的倒数为()A.B.C.﹣2021D.20212.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列计算正确的是()A.=±3B.=2C.D.=24.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.126.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣27.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7 8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题4分,共28分)11.分解因式:a2b﹣ab=.12.若有意义,那么x满足的条件是.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为.14.计算:(π﹣2020)0﹣()﹣1=.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.19.解不等式组:,并在数轴上表示出不等式组的解集.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2021的倒数为()A.B.C.﹣2021D.2021【分析】直接利用倒数的定义分析得出答案.解:﹣2021的倒数为:﹣.故选:A.2.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000022=2.2×10﹣8.故选:D.3.下列计算正确的是()A.=±3B.=2C.D.=2【分析】根据算术平方根、立方根以及实数的平方的计算方法,逐项判断即可.解:∵=3,∴选项A不符合题意;∵=﹣2,∴选项B不符合题意;∵=5∴选项C不符合题意;∵=2,∴选项D符合题意.故选:D.4.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的横坐标和纵坐标,然后写出答案即可.解:∵点P在第四象限且到x轴的距离是1,到y轴的距离是4,∴点P的横坐标为4,纵坐标为﹣1,∴点P的坐标是(4,﹣1).故选:B.5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.12【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故选:D.6.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣2【分析】把x=2代入方2x﹣a=6得出4﹣a=6,求出方程的解即可.解:把x=2代入方程2x﹣a=6得:4﹣a=6,解得:a=﹣2,故选:D.7.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式即可.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.【分析】首先根据菱形的性质知AC垂直平分BD,再由Rt△ABO求出BO,即可求出BD 的长.解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAO=60°,∠ABO=30°,∴AO=AB=1,BO==,∴BD=2.故选:C.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°【分析】根据三角形内角和定理求出∠ABC,根据旋转得出∠EDA=∠ABC=120°,根据平行线的性质求出∠DAB即可.解:∵在△ABC中,∠BAC=45°,∠C=15°,∴∠ABC=180°﹣∠BAC﹣∠C═180°﹣45°﹣15°=120°,∵将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE,∴∠ADE=∠ABC=120°,∵DE∥AB,∴∠ADE+∠DAB=180°,∴∠DAB=180°﹣∠ADE=60°∴旋转角α的度数是60°,故选:C.10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④【分析】①抛物线对称轴在y轴右侧,则ab异号,而c>0,即可求解;②x=3时,y=9a+3b+c<0,即可求解;③由对称轴,和x=1时的函数值的符号即可求解;④根据图象即可求解.解:①抛物线对称轴在y轴右侧,则ab异号,而c>0,则abc<0,故结论正确;②由图象可知x=3时,y=9a+3b+c<0,故结论正确;③∵﹣=2,∴b=﹣4a,∵x=1时,y=a+b+c<0,∴﹣3a+c<0,∴a>,故结论正确;④若方程ax2+bx+c=0两个根x1和x2,由图象可知,0<x1<1,3<x2<4,∴则2<|x1﹣x2|<4,故结论错误;故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a2b﹣ab=ab(a﹣1).【分析】提取公因式ab,即可得出答案.解:原式=ab(a﹣1).故答案为:ab(a﹣1).12.若有意义,那么x满足的条件是x≤1.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.解:要使有意义,则1﹣x≥0,解得,x≤1,故答案为:x≤1.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为6.【分析】先根据中位数的概念列方程求出x的值,再由众数的定义即可得出答案.解:∵数据﹣2,0,4,x,6,8的中位数为5,∴=5,解得x=6,所以这组数据为﹣2,0,4,6,6,8,所以众数为6,故答案为:6.14.计算:(π﹣2020)0﹣()﹣1=﹣1.【分析】首先利用零次幂和负整数指数幂的性质进行计算,再算加减即可.解:原式=1﹣2=﹣1,故答案为:﹣1.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.【分析】如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,根据tan C=,求解即可.解:如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,tan C===,故答案为:.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.【分析】用大扇形的面积减去小扇形的面积得出阴影部分的面积.解:S阴影=﹣=π,故答案为π.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是a+b.【分析】根据等边三角形的性质AD⊥BC,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,根据等边三角形的性质即可得到结论.解:∵△ABC是等边三角形,点D是边BC的中点,∴AD⊥BC,∴点B,C关于AD对称,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,∵点E边AB的中点,∴CE⊥AB,∴CE=AD=b,∵BE=AB=a,∴△BEF的周长的最小值是a+b,故答案为:a+b.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.19.解不等式组:,并在数轴上表示出不等式组的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:由①解得x<4,由②解得x≥3,所以不等式组的解集为3≤x<4.解集在数轴上表示如下图:.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.【分析】(1)利用基本作图作CE平分∠BCD;(2)作EH⊥BC于H,如图,根据角平分线的性质得EH=ED=4,然后利用三角形面积公式计算即可.解:(1)如图,CE为所作;(2)作EH⊥BC于H,如图,∵CE平分∠BCD,ED⊥CD,EH⊥BC,∴EH=ED=4,∴△BCE的面积=×4×10=20.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为54°;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?解:(1)不合理,理由:因为调查的30名初中七年级学生全部来自同一所学校,样本不具有代表性;样本容量过小,不具有广泛性;(2)①360°×(1﹣20%﹣40%﹣25%)=360°×15%=54°,即图①中“D”所在扇形的圆心角为54°,故答案为:54°;②C等级的学生有200×25%=50(人),补全的条形统计图如右图所示;③6000×(20%+40%)=6000×60%=3600(人),即全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有3600人.22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.【分析】(1)欲证明BE=BE,只要证明∠4=∠5即可.(2)因为DF=BD﹣BF,只要求出BD,BF即可解决问题.【解答】(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠1+∠3=90°,∵∠ABC=90°∴∠2+∠5=90°,∵CE为∠ACB的角平分线,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴BE=BF.(2)解:在Rt△ABD中,∵∠A=300,AB=6,∴DB=3,在Rt△ACB中,∠A=300,AB=6∴BC=,在Rt△BCE中,∠2=30°,BC=,∴BE=2,∴BF=2,∴DF=BD﹣BF=3﹣2=1.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.解:(1)∵D(4,1)、E(2,n)在反比例函数y=的图象上,∴4=k,2n=k,∴k=4,n=2,∴反比例函数的解析式为y=;(2)如图1,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A==,∵D(4,1),E(2,2),EH=4﹣2=2,∴BH=1.∴B(4,3).设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得,解得:,因此直线AB的函数解析式为:y=x+1;(3)存在,如图2,作EF⊥BC于F,PH⊥BC于H,当△BED∽△BPC时,,∴=,∵BF=1,∴BH=,∴CH=,可得=x+1,x=1,点P的坐标为(1,);如图3,当△BED∽△BCP时,=,∵EF=2,BF=1,由勾股定理,BE=,∴=,∴BP=,∴,BF=1,BH=,∴CH=,可得=x+1,x=,点P的坐标为(,),点P的坐标为(1,);(,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.∴S△BCD=CD•BC=××3=3,即△CDB的面积是3.(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1 (舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3).。
2021年普通高中学业水平合格性考试数学仿真模拟卷(03)第一部分 选择题(每小题3分,共81分)在每小题列出的四个选项中,选出符合题目要求的一项 1. 集合{}22A x x =∈-<<Z 的子集个数为( ) A. 4 B. 6C. 7D. 8【答案】D【解析】解:∵{}{}221,0,1A x x =∈-<<=-Z ,∴集合A 的子集个数为328=个, 故选:D.2. 函数()11f x x =-的定义域是( ) A. ()(),11,-∞+∞B. [)2,-+∞C. [)()2,11,-⋃+∞D. ()1+∞, 【答案】C【解析】要使函数有意义,则2010x x +≥⎧⎨-≠⎩,即21x x ≥-⎧⎨≠⎩,即x ≥﹣2且x ≠1,即函数的定义域为[﹣2,1)∪(1,+∞), 故选C .3. cos24cos36sin 24cos54︒︒-︒︒的值等于( )A. 0B.12C.D. -12【答案】B【解析】原式1cos 24cos36sin 24sin 36cos602︒︒-︒︒=︒==. 故选:B.4. 已知()1,0a =,()2,1b =,向量ka b -与3a b +平行,则实数k 的值为( )A.117B. 117-C. 13-D.13【答案】C【解析】()()()1,02,12,1ka b k k -=-=--,即()()2,17,3k λ--=,∴1273,1313k k λλλ⎧=-⎪-=⎧⎪⇒⎨⎨-=⎩⎪=-⎪⎩. 故选:C.5. 在△ABC 中,2AB =,6C π=,则AC +的最大值为( )A.B.C.D. 【答案】D【解析】在△ABC 中,2AB =,6C π=,则4sin sin sin ===AB BC ACC A B, 所以4sin =BC A ,4sin =AC B .则54sin 4sin 6π⎛⎫+=+=-+ ⎪⎝⎭AC B A A A()2cos ϕ=+=+A A A ,(其中tan 9ϕ=) 因为506π<<A , 所以当()sin 1A ϕ+=时,AC +取得最大值故答案为:6. 已知点(2,1)A -和点B 关于直线:10l x y +-=对称,斜率为k 的直线m 过点A 交l 于点C ,若△ABC 的面积为2,则k 的值为( ) A. 3或13B. 0C.13D. 3【答案】B【解析】设点(,)B x y ,则11,22110,22y x x y -⎧=⎪⎪+⎨-+⎪+-=⎪⎩解得:0,3x y ==,则(0,3)B ,设直线m 的方程为:1(2)y k x -=+与方程:10l x y +-=联立,解得:231,11k k x y k k +=-=++,则231(,)11k k C k k +-++, 因为直线AB 的方程为:3yx,且||AB =点C 到直线AB的距离231|3|k k d +--+==所以12|1||1|02k k k ⋅=⇒-=+⇒=.故选:B.7. 设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A. 22(3)2x y -+=B. 22(3)8x y -+=C. 22(3)2x y ++=D. 22(3)8x y ++=【答案】A【解析】AB 的中点坐标为:()3,0,圆半径为22ABr ===, 圆方程为22(3)2x y -+=. 故选:A .8. 下列关于棱柱的说法中,错误的是( ) A. 三棱柱的底面为三角形 B. 一个棱柱至少有五个面C. 五棱柱有5条侧棱、5个侧面,侧面为平行四边形D. 若棱柱的底面边长相等,则它的各个侧面全等 【答案】D【解析】三棱柱的底面为三角形,所以A 正确; 因为三棱柱有五个面,所以棱柱至少有五个面,B 正确;五棱柱有5条侧棱、5个侧面,侧面为平行四边形,所以C 正确;若棱柱的底面边长相等,它的各个侧面为平行四边形,即边长对应相等,但夹角不一定相等,所以D 错误; 故选:D9. 圆心为(1,-1)且过原点的圆的一般方程是 A. 222210x y x y ++-+=B. 222210x y x y +-++=C. 22220x y x y ++-=D. 22220x y x y +-+=【答案】D【解析】根据题意,要求圆的圆心为(1,1)-,且过原点,且其半径r ==,则其标准方程为22(1)(1)2x y -++=,变形可得其一般方程是22220x y x y +-+=, 故选D .10. 与直线3450x y -+=关于坐标原点对称的直线方程为( )A. 3450x y +-=B. 3450x y ++=C. 3450x y -+=D. 3450x y --=【答案】D【解析】设所求对称直线上任意一点的坐标为(),x y ,则关于原点对称点的坐标为(),x y --,该点在已知的直线上,则3450x y -++=,即3450x y --=.故选:D.11. 在平面直角坐标系中,O 为坐标原点,3122OA ⎛⎫= ⎪ ⎪⎝⎭,若OA 绕点O 逆时针旋转60°得到向量OB ,则OB =( ) A. (0,1)B. (1,0)C. ,221⎛⎫- ⎪ ⎪⎝⎭D. 1,22⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】3122OA ⎛⎫= ⎪ ⎪⎝⎭OA ∴与x 轴夹角为30 OB ∴与x 轴夹角为90又1OB OA == ()0,1OB ∴= 故选:A12. 已知直线l 过点(1,2),且在横坐标与纵坐标上的截距的绝对值相等的直线方程不可以是下列( )选项. A. 2x -y =0 B. x +y =3C. x -2y =0D. x -y +1=0【答案】C【解析】解:由题意设所求直线的横截距为a ,(1)当0a =时,由题意可设直线的方程为y kx =,将()1,2代入可得2k =,∴直线的方程为20x y -=;(2)当0a ≠时,由截距式方程可得直线的方程为1x ya a +=(截距相等)或1x y a a+=-(截距相反),将()1,2代入可得3a =或1a =-,∴直线的方程为3x y +=或10x y -+=;故选:C .13. 已知倾斜角为α的直线l 过定点(0,2)-,且与圆22(1)1y x +-=相切,则1cos 2cos 2απα-⎛⎫+ ⎪⎝⎭的值为( )A. 3-B.C. 23-D.3或3-【答案】A【解析】由题意知0180α︒<︒且90α≠︒,则直线斜率tan k α=, 直线l 方程为2y kx +=,即20kx y --=,圆心坐标(0,1),则圆心到直线l的距离1d ===,即291k =+,解得28k =,即2tan 8α=,由sin 0α>,可得sin α=, 所以()2112sin 1cos 22sin sin 3cos 2αααπαα---==-=--⎛⎫+ ⎪⎝⎭, 故选:A .14. 函数f (x )=(x 2+2x )e 2x 的图象大致是( )A. B.C. D.【解析】由于()()'22231x fx x x e =++⋅,而231y x x =++的判别式9450∆=-=>,所以231y x x =++开口向上且有两个根12,x x ,不妨设12x x <,所以()f x 在()()12,,,x x -∞+∞上递增,在()12,x x 上递减.所以C ,D 选项不正确.当2x <-时,()0f x >,所以B 选项不正确.由此得出A 选项正确. 故选:A15. 在平面直角坐标系xOy 中,将点(2,1)A 绕原点O 逆时针旋转90°到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则sin α等于( )A.B. 5-C.D.【答案】D【解析】将点(2,1)A 绕原点O 逆时针旋转90︒到点()1,2B -,根据三角函数的定义可知sin 5α===.故选:D16. 下列函数中是偶函数,且在(0,+∞)上是增函数的是( ) A. ln 1y x =+ B. ln y x =C. 2y x x =-D. 3y x =【答案】A【解析】A 选项是偶函数且在(0,)+∞为增;B 选项不是偶函数; C 选项是偶函数,但是在(0,)+∞不恒为增函数; D 选项不是偶函数,17. 已知f (x )是定义在R 上的函数,且满足(2)()f x f x +=,当[)0,1x ∈时,()41=-xf x ,则( 5.5)-f 的值为( )A. 2B. -1C. 12-D. 1【答案】D【解析】】(2)()2f x f x T +=∴=故选:D18. 已知1cos 63πα⎛⎫-= ⎪⎝⎭,则2sin 3α⎛⎫⎝π-⎪⎭=( ) A.49B.13C.59D. 59-【答案】B【解析】令6πθα=-,则6παθ=-,∴21sin sin cos 323ππαθθ⎛⎫⎛⎫-=+==⎪ ⎪⎝⎭⎝⎭. 故选:B.19. 在△ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若222sin sin sin sin sin A B C B C -=-,a =△ABC 的外接圆面积为( )A. πB. 2πC. 4πD. 8π【答案】A 【解析】222sin sin sin sin sin A B C B C -=-,由正弦定理得222a b c bc-=-,222b c a bc ∴+-=,由余弦定理可得2221cos 22b c a A bc +-==, ()0,A π∈,3A π∴=,设△ABC 的外接圆半径为r,则22sin a r A===,1r ∴=, 因此,△ABC 的外接圆面积为2S r ππ==. 故选:A.20. 已知△ABC 中,满足02,60b B == 的三角形有两解,则边长a 的取值范围是( )A2a << B.122a <<C. 23a <<D. 2a <<【答案】C【解析】由三角形有两解,则满足sin a B b a b <⎧⎨>⎩,即 sin 6022o a a ⎧<⎨>⎩,解得:2<a<,所以边长a 的取值范围(2), 故选C .21. 已知向量(,3)a m =,(3,)b n =-,若2(7,1)a b +=,则mn =( ) A. -1 B. 0C. 1D. 2【答案】C【解析】因为()27,1a b +=,所以67321m n +=⎧⎨-=⎩,得1m n ==,所以1mn =.故选C22. 已知直线l ,m 与平面α,β,l ⊂α,m ⊂β,则下列命题中正确的是( ) A. 若l ∥m ,则必有α∥β B. 若l ⊥m ,则必有α⊥β C. 若l ⊥β,则必有α⊥β D. 若α⊥β,则必有m ⊥α【答案】C【解析】解:对于选项A ,平面α和平面β还有可能相交,所以选项A 错误; 对于选项B ,平面α和平面β还有可能相交或平行,所以选项B 错误;对于选项C ,因为l ⊂α,l ⊥β,符合面面垂直的判定定理,所以α⊥β,所以选项C 正确; 对于选项D ,直线m 可能和平面α不垂直,所以选项D 错误. 故选:C .23. 设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是( )A. 若//,m n αβ⊥且αβ⊥,则m n ⊥B. 若,m n αβ⊥⊥且m n ⊥,则αβ⊥C. 若,//m n αβ⊥且n β⊥,则//m αD. 若,m n αβ⊂⊂且//m n ,则//αβ 【答案】B【解析】A 中直线m,n 可能平行,可能相交,可能异面;B 中由平面法向量的知识可知结论正确;C 中直线a 可能与面平行,可能在平面内;D 中两平面可能平行可能相交 故选:B24. 《九章算术》中有一分鹿问题:“今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为( ) A.15B.25C.35D.110【答案】B【解析】皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务, 基本事件总数23253220n C C A ==,大夫、不更恰好在同一组包含的基本事件个数23221222322322 8m C C A C C C A =+=,所以大夫、不更恰好在同一组的概率为82 205m p n ===. 故选:B .25. 如图是某校高三某班甲、乙两位同学前六次模拟考试的数学成绩,若甲、乙两人的平均成绩分别是1x 、2x ,则下列判断正确的是( ) A. 12x x >,甲比乙成绩稳定 B. 12x x <,乙比甲成绩稳定 C. 12x x =,甲比乙成绩稳定 D. 12x x =,乙比甲成绩稳定 【答案】A【解析】由茎叶图知: 所以12x x =由茎叶图知甲的数据较分散,乙的数据较集中所以乙比甲成绩稳定 故选:D26.在△ABC 中,90A ∠=,()2,2AB k →=-,()2,3AC →=,则k 的值是( ) A. 5 B. 5- C.32 D. 32-【答案】A 【解析】90A ∠=,即AB AC ⊥,4260AB AC k →→∴⋅=-+=,解得:5k =.故选:A .27. 在一组样本数据中,1,4,m ,n m n +=( ) A. 5 B. 6 C. 7 D. 8【答案】A【解析】由题意得样本平均值为10.140.10.40.4 2.55m n m n ⨯+⨯+⨯+⨯=∴+= 故选:A第二部分 解答题(共19分)28.(本小题满分5分)设常数R a ∈,函数2()asin2x 2cos x f x =+. (1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫=⎪⎝⎭,求方程()1f x =[]ππ-,上的解. 【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-.【解析】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数, ∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+, ∴2sin20a x =, ∴0a =;(2)∵π14f ⎛⎫=⎪⎝⎭,∴2ππsin2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++=- ⎪⎝⎭∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,,∴5ππ24x k =-+,或13ππZ 24x k k =+∈,, ∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-29.(本小题满分5分)在三棱锥A ﹣BCD 中,E ,F 分别为,AD DC 的中点,且BA BD =,平面ABD ⊥平面ADC . (1)证明://EF 平面ABC ; (2)证明:CD BE ⊥.【答案】(1)证明见解析;(2)证明见解析【解析】证明:(1)在ADC 中,,E F 分别为,AD DC 的中点, ∴//EF AC ,∵EF ⊄平面ABC ,AC ⊂平面ABC , 所以//EF 平面ABC .(2)在ABD △中,BA BD =,E 为AD 的中点, ∴BE AD ⊥,又因为平面ABD ⊥平面ADC ,BE ⊂平面ABD ,平面ABD ⋂平面ADC AD =,∴BE ⊥平面ADC ,因为DC ⊂平面ADC ,所以BE DC ⊥,即CD BE ⊥. 30.(本小题满分5分)已知直线l 过定点()2,1A -,圆C :2286210x y x y +--+=.(1)若l 与圆C 相切,求l 的方程;(2)若l 与圆C 交于M ,N 两点,求CMN ∆面积的最大值,并求此时l 的直线方程. 【答案】(1)2x =或34100x y --=;(2)2,30x y --=或7150x y --=.【解析】(1)由题,得圆C 的标准方程为22(4)(3)4x y -+-=,则圆心坐标为(4,3),半径2r.①当直线l 的斜率不存在时,直线2x =,符合题意;②当直线l 的斜率存在时,设直线l :()12y k x +=-,即210kx y k ---=. 因为直线l 与圆C 相切,所以圆心(4,3)到直线l 的距离等于半径22=,解得34k =,所以直线的方程为331042x y ---=,化为一般式为34100x y --=. 综上,l 的方程为2x =或34100x y --=;(2)由第1问知直线与圆交于两点,则斜率必定存在,则直线l 的方程为210kx y k ---=,所以圆心到直线l的距离d =所以ΔCMN面积1··2S d ===所以当d =S 取得最大值2,由d ==解得1k =或7k =,所以直线l 的方程为30x y --=或7150x y --=. 31.(本小题满分4分)设函数()3x f x =,且(2)18f a +=,函数()34()ax xg x x R =-∈.(1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围.【答案】((1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭ 【解析】解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点 由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦解得31,164b ⎡⎫∈⎪⎢⎣⎭。
2021年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣2 6.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2021=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE ⌒上一点,AD=1,BC=2,求tan ∠APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2021年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A.5 B.3.5 C.3 D.2.5 【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3 ,2)B.(﹣2 ,3)C.(2 ,﹣3)D.(3 ,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4 B.5 C.6 D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2 【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF 的周长为2C.16 D.4 A.8 B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2 B.y=(x﹣1)2+1C.y=(x﹣2)2+2 D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2 .【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B ’C ’交于点O ,可知∠EOB=∠EOB ’=30°,可得∠BEO=∠B ’EO=60°, ∴∠AEB ’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得①错误;由△>0可得②正确;由x=-2时,y <0可得③正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c >0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得④正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2021=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75°【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.【答案】解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】 解:(1)由题意得24+72+18+x=120,解得x=6 (2)1800×1207224 =1440(人) 答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人. 【解析】统计表的分析 【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形. 【答案】 证明:∵BD=CE ,∠ABE=∠ACD ,∠DFB=∠CFE ∴△BFDF ≌△CFE (AAS ) ∴∠DBF=∠ECF∵∠DBF+∠ABE=∠ECF+∠ACD ∴∠ABC=∠ACB ∴AB=AC∴△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由. 【答案】 解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a (2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得x 2﹣43x+12=0 (x-32)2=0 x 1=x 2=32 ∴该三角形的形状是等腰三角形 ∵(26)2=24,(32)2=12 ∴(26)2=(32)2+(32)2 ∴该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断 【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE ⌒上一点,AD=1,BC=2,求tan ∠APE 的值.【答案】(1)证明:过点O 作OE ⊥CD 交于点E ∵AD ∥BC ,∠DAB=90° ∴∠OBC=90°即OB ⊥BC∵OE ⊥CD ,OB ⊥BC ,CO 平分∠BCD ∴OB=OE∵AB 是⊙O 的直径 ∴OE 是⊙O 的半径 ∴直线CD 与⊙O 相切E(2)连接OD 、OE∵由(1)得,直线CD 、AD 、BC 与⊙O 相切 ∴由切线长定理可得AD=DE=1,BC=CE=3, ∠ADO=∠EDO ,∠BCO=∠ECO ∴∠AOD=∠EOD ,CD=3 ∵AE ⌒=AE ⌒∴∠APE=21∠AOE=∠AOD∵AD ∥BC∴∠ADE+∠BCE=180°∴∠EDO+∠ECO=90°即∠DOC=90° ∵OE ⊥DC ,∠ODE=∠CDO ∴△ODE ∽△CDO ∴CD OD OD DE =即3ODOD 1=∴OD=3∵在Rt △AOD 中,AO=2∴tan ∠AOD=AO AD=22 ∴tan ∠APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数 23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53.(1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用. 【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解 ∴x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5 ∵a 为正整数 ∴a 的最大值为22y=40a+30(90-a )=10a+2700∵10>0∴y 随a 的增大而增大∴当a=22时,y=10×22+2700=2920(元) 答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键 【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分) 24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk(x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG . (1)填空:k=_2_______; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE 由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4 ∴41CB CE =即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE ∴△DEB ∽△FEC∴CF=31BD∵OC=GC ,AB=OC ∴FG=AB-CF=34BD-31BD=BD ∵AB ∥OG ∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关 【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DCBC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n -=1,解得x=332-1②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算。
2021年广东春季高考数学模拟试卷(1)解析版注:本卷共22小题,满分150分。
一、单选题(本大题共15小题,每小题6分,满分90分)1.已知集合{}2,3,4,6A =,{}1,2,3,4,5B =,则A B =()A .{}1,2,3,4B .{}1,2,3C .{}2,3D .{}2,3,4【答案】D【解析】【分析】直接利用交集的定义计算即可.【详解】因为{}2,3,4,6A =,{}1,2,3,4,5B =,所以{}2,3,4A B =.故故:D.【点睛】本题考查了集合交集的计算,属于基础题.2.圆C : x 2+y 2= 1的面积是( )A .4πB .2πC .πD .2π 【答案】C【解析】【分析】根据圆的方程即可知圆的半径,由圆的面积公式即可求其面积.【详解】由圆的方程知:圆C 的半径为1,所以面积2S r ππ==,故选:C【点睛】本题考查了圆的标准方程,由圆的方程求面积,属于简单题.3.的值为 ( )A.- BC.- D.【答案】A【解析】()()2sin585sin 585720sin 1352=-=-=-. 4.已知实数,x y 满足不等式组2034802x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则目标函数2z x y =-的最大值为( )A .2-B .2C .4-D .4【答案】D【解析】【分析】 画出可行域,然后作出目标函数的一条等值线20x y -=,通过平移等值线找到目标函数取最大值的最优解,可得结果.【详解】如图由2z x y =-,令0z =,则目标函数的一条等值线为20x y -=当该等值线经过点()2,0A 时,目标函数有最大值所以max 2204z =⨯-=故选:D【点睛】本题考查线性规划的问题,此种类型的问题,常看几步:(1)画出可行域;(2)根据线性的和非线性的理解z 的含义,然后简单计算,属基础题.5.设等差数列{}n a 的前n 项为n S ,若537,3a S ==,则6a =( ) A .6B .7C .8D .9 【答案】D【解析】【分析】 由等差数列的性质得出11473(31)332a d a d +=⎧⎪⎨⨯-+=⎪⎩,解出1,a d ,即可求出6a . 【详解】设等差数列{}n a 的公差为d11473(31)332a d a d +=⎧⎪∴⎨⨯-+=⎪⎩ 解得11,2a d =-=61259a ∴=-+⨯=故选:D【点睛】本题主要考查了等差数列基本量的计算,属于基础题.6.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x y +的值为( )A .12B .13C .14D .15【答案】C【解析】【分析】 观察茎叶图,利用甲组数据的中位数与乙组数据的平均数分别求出x y 、,相加即可.【详解】因为甲组数据的中位数为17,所以7x =,因为乙组数据的平均数为17.4,所以91616(10)2917.45y +++++=,解得7y =,所以14x y +=.故选:C【点睛】本题考查根据茎叶图求数据的中位数与平均数,属于基础题.7.已知角θ的顶点为坐标原点,始边为x 轴正半轴,若(4,3)P 是角θ终边上的一点,则cos θ=( ) A .35 B .45 C .43 D .34【答案】B【解析】【分析】由P 的坐标求得||OP ,再由任意角的三角函数的定义得答案.【详解】由(4,3)P ,得5OP ==,又角θ终边经过(4,3)P ,4cos 5θ∴=. 故选:B .【点睛】 本题主要考查任意角的三角函数的定义,是基础题.8.在ABC 中,10BC =,1sin 3A =,则ABC 的外接圆半径为( )A .30B .C .20D .15 【答案】D【解析】【分析】结合已知条件,由正弦定理即可求ABC 的外接圆半径.【详解】若外接圆半径为R ,由正弦定理知:||2sin BC R A=, ∴310152R =⨯=, 故选:D【点睛】 本题考查了正弦定理,由2sin a R A=结合已知边角求外接圆半径,属于简单题. 9.下列函数为偶函数,且在()0,∞+单调递增的是( )A .1y x =B .2y x x =+C .22y x =-D .2y x =-【答案】D【解析】【分析】采用逐一验证法,先判断函数的定义域,然后计算根据奇偶性以及单调性的判断方法可得结果.【详解】对A :令()1==y f x x,定义域为()(),00,-∞⋃+∞ ()()11-===-f x f x x x,所以函数为偶函数,但该函数在()0,∞+单调递减,故A 错对B :令()2==+y f x x x ,定义域为R ()()2-=-≠f x x x f x ,所以该函数不是偶函数,故B 错对C :令()22==-y f x x ,定义域为R ()()22-=-=f x x f x ,所以函数为偶函数且在()0,∞+单调递减,故C 错对D :令()2==-y f x x ,定义域为R()()2-=-=f x x f x 所以函数为偶函数且在()0,∞+单调递增,故D 正确故选:D【点睛】本题考查函数的性质,熟练掌握函数的奇偶性、单调性、周期性、对称性等,属基础题.10.设053a =.,30.5b =,3log 0.5c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A【解析】【分析】 利用对数函数和指数函数的性质求解.【详解】解:∵00.51333<<,∴0.5131<<,即13a <<,∵3000.80.8<<,∴300.81<<,即01b <<,∵3log y x =在(0,)+∞上为增函数,且0.51<,∴33log 0.5log 10<=,即0c <∴a b c >>,故选:A .【点睛】此题考查对数式、指数式比较大小,属于基础题11.函数()x f =的定义域为( )A .[)()1,22,-⋃+∞B .()1,-+∞C .[)1,2-D .[)1,-+∞【答案】A【解析】【分析】根据题意可得出关于x 的不等式组,由此可解得函数()f x 的定义域.【详解】对于函数()x f =,有1020x x +≥⎧⎨-≠⎩,解得1x ≥-且2x ≠.因此,函数()x f =的定义域为[)()1,22,-⋃+∞.故选:A.【点睛】本题考查函数定义域的求解,考查计算能力,属于基础题.12.已知函数()()()21020x x f x x x ⎧+≤⎪=⎨>⎪⎩,若()10f a =,则a 的值是()A .3-或5B .3或3-C .3-D .3或3-或5【答案】A【解析】【分析】 根据函数解析式,分别讨论0a ≤,0a >两种情况,结合题中条件,即可求出结果.【详解】若0a ≤,则()2110f a a =+=,∴3a =-(3a =舍去), 若0a >,则()210f a a ==,∴5a =,综上可得,5a =或3a =-.故选:A .【点睛】 本题主要考查由分段函数值求参数,属于基础题型.13.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈10=尺,1斛 1.62=立方尺,圆周率3π=),则该圆柱形容器能放米( )A .900斛B .2700斛C .3600斛D .10800斛【答案】B【解析】【分析】计算出圆柱形容器的底面圆半径,由此计算出圆柱形容器的体积,由此可得出结果.【详解】设圆柱形容器的底面圆半径为r ,则5454926r π===(尺), 所以,该圆柱形容器的体积为221839184374V r π=⨯=⨯⨯=(立方尺), 因此,该圆柱形容器能放米437427001.62=(斛). 故选:B.【点睛】本题考查立体几何中的新文化,考查柱体体积的计算,考查计算能力,属于基础题. 14.已知直线l 过点(0,2)-,当直线l 与圆222x y y +=相交时,其斜率k 的取值范围是( ) A.(- B.(,)-∞-⋃+∞C.44⎛⎫- ⎪ ⎪⎝⎭D.,44⎛⎛⎫-∞-⋃+∞ ⎪⎝⎭⎝⎭【答案】B【解析】【分析】由圆的方程可得圆的圆心和半径,再由直线与圆相交的性质即可得1d =<,即可得解.【详解】圆222x y y +=的方程可变为()2211x y +-=,圆心为()0,1,半径为1, 因为直线l 过点(0,2)-,且斜率为k ,所以直线l 的方程为2y kx +=即20kx y --=, 若要使直线l 与圆相交,则圆心到直线l的距离1d =<,解得((),k ∈-∞-⋃+∞.故选:B.【点睛】本题考查了直线与圆位置关系的应用,考查了运算求解能力,属于基础题.15.已知x ,y 的几组对应数据如下表:根据上表求得回归方程ˆˆˆybx a =+中的ˆ 2.2b =,那么ˆa =( ) A .2B .1.6C .1.2D .11.2-【答案】B【解析】【分析】 求出样本点的中心,再代入回归直线的方程,从而求得ˆa的值. 【详解】∵012342369102,655x y ++++++++====, ∴样本点的中心()2,6,∴ˆˆ6 2.22 1.6aa =⨯+⇒=. 故选:B.【点睛】本题考查利用样本点的中心求回归直线方程的截距,考查函数与方程思想,考查运算求解能力,属于基础题.二、填空题16.已知平面向量()2,2a =-,()1,b m =-,若a b ⊥,则b =______.【解析】【分析】根据向量垂直的坐标运算列关系求参数即可.【详解】解:∵a b ⊥,∴220a b m ⋅=--=,解得1m =-,()1,1b ∴=--,∴2b =..【点睛】本题考查了利用向量坐标运算求参数,属于基础题.17.在各项均为正数的等比数列{}n a 中,若2228log log 1a a +=,则37a a ⋅= .【答案】2【解析】试题分析:由222822828log log 1log 12a a a a a a +=⇒⋅=⇒⋅= ,又数列{}n a 是等比数列,所以37282a a a a ⋅=⋅=考点:本题考查等比数列的性质,对数式的运算点评:解决本题的关键是熟练掌握等比数列的性质18.若将一个质点随机投入如图所示的长方形ABCD 中,其中2,1AB BC ==,则质点落在以AB 为直径的半圆内的概率是_____.【答案】4π 【解析】【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积之比即可得到结果.【详解】设质点落在以AB 为直径的半圆内为事件A ,则2112()124P A ππ⨯==⨯. 故答案为:4π. 【点睛】本题主要考查了几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,属于基础题. 19.已知234a b +=,则48a b +的最小值为______.【答案】8【解析】【分析】由232428a a b b +=+,利用基本不等式即可求解.【详解】由234a b +=,则2322848a b a b =+≥===+,当且仅当232a b ==,即21,3a b ==时取等号, 故答案为:8【点睛】本题考查了基本不等式求最值,注意验证等号成立的条件,属于基础题.三、解答题20.设等差数列{}n a 的前n 项和为n S ,,已知35a =,39S =.(I )求首项1a 和公差d 的值;(II )若100n S =,求n 的值.【答案】(I )11a =;2d =;(II )10n =【解析】【分析】 (I )利用()13332a a S +=求得11a =;根据等差数列通项公式可求得d ;(II )利用等差数列前n 项和公式可构造出关于n 的方程,解方程求得结果.【详解】(I )由题意得:()()1313335922a a a S ++===,解得:11a = 则公差3151222a a d --===(II )由(I )知:()2112n n n S na d n -=+= 若100n S =,即2100n =又*n N ∈,解得:10n =【点睛】本题考查等差数列通项公式和前n 项和的基本量的求解,涉及到等差数列通项公式和前n 项和公式的应用,属于基础题.21.已知函数()2sin cos 122f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期和最大值;(2)求函数()f x 的单调减区间.【答案】(1)π,最大值为2;(2)3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【解析】【分析】(1)先化简得()sin 21f x x =+,即得函数的最小正周期和最大值;(2)解不等式3222()22k x k k Z ππππ+≤≤+∈,即得解. 【详解】(1)()2sin()cos()12cos sin 12sin cos 122f x x x x x x x ππ=+-+=+=+ sin 21x =+ 所以函数的最小正周期为22T ππ==,当sin 21x =时最大值为2; (2)令3222()22k x k k Z ππππ+≤≤+∈,所以3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈. 【点睛】本题主要考查三角恒等变换,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.22.如图,在三棱柱111ABC A B C -中,111B C CC ⊥,点E ,F 分别是BC ,11A B 的中点,平面11AC CA ⊥平面11BCC B .(1)求证:111B C AC ⊥; (2)求证:EF //平面11AC CA .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据平面11AC CA ⊥平面11BCC B ,可得11B C ⊥平面11ACC A ,可得结果.(2)取11A C 的中点G ,根据 EC //FG ,且EC FG =,可得平行四边形FECG 是平行四边形,然后根据EF //GC ,以及线面平行的判定定理,可得结果.【详解】(1)因为111B C C C ⊥,平面11AC CA ⊥平面11BCC B ,平面11AC CA ⋂平面111BCC B C C =,11B C ⊂平面11BCC B ,则11B C ⊥平面11ACC A .又因为1AC ⊂平面11AC CA , 所以111B C AC ⊥. (2)取11A C 的中点G ,连接FG ,GC .在111A B C △中,因为F ,G 分别是11A B ,11A C 的中点, 所以FG //11B C ,且1112FG B C =. 在平行四边形11BCC B 中,因为E 是BC 的中点, 所以EC //11B C ,且1112EC B C =, 所以EC //FG ,且EC FG =在平行四边形FECG 是平行四边形,所以EF //GC .又因为EF ⊄平面11AC CA ,GC ⊂平面11AC CA , 所以EF //平面11AC CA .【点睛】本题考查面面垂直的性质定理,以及线面平行的判定,属基础题.。
2021年广东省普通高中学业水平考试数学模拟测试卷(八)(时间:90分钟满分:150分)一、选择题(本大题共15小题,每小题6分,满分90分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,2,4},B={-2,0,2},则A∪B=()A.{0,2}B.{-2,4}C.[0,2]D.{-2,0,2,4}2.用a,b,c表示三条不同的直线,y表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥y,b∥y,则a∥b;④若a⊥y,b⊥y,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④3.函数y=log3(x+2)的定义域为()A.(-2,+∞)B.(2,+∞)C.[-2,+∞)D.[2,+∞)4.已知向量a=(2,-2),b=(2,-1),则|a+b|=()A.1B.√5C.5D.255.直线3x+2y-6=0的斜率是()A.32B.-32C.23D.-236.不等式x2-9<0的解集为()A.{x|x<-3}B.{x|x<3}C.{x|x<-3或x>3}D.{x|-3<x<3}7.已知a>0,则3=()A.a 12 B.a32C.a 23 D.a138.某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.7和53B.8和83C.7和1D.8和239.如图,长方体ABCD -A 1B 1C 1D 1中,AB=AD=1,BD 1=2,则AA 1= ( )A.1B.√2C.2D.√3 10.若不等式-4<2x-3<4与不等式x 2+px+q<0的解集相同,则pq = ( )A.127B.-127C.65D.5611.设x ,y 满足约束条件{x -y +3≥0,x +y -1≤0,y ≥0,则z=x-2y 的最大值为( )A.-5B.-3C.1D.412.已知圆C 与y 轴相切于点(0,5),半径为5,则圆C 的标准方程是 ( )A.(x-5)2+(y-5)2=25B.(x+5)2+(y-5)2=25C.(x-5)2+(y-5)2=5或(x+5)2+(y-5)2=5D.(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=2513.如图,△ABC 中,AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,BC ⃗⃗⃗⃗⃗ =4BD ⃗⃗⃗⃗⃗⃗ ,用a ,b 表示AD ⃗⃗⃗⃗⃗ ,正确的是( )A.AD ⃗⃗⃗⃗⃗ =14a +34b B.AD ⃗⃗⃗⃗⃗ =54a +14b C.AD ⃗⃗⃗⃗⃗ =34a +14bD.AD ⃗⃗⃗⃗⃗ =54a -14b14.若数列{a n }的通项a n =2n-6,设b n =|a n |,则数列{b n }的前7项和为 ( )A.14B.24C.26D.2815.已知函数f (x )={3+log 2x ,x >0,x 2-x -1,x ≤0,则不等式f (x )≤5的解集为( )A.[-1,1]B.(-∞,-2]∪(0,4)C.[-2,4]D.(-∞,-2]∪[0,4]二、填空题(本大题共4小题,每小题6分,满分24分)16.已知角α的顶点与坐标原点重合,终边经过点P(4,-3),则cos α=.17.在等比数列{a n}中,a1=1,a2=2,则a4=.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是.19.已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈[0,+∞)时,f(x)=x2-4x,则当x∈(-∞,0)时,f(x)=.三、解答题(本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤)20.△ABC的内角A,B,C的对边分别为a,b,c,已知cos A=35,bc=5.(1)求△ABC的面积;(2)若b+c=6,求a的值.21.如图,三棱锥P-ABC中,PA⊥PB,PB⊥PC,PC⊥PA,PA=PB=PC=2,E是AC的中点,点F在线段PC上.(1)求证:PB⊥AC;(2)若PA∥平面BEF,求四棱锥B-APFE的体积.(参考公式:锥体的体积公式V=13Sℎ,其中S是底面积,ℎ是高.)22.广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2017年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)计算这40名广场舞者中年龄分布在[40,70)的人数;(2)若从年龄在[20,40)的广场舞者中任取两名,求这两名广场舞者恰有一人年龄在[30,40)的概率.答案:1.D 【解析】由并集的定义,可得A ∪B={-2,0,2,4}.故选D.2.C 【解析】②不正确,a ,c 的位置关系有三种,平行、相交或异面;③不正确.3.A 【解析】要使y=log 3(x+2)有意义,则x+2>0,解得x>-2,即定义域为(-2,+∞).故选A.4.C 【解析】由a =(2,-2),b =(2,-1),可得a +b =(4,-3),则|a +b |=√42+(-3)2=5.故选C. 5.B 【解析】直线3x+2y-6=0,可化为y=-32x+3,故斜率为-32.故选B. 6.D 【解析】由x 2-9<0,可得-3<x<3.故选D. 7.D【解析】√a 23=a 23,则23=aa 23=a1-23=a 13.故选D.8.A 【解析】平均数x =16×(9+8+7+6+5+7)=7,方差s 2=16[(9-7)2+(8-7)2+(7-7)2+(6-7)2+(5-7)2+(7-7)2]=53.故选A.9.B 【解析】在长方体中,B D 12=AB 2+AD 2+A A 12,则22=12+12+A A 12,解得AA 1=√2.故选B.10.A 【解析】∵不等式-4<2x-3<4,∴-12<x<72.∵不等式-4<2x-3<4与不等式x 2+px+q<0的解集相同, ∴不等式x 2+px+q<0的解集为{x |-12<x <72}, ∴-12,72是方程x 2+px+q=0的两个根,∴{-12+72=-p ,-12×72=q ,解得p=-3,q=-74,∴p q =-3-74=127.故选A .11.C 【解析】作出约束条件表示的平面区域如图所示,当直线z=x-2y 过点A (1,0)时,z取得最大值,z max =1-2×0=1.故选C.12.D 【解析】由题意得圆C 的圆心为(5,5)或(-5,5),故圆C 的标准方程为(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=25.故选D.13.C 【解析】由BC⃗⃗⃗⃗⃗ =4BD ⃗⃗⃗⃗⃗⃗ ,可得AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =4(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),则AD ⃗⃗⃗⃗⃗ =34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ ,即AD ⃗⃗⃗⃗⃗ =34a +14b .故选C.14.C 【解析】当n ≤3时,a n ≤0,b n =|a n |=-a n =6-2n ,即b 1=4,b 2=2,b 3=0.当n>3时,a n >0,b n =|a n |=a n =2n-6,即b 4=2,b 5=4,b 6=6,b 7=8.所以数列{b n }的前7项和为4+2+0+2+4+6+8=26.故选C. 15.C 【解析】由于f (x )={3+log 2x ,x >0,x 2-x -1,x ≤0,当x>0时,3+log 2x ≤5,即log 2x ≤2=log 24,解得0<x ≤4;当x ≤0时,x 2-x-1≤5,即(x-3)(x+2)≤0,解得-2≤x ≤3.又x ≤0,所以-2≤x ≤0. 综上不等式f (x )≤5的解集为[-2,4],故选C .16.45 【解析】由题意得x=4,y=-3,r=√x 2+y 2=√42+(-3)2=5,cos α=x r =45. 17.8 【解析】设等比数列{a n }的公比为q ,由题意得q=a2a 1=2,则a 4=a 1q 3=1×23=8.18.25 【解析】记2个白球分别为白1,白2,3个黑球分别为黑1,黑2,黑3,从这5个球中任取两球,所有的取法有{白1,白2},{白1,黑1},{白1,黑2},{白1,黑3},{白2,黑1},{白2,黑2},{白2,黑3},{黑1,黑2},{黑1,黑3},{黑2,黑3},共10种.其中取出的两球颜色相同取法的有4种,所以所求概率为P=410=25.19.-x 2-4x 【解析】当x ∈(-∞,0)时,-x ∈(0,+∞),由奇函数可得f (x )=-f (-x )=-[(-x )2-4(-x )]=-x 2-4x.20.【解】(1)∵A 是△ABC 的内角,即A ∈(0,π),cos A=35,∴sin A=√1-cos 2A =45. 又bc=5,∴S △ABC =12bc sin A=12×5×45=2. (2)由cos A=b 2+c 2-a 22bc=35,bc=5,可得b 2+c 2-a 2=6.由bc=5,b+c=6,可得b 2+c 2=(b+c )2-2bc=26.∴26-a 2=6,解得a=2√5.21.【解】(1)∵PA ⊥PB ,PB ⊥PC ,PA ⊂平面PAC ,PC ⊂平面PAC ,PA ∩PC=P , ∴PB ⊥平面PAC.又AC ⊂平面PAC ,∴PB ⊥AC.(2)∵PA ∥平面BEF ,PA ⊂平面PAC ,平面BEF ∩平面PAC=EF , ∴PA ∥EF.又E 为AC 的中点,∴F 为PC 的中点. ∴S 四边形APFE =S △PAC -S △FEC =34S △PAC .∵PC ⊥PA ,PA=PC=2,∴S △PAC =12×2×2=2.∴S 四边形APFE =32.由(1)得PB ⊥平面PAC ,∴PB=2是四棱锥B -APFE 的高.∴V 四棱锥BAPFE =13S 四边形APFE ·PB=13×32×2=1.22.【解】(1)由表中数据知,这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30.(2)由直方图可知,年龄在[20,30)的有2人,分别记为a 1,a 2;在[30,40)的有4人,分别记为b 1,b 2,b 3,b 4.现从这6人中任选两人,共有如下15种选法:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),其中恰有1人在[30,40)的情况有8种,故这两名广场舞者恰有一人年龄在[30,40)的概率为P=815.。