常用光电探测器
- 格式:ppt
- 大小:2.21 MB
- 文档页数:61
描述bios的含义
光子探测器是一种能够探测光(光子)的探测器,通常用于高能物理、核医学、安全检查、环境监测等领域。
常见的光子探测器分类如下:
- 按照工作原理分类:
- 光电探测器:利用光电效应将光信号转换为电信号,如光电二极管、光电倍增管等。
- 热探测器:利用光热效应将光信号转换为热信号,如热敏电阻、热释电探测器等。
- 量子探测器:利用量子效应将光信号转换为电信号,如雪崩二极管、硅光电池等。
- 按照探测波长分类:
- 可见探测器:能够探测可见光谱范围内的光,如光电二极管、光敏电阻等。
- 红外探测器:能够探测红外光谱范围内的光,如热释电探测器、量子阱探测器等。
- 紫外探测器:能够探测紫外光谱范围内的光,如雪崩二极管、硅光电池等。
- 按照应用领域分类:
- 高能物理探测器:用于高能物理实验中探测光子,如闪烁计数器、切伦科夫计数器等。
- 核医学探测器:用于核医学成像中探测光子,如正电子发射
断层扫描(PET)探测器、单光子发射计算机断层扫描(SPECT)探测器等。
- 安防探测器:用于安全检查和监控中探测光子,如X射线探测器、γ射线探测器等。
光电探测器的几种类型红外辐射光子在半导体材料中激发非平衡载流子电子或空穴、,引起电学性能变化。
因为载流子不逸出体外,所以称内光电效应。
量子光电效应灵敏度高,响应速度比热探测器快得多,是选择性探测器。
为了达到性能,一般都需要在低温下工作。
光电探测器可分为:1、光导型:又称光敏电阻。
入射光子激发均匀半导体中的价带电子越过禁带进入导带并在价带留下空穴,引起电导增加,为本征光电导。
从禁带中的杂质能级也可激发光生载流子进入导带或价带,为杂质光电导。
截止波长由杂质电离能决定。
量子效率低于本征光导,而且要求更低的工作温度。
2、光伏型:主要是p-n结的光生伏特效应。
能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。
存在的结电场使空穴进入p区,电子进入n区,两部分出现电位差。
外电路就有电压或电流信号。
与光导探测器比较,光伏探测器背影限探测率大于40%;不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。
这些特性给制备和使用焦平面阵列带来很大好处。
3、光发射-Schottky势垒探测器:金属和半导体接触,典型的有PtSi/Si结构,形成Schottky势垒,红外光子透过Si层为PtSi吸收,电子获得能量跃上Fermi能级,留下空穴越过势垒进入Si衬底,PtSi层的电子被收集,完成红外探测。
充分利用Si集成技术,便于制作,具有成本低、均匀性好等优势,可做成大规模1024×1024甚至更大、焦平面阵列来弥补量子效率低的缺陷。
有严格的低温要求。
用这类探测器,国内外已生产出具有像质良好的热像仪。
PtSi/Si结构FPA是早制成的IRFPA。
4、量子阱探测器QWIP:将两种半导体材料A和B用人工方法薄层交替生长形成超晶格,在其界面,能带有突变。
电子和空穴被限制在低势能阱A层内,能量量子化,称为量子阱。
利用量子阱中能级电子跃迁原理可以做红外探测器。
90年代以来发展很快,已有512×512、640×480规模的QWIPGaAs/AlGaAs焦平面制成相应的热像仪诞生。
光电探测器光电探测器是利用辐射引起被照射材料电导率改变的一种物理现象的原理而制成的器件。
它的的工作原理是基于光电效应(包括外电光效应和内电光效应)。
根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子型探测器;另一类是热探测器。
其中光子探测器包括真空光电器件(光电倍增管等)和固体光电探测器(光电二极管、光导探测器、CCD等)。
1光子探测器1)原理光子探测器利用外光电效应制成的光子型探测器是真空电子器件,如光电管、光电倍增管和红外变像管等。
这些器件都包含一个对光子敏感的光电阴极,当光子投射到光电阴极上时,光子可能被光电阴极中的电子吸收,获得足够大能量的电子能逸出光电阴极而成为自由的光电子。
在光电管中,光电子在带正电的阳极的作用下运动,构成光电流。
光电倍增管与光电管的差别在于,在光电倍增管的光电阴极与阳极之间设置了多个电位逐级上升并能产生二次电子的电极(称为打拿极)。
从光电阴极逸出的光电子在打拿极电压的加速下与打拿极碰撞,发生倍增效应,最后形成较大的光电流信号。
因此,光电倍增管具有比光电管高得多的灵敏度。
红外变像管是一种红外-可见图像转换器,它由光电阴极、阳极和一个简单的电子光学系统组成。
光电子在受到阳极加速的同时又受到电子光学系统的聚焦,当它们撞击在与阳极相连的磷光屏上时,便发出绿色的光像信号。
2)光电管光电管原理是光电效应。
一种是半导体材料类型的光电管,它的工作原理光电二极管又叫光敏二极管,是利用半导体的光敏特性制造的光接受器件。
当光照强度增加时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,如果二极管反偏,则反向电流增大,因此,光电二极管的反向电流随光照的增加而上升。
光电二极管是一种特殊的二极管,它工作在反向偏置状态下。
常见的半导体材料有硅、锗等。
如我们楼道用的光控开关。
还有一种是电子管类型的光电管,它的工作原理用碱金属(如钾、钠、铯等)做成一个曲面作为阴极,另一个极为阳极,两极间加上正向电压,这样当有光照射时,碱金属产生电子,就会形成一束光电子电流,从而使两极间导通,光照消失,光电子流也消失,使两极间断开。
光电探测器原理与应用光电探测器是一种将光信号转化为电信号的器件,是现代光电技术中的重要组成部分,广泛应用于通信、医学、物理学等领域。
本文将从光电探测器的原理、种类以及应用进行探讨。
一、光电探测器的原理光电探测器的原理基于光电效应,即光能被物质吸收后,其中的光子能激发物质内部的电子从价带跃迁到导带,形成电子空穴对,产生电流和电势差,将光信号转换为电信号并放大处理。
而光电探测器的基本结构,则由光敏材料、光电转换部件、电荷放大器等组成,具有宽频带、高响应速度等特点。
二、光电探测器的种类光电探测器主要分为以下几种:①硅光电二极管硅光电二极管是一种常见的光电探测器,其结构简单,大小小巧,响应速度快,但灵敏度较低。
硅光电二极管的光电转换部件为PN结,探测范围为红外线波段。
②掺铟镓光电二极管掺铟镓光电二极管响应范围为近红外至中红外波段,具有较高的灵敏度和响应速度,广泛应用于红外光谱分析、制导弹道等领域。
③掺铊锗光电二极管掺铊锗光电二极管响应范围为中红外波段,具有较高的探测率和灵敏度,广泛应用于红外光谱分析、空间测量等领域。
④光电倍增管光电倍增管响应范围涵盖紫外线至近红外波段,具有高灵敏度、高信噪比和低失真等特点,广泛应用于低光强度信号的检测和测量。
⑤光伏噪声探测器光伏噪声探测器是一种激光光源的光功率变化探测器,响应波长范围覆盖整个光谱,具有高信噪比、高稳定性等特点,广泛应用于光通信、激光测距、光谱分析等领域。
三、光电探测器的应用光电探测器具有广泛的应用领域,其中主要包括:①光通信光电探测器在光通信中起到重要作用,光电二极管和光电倍增管是常用的探测器。
光电探测器接收光信号并转换为电信号,再经过解调和放大处理后,完成光通信中数据的传输和接收。
②光谱分析光电探测器在光谱分析领域中广泛应用,通过对不同波长的光线进行探测和分析,完成对样品的化学成分、结构和性质的测量和研究。
掺铟镓光电二极管和光伏噪声探测器是常用的光谱探测器。
紫外探测器:碳化硅(SiC)材质,响应波段200-400nm。
应用:火焰探测和控制、紫外测量、控制杀菌灯光、医疗灯光的控制等。
————————————————————————————————————————————可见光探测器:硅(Si)材质,响应波段200-1100nm。
有室温、热电制冷两种形式,可以带内置前放,有多种封装形式可选。
主要用在测温、激光测量、激光检测、光通信等领域。
————————————————————————————————————————————红外探测器(1):锗(Ge)材质,响应波段0.8-1.8um,有室温、热电制冷、液氮制冷三种形式,可以带内置前放,有多种封装形式可选。
主要应用在光学仪表、光纤测温、激光二极管、光学通信、温度传感器等————————————————————————————————————————————红外探测器(2):铟钾砷(InGaAs)材质,响应波段0.8-2.6um,波段内可以进行优化。
有室温、热电制冷、液氮制冷三种形式,可以带内置前放,可以配光纤输出,多种封装形式可选。
主要应用在光通信、测温、气体分析、光谱分析、水分分析、激光检测、激光测量、红外制导等领域。
————————————————————————————————————————————红外探测器(3):砷化铟(InAs)材质,响应波段1-3.8um,有室温和热电制冷两种,可以配内置前放,多种封装形式可选。
主要用于激光测量、光谱分析、红外检测、激光检测等领域。
红外探测器(4):锑化铟(InSb)材质,响应波段2-6um,液氮制冷,可以带内置前放,多种封装形式可选。
主要应用在光谱测量、气体分析、激光检测、激光测量、红外制导等领域。
————————————————————————————————————————————红外探测器(5):硫化铅(PbS)材质,响应波段为1-3.5um,有室温和热电制冷两种,可以带内置前放,多种封装形式可选。
光电探测器综述摘要:近年来,围绕着光电系统开展了各种关键技术研究,以实现具有高集成度、高性能、低功耗和低成本的光电探测器(Photodetector)及光电集成电路(OEIC)已成为新的重大挑战。
尤其是具有高响应速度,高量子效率和低暗电流的高性能光电探测器,不仅是光通信技术发展的需要,也是实现硅基光电集成的需要,具有很高的研究价值。
本文综述了近十年来光电探测器在不同特性方向的研究进展及未来几年的发展方向,对其的结构、相关工艺和制造的研究具有很重要的现实意义。
关键词:光电探测器,Si ,CMOSAbstrac t: In recent years, around the photoelectric system to carry out the study of all kinds of key technologies, in order to realize high integration, highperformance, low power consumption and low cost of photoelectricdetector (Photodetector) and optoelectronic integrated circuit (OEIC) hasbecome a major new challenge. Especially high response speed ,highquantum efficiency, and low dark current high-performance photodetector,is not only the needs for development of optical communication technology,but also realize the needs for silicon-based optoelectronic integrated,has thevery high research value.This paper reviews the development of differentcharacteristics and results of photodetector for the past decade, and discusses thephotodetector development direction in the next few years,the study of highperformance photoelectric detector, the structure, and related technology,manufacturing, has very important practical significance.Key Word: photodetector, Si ,CMOS一、光电探测器1.1概念光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。
光电探测器的制作及其在通信领域中的应用光电探测器是一种将光信号转化为电信号的器件,也是光通信中关键的组成部分之一。
目前,光电探测器已经广泛应用于通信、医学、军事、航空等领域。
本文将介绍光电探测器的制作及其在通信领域中的应用。
一、光电探测器的制作1.1 探测器的种类常见的光电探测器有光电二极管、光电倍增管、光电子倍增管、光耦合器等。
其中,光电二极管是最常用的一种,它具有易用、低成本、体积小等优点。
1.2 制作工艺光电二极管的制作采用半导体工艺,主要包括以下几个步骤:(1)材料生长:在晶体生长炉中制备出探测器所需的半导体材料,比如硅、锗等。
(2)制作P-N结:在半导体片上涂上金属掩膜,经过光刻、腐蚀等工艺将掩膜除去,然后用掩膜后的半导体材料进行扩散或外延生长,形成P-N结。
(3)包装:将制作好的探测器芯片封装到保护壳内。
二、光电探测器在通信领域中的应用2.1 光通信光通信是一种基于光传输进行信息传输的技术,它具有带宽大、传输距离远、抗干扰性强等优点。
而光电探测器则是将光信号转化为电信号的核心器件。
在光通信系统中,光电探测器扮演着重要的角色,它能够将光信号转化为电信号,并通过信号处理器处理后输出。
2.2 光纤通道检测光纤通道检测是指使用光电探测器检测光纤通道的损耗和信号衰减,在光纤通讯系统中具有非常重要的作用。
光电探测器能够将光信号转化为电信号,通过信号处理器分析电信号的强度,从而确定光纤信道的损耗和衰减程度。
2.3 光纤传感光纤传感是利用光纤作为传感器进行信号检测的一种技术。
光电探测器则是将光信号转化为电信号的核心器件。
在光纤传感系统中,光电探测器通常与光纤衰减器、光源等组成一个光衰减传感器,用于检测光纤信号的衰减程度,从而确定被测量的物理量。
2.4 医疗领域在医疗领域中,光电探测器常用于医学影像系统中的探测器和光源。
光电探测器能够将光信号转化为电信号,并通过信号处理器处理后输出,从而成为医学影像系统的关键组成部分,为医疗事业做出了重要的贡献。
建筑工程中常用的火灾探测器
在建筑工程中,常用的火灾探测器有以下几种:
1. 光电式烟感探测器:该探测器通过光电二极管发射光束,当烟雾进入探测器时,会散射光束,使光电二极管接受到光信号,从而触发火警报警。
这种探测器对烟雾敏感,能及早发现火灾。
2. 离子式烟感探测器:离子式烟感探测器通过放射放射性物质产生离子,当烟雾进入探测器时,会吸附并散射放射性物质产生的离子,从而改变电流的流动情况,触发火警报警。
这种探测器较为敏感,但容易误报。
3. 热敏式感温探测器:热敏式感温探测器通过感温元件感测周围环境的温度变化,当温度超过设定的阈值时,触发火警报警。
这种探测器适用于高温或易产生烟尘的场所。
4. 气体报警探测器:气体报警探测器可以用于检测一氧化碳、甲烷等有害气体浓度。
当检测到有害气体浓度超过设定的阈值时,触发报警。
5. 光纤式烟温一体探测器:光纤式烟温一体探测器是将光电传感器和感温传感器相结合,能够同时检测烟雾和温度变化,能够提高火灾的准确性和可靠性。
这些火灾探测器可以根据具体的建筑场所和需求进行选择和配置,以确保在火灾发生时能够及早发现并采取相应的应急措施。
光电探测器以及光电探测器阵列的研究与应用光电探测器是指用于探测光信号的电子元件。
目前光电探测器已经广泛应用于科学研究、医学、军事、通信、制造业等多个领域。
随着该技术的持续发展,光电探测器阵列已成为研究的重点之一。
光电探测器的种类光电探测器按照其所使用的探测材料不同,可以分为两类:半导体型光电探测器和真空管型光电探测器。
半导体型光电探测器主要由半导体材料组成,常用的半导体材料有硅、锗和化合物半导体(如氮化镓、砷化镓等)。
半导体型光电探测器具有响应速度快、噪声小等优点,目前已成为主流。
真空管型光电探测器常用的是光电倍增管,它由光电阴极、倍增部件和阳极组成。
真空管型光电探测器具有灵敏度高、稳定性好等优点,但是价格相对较高,广泛应用于一些特殊领域,如核物理学、天文学等。
光电探测器阵列的研究与应用光电探测器阵列是指通过多个光电探测器组合而成的探测器,它可以同时探测多个光信号,适用于高精度成像、光谱分析、光学通信等场景。
随着光学技术的快速发展,光电探测器阵列已经成为光电技术中的重要工具。
在太空探测方面,光电探测器阵列已经成为航天器上必不可少的组成部分。
例如在欧空局的ROSITA航天器中,光电探测器阵列被用来探测来自宇宙的X射线辐射。
在医学领域,光电探测器阵列被广泛应用于荧光成像和光学相干断层扫描(OCT)成像。
这些技术被用于研究生物活动的细节,有助于深入了解生命体的结构和机理。
在通信领域,光电探测器阵列是高速光通信系统的重要组成部分。
它能够实现高速数据传输,并且具有低噪声、高响应速度和高灵敏度等优点。
未来的发展趋势虽然目前光电探测器阵列已经有了很好的应用前景,但是其自身的限制也限制了其进一步的发展。
例如目前光电探测器阵列的空间分辨率还不够高,无法满足高精度成像的需求。
为了解决这些问题,未来的研究方向包括:开发新型的高能量光学材料、提高光电探测器的响应速度和灵敏度、开发新型的探测器结构等。
随着这些问题的逐步解决,光电探测器阵列将会在更多领域中得到应用。