直流电机控制实验
- 格式:ppt
- 大小:835.00 KB
- 文档页数:15
直流电动机实验报告直流电动机实验报告引言直流电动机是一种常见的电动机类型,广泛应用于工业生产和日常生活中。
本实验旨在通过实际操作和数据记录,探究直流电动机的工作原理和性能特点。
实验目的1. 了解直流电动机的基本结构和工作原理;2. 掌握直流电动机的调速方法;3. 研究直流电动机的性能特点,如转速、转矩和效率等。
实验器材1. 直流电动机;2. 直流电源;3. 电流表和电压表;4. 转速测量仪。
实验步骤1. 将直流电动机与电源连接,确保电源开关处于关闭状态;2. 通过电流表和电压表测量直流电动机的额定电流和额定电压;3. 打开电源开关,观察直流电动机的运转情况;4. 使用转速测量仪测量直流电动机的转速;5. 调节电源电压,记录不同电压下的转速和电流数据。
实验结果与分析通过实验记录的数据,我们可以得到直流电动机的转速和电流随电压变化的关系。
在低电压下,电动机的转速较低,电流较小;而在高电压下,电动机的转速较高,电流较大。
这是因为直流电动机的转速与电压成正比,电流与负载有关。
此外,我们还可以计算直流电动机的效率。
效率是指电动机输出的功率与输入的功率之比。
通过测量电动机的输入电流和电压,以及输出的机械功率,我们可以计算出直流电动机的效率。
实验结果显示,直流电动机的效率随着负载的增加而下降,这是因为在负载增加的情况下,电动机需要消耗更多的能量来克服摩擦力和阻力。
讨论与结论本实验通过实际操作和数据记录,深入探究了直流电动机的工作原理和性能特点。
通过分析实验结果,我们可以得出以下结论:1. 直流电动机的转速与电压成正比,电流与负载有关;2. 直流电动机的效率随着负载的增加而下降;3. 直流电动机在不同电压下的运转情况各异,可以根据实际需求进行调速。
在实际应用中,直流电动机具有广泛的用途,如工业生产中的机械传动、交通工具中的驱动系统以及家用电器中的电机等。
了解直流电动机的性能特点对于正确选择和使用电动机至关重要。
直流电机实验报告直流电机实验报告篇一:并励直流电机实验报告实验二直流并励电动机一.实验目的1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。
2.掌握直流并励电动机的调速方法。
1.什么是直流电动机的工作特性和机械特性?答:工作特性:当U = UN, Rf + rf = C时,η, n ,T 分别随P2 变;机械特性:当U = UN, Rf + rf = C时, n 随 T 变;2.直流电动机调速原理是什么?答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。
即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的。
二.预习要点三.实验项目1.工作特性和机械特性保持U=UN 和If =IfN 不变,测取n=f(Ia)及n=f(T2)。
2.调速特性(1)改变电枢电压调速保持U=UN 、If=IfN =常数,T2 =常数,测取n=f(Ua)。
(2)改变励磁电流调速保持U=UN,T2 =常数,R1 =0,测取n=f(If)。
(3)观察能耗制动过程四.实验设备及仪器1.MEL-I系列电机教学实验台的主控制屏。
2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。
3.可调直流稳压电源(含直流电压、电流、毫安表)4.直流电压、毫安、安培表(MEL-06)。
5.直流并励电动机。
6.波形测试及开关板(MEL-05)。
S (2)测取电动机电枢电流Ia、转速n和转矩T2,共取数据7-8组填入表1-8中表1-8 U=UN=220V If=IfN=0.0748A Ka= Ω 2.调速特性(1)改变电枢端电压的调速表1-9 I(2)改变励磁电流的调速一7接线 f:直流电机电枢MEL-09) MEL-03中两Ω电阻并联。
刀双掷开关(MEL-05)六.注意事项-全文完-。
第⼆章直流电机实验第⼆章直流电机实验2-1 认识实验⼀、实验⽬的1、学习电机实验的基本要求与安全操作注意事项。
2、认识在直流电机实验中所⽤的电机、仪表、变阻器等组件及使⽤⽅法。
3、熟悉他励电动机(即并励电动机按他励⽅式)的接线、起动、改变电机转向与调速的⽅法。
⼆、预习要点1、如何正确选择使⽤仪器仪表。
特别是电压表电流表的量程。
2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产⽣什么严重后果?3、直流电动机起动时,励磁回路串接的磁场变阻器应调⾄什么位置? 为什么? 若励磁回路断开造成失磁时,会产⽣什么严重后果?4、直流电动机调速及改变转向的⽅法。
三、实验项⽬1、了解DD01电源控制屏中的电枢电源、励磁电源、校正直流测功机、变阻器、多量程直流电压表、电流表及直流电动机的使⽤⽅法。
2、⽤伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。
3、直流他励电动机的起动、调速及改变转向。
四、实验设备及控制屏上挂件排列顺序12、控制屏上挂件排列顺序D31、D42、D51、D31、D44五、实验说明及操作步骤1、由实验指导⼈员介绍DDSZ-1型电机及电⽓技术实验装置各⾯板布置及使⽤⽅法,讲解电机实验的基本要求,安全操作和注意事项。
2、⽤伏安法测电枢的直流电阻图2-1 测电枢绕组直流电阻接线图(1)按图2-1接线,电阻R ⽤D44上1800Ω和180Ω串联共1980Ω阻值并调⾄最⼤。
A 表选⽤D31上的直流安培表。
开关S 选⽤D51挂箱上的双⼑双掷开关。
(2)经检查⽆误后接通电枢电源,并调⾄220V 。
调节R 使电枢电流达到0.2A (如果电流太⼤,可能由于剩磁的作⽤使电机旋转,测量⽆法进⾏;如果此时电流太⼩,可能由于接触电阻产⽣较⼤的误差),迅速测取电机电枢两端电压U 和电流I 。
将电机转⼦分别旋转三分之⼀和三分之⼆周,同样测取U 、I 三组数据列于表2-1中。
(3)增⼤R 使电流分别达到0.15A 和0.1A ,⽤同样⽅法测取六组数据列于表2-1中。
直流电动机实验报告电机实验报告课程名称:______电机实验_________指导老师:___ _____成绩:__________________实验名称:_______直流并励电动机___________实验类型:________________同组学生姓名:一、实验目的和要求1.掌握用实验方法测取直流并励电机的工作特性和机械特性。
2.掌握直流并励电机的调速方法。
二、主要仪器设备D17直流并励电动机,测功机,实验工作台三、实验步骤与内容1.记录名牌数据:额定电压220V,额定电流1.1A,额定功率185W,额定转速1600r/min,额定励磁电流 <0.16A特性和机械特性<1> 电动机启动前,将R1最大,Rf调至最小,测功机常规负载旋钮调至零,直流电压调至零,各个测量表均调至最大量程处。
<2> 接通实验电路,将直流电压源调至25伏左右,在电动机转速较慢的情况下,判断其转向是否与测功机上箭头所示方向一致。
若不一致,则将电枢绕组或励磁绕组反接。
<3> 将R1调至零,调节直流电压源旋钮,使U=220V,转速稳定后将测功机转矩调零。
同时调节直流电源旋钮,测功机的加载旋钮和电动机的磁场调节电阻Rf,使U=UN=220V,I=IN=1.1A,n=nN=1600r/min,记录此时励磁电流If,即为额定励磁电流IfN。
<4> 在保持U=UN=220V,If=IfN=0.071A及R1=0不变的条件下,逐次减小电动机的负载,测取电动机输入电流I,转速n和测功机转矩M,其中必要测量额定点和空载点。
<5> 根据公式 P2=0.105*n*M2,P1=U*I η= P2/ P1*100% Ia=I-IfN, 计算出Ia、P2、η4.调速特性(1)改变电枢端电压的调速<1> 直流电动机启动后,将电枢调节电阻R1调至0,同时调节测功机、直流电源及电阻Rf,使U=UN=220V,M2=500mN.m,If=IfN=0.071A<2> 保持此时的M2和If=IfN,逐次增加R1的阻值,即降低电枢两端的电压Ua,测取Ua,n, I (2)改变励磁电流的调速<1> 直流电动机启动后,将电阻R1和Rf调至0,同时调节测功机、直流电源,使电动机U=UN=220V,M2=500mN.m。
实验报告系院电气与电子工程学院专业电气工程及其自动化班级学生姓名学号指导教师成绩2020年06月10日教务处印制广东···实验报告系:电气与电子工程学院专业:电气工程及其自动化年级:姓名:学号:实验时间: 2020.06.10 指导教师签字:成绩:(2)电流量程的选择因为直流并励电动机的额定电流为1.2A,测量电枢电流的电表A3可选用直流安培表的5A量程档;额定励磁电流小于0.16A,选用直流毫安表的200mA量程档。
(3)电机额定转速为1600r/min,转速表选用1800r/min量程档。
(4)变阻器的选择变阻器选用的原则是根据实验中所需的阻值和流过变阻器最大的电流来确定,电枢回路R1可选用D44挂件的1.3A的90Ω与90Ω串联电阻,磁场回路R f1可选用D44挂件的0.41A的900Ω与900Ω串联电阻。
4、直流他励电动机的起动准备按图4-2接线。
图中直流他励电动机M用DJ15,其额定功率P N=185W,额定电压U N=220V,额定电流I N=1.2A,额定转速n N=1600r/min,额定励磁电流I fN<0.16A。
校正直流测功机MG作为测功机使用,TG为测速发电机。
直流电流表选用D31。
R f1用D44的1800Ω阻值作为直流他励电动机励磁回路串接的电阻。
R f2选用D42的1800Ω阻值的变阻器作为MG励磁回路串接的电阻。
R1选用D44的180Ω阻值作为直流他励电动机的起动电阻,R2选用D42上的900Ω串900Ω加上900Ω并900Ω共2250Ω阻值作为MG的负载电阻。
接好线后,检查M、MG及TG之间是否用联轴器直接联接好。
(1)检查按图2-2的接线是否正确,电表的极性、量程选择是否正确,电动机励磁回路接线是否牢固。
然后,将电动机电枢串联起动电阻R1、测功机MG的负载电阻R2、及MG的磁场回路电阻R f2调到阻值最大位置,M的磁场调节电阻R f1调到最小位置,断开开关S,并确认断开控制屏下方右边的电枢电源开关,作好起动准备。
单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。
本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。
二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。
电机通过功率电路接受控制器的指令,实现转速调节。
编码器用于测量电机转速,电流传感器用于测量电机电流。
三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。
2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。
3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。
4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。
5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。
四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。
实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。
2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。
实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。
3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。
实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。
五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。
实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。
然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。
因此,在实际应用中,还需要进一步优化和改进。
六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。
例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。
同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。
直流电动机实验报告
当涉及到直流电动机的实验报告时,我们需要考虑实验的目的、原理、实验步骤、结果分析和结论等方面。
以下是一个可能的实验
报告结构:
1. 实验目的,在这一部分,我们会明确阐述实验的目的,例
如研究直流电动机的特性、了解电动机的工作原理等。
2. 原理介绍,这一部分会简要介绍直流电动机的工作原理,
包括电动机的结构、工作原理和相关的理论知识。
3. 实验步骤,这一部分会详细描述实验的步骤,包括实验所
需的仪器设备、实验操作流程,以及需要注意的安全事项。
4. 实验结果,在这一部分,我们会列出实验的数据和观察结果,可能包括电动机的转速、电流、电压等数据。
5. 结果分析,这一部分会对实验结果进行分析,可能包括对
数据的处理和图表的绘制,以及对实验现象的解释和理论知识的联系。
6. 结论,最后,我们会总结实验的结果,回答实验目的是否达到,对实验中遇到的问题进行讨论,并提出可能的改进方案。
以上是一个可能的直流电动机实验报告的结构,根据具体的实验内容和要求,实验报告的结构和内容可能会有所不同。
希望这些信息能够帮助到您。
电机控制实训报告.doc本次实训内容是电机控制,主要学习了电机的基本概念和原理,了解了常见的电机控制方式和控制器的结构与工作原理,并进行了实际的控制实验。
一、电机基本概念和原理电机是一种将电能转换成机械能的装置。
其基本原理是利用导体在磁场中受到的力矩来实现动力转换。
电机有直流电机和交流电机两种,其中交流电机又分为异步电机和同步电机。
在直流电机中,电源将电流通过线圈产生磁场,磁场与永久磁场相互作用产生转动力矩。
在交流电机中,由于磁场随着交变电流的变化而不断变化,因此需要通过定子绕组和转子绕组的相互作用产生旋转运动。
同步电机则需要与交流电源保持恒定的频率同步运转。
二、常见的电机控制方式1. 直接控制直接控制是通过改变电机的电压和电流来控制其转速和输出功率。
在直接控制中,通常采用变压器、可变电阻、晶闸管等控制元件来调节电源电压和电流大小。
这种方式简单易行,但精度较低,通常用于低功率、不需要精确控制的场合。
间接控制是通过控制电机的同步器或电子控制器来实现转速、转矩和功率的调整。
其主要优点在于可实现精确控制,并能适应不同负载变化的需求。
常见的间接控制方式包括电阻降压起动、并联电容器起动、转子阻抗调速、电子调速等。
三、电机控制器的结构与工作原理电机控制器的主要作用是将电能转换成机械能输出,并根据需要对其速度、转矩和功率进行控制。
其通常包括电源模块、信号处理模块和动力输出模块三个部分。
电源模块是控制器的关键组成部分,其目的是将外部电源转换成可驱动电机的电能。
信号处理模块则是负责检测电机的运行状态,根据需要向电源模块发出控制信号。
动力输出模块则将控制信号转换成适合电机的电流或电压输出,驱动电机运转。
四、实际控制实验本次实验分为两个部分,第一部分是直接控制实验,第二部分是采用电子调速的间接控制实验。
在实验过程中,我们采用电机控制器和电源模块,根据实验要求进行各项参数的调整,以实现对电机的控制。
在第一部分的实验中,我们通过调整电源电压和电阻,控制了电机的转速和输出功率。
第一章直流电机调速系统实验实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
直流他励电动机实验报告6页实验目的:了解直流他励电动机的原理和特点,掌握其转速的调节方法及应用场合,熟悉其电路连接法,实现电机控制。
实验仪器:直流电源、电动机、万用表、直流电流表、直流电压表、NPN晶体管、电阻等。
实验原理:直流电动机是一种经典的旋转电机,它利用磁场的作用原理转动电机,并且具有启动转矩大、稳定性好等优点,在许多场合被广泛应用。
直流电动机分为分别励磁和他励磁两种,两者的区别在于励磁电流来源的不同:分别励磁电机的励磁电流来自于外部电源,而他励磁电机则是通过磁铁、电池等磁场能量来产生磁通量,从而产生磁场。
他励磁电机有较好的稳态性能,无论负载有多大,其励磁电流大小均可以保持不变,但外部电源对它影响较大。
因此在调节转速时应注意外界环境,应保证其励磁电流的稳定。
该实验主要探究的是他励磁电动机。
电路图如下:图中VD1为升压二极管,其作用是将直流电源从5V提升至8V,使得晶体管能够正常工作;R1和R2为电路中的固定电阻,R3为可变电阻,用于调节电机的转速;M1为直流他励电动机,VM1为三位直流电压表,IM1为三位直流电流表,U1是NPN型晶体管。
实验过程:1. 将直流电源的正端口接到电机的A1口,负端口接到电机的A2口。
2. 拨动电阻可变部分,根据观察到的电动机运行状态轻轻地调整电动机的转速,从慢到快。
3. 确定电动机的最大转速后,测量电机电压和电流值,实验数据如下:电机电压:6.95V 电机电流:0.058A4. 在调整电阻可变部分时,观察三位电压和电流表的变化。
由于电阻可变部分的改变,电动机的转速会变快或变慢,但是电阻的大小也会影响励磁电流,因此调整时要注意保持电机电流的稳定。
5. 利用NPN晶体管进行电机转速的控制,为实验提供更加自动化的控制方式。
将晶体管的负端口接到电机的A2口,正端口接到电动机的A1口,再根据需要调整电动机转速。
实验结果分析:实验中观察到,直流他励电动机可以通过调节电阻实现转速控制,但是电机电流和电动机转速之间的关系要加以注意。
第1篇一、实验目的1. 了解伺服电机的工作原理及性能特点。
2. 掌握伺服电机的驱动与控制方法。
3. 通过实验验证伺服电机在直流电源下的运行特性。
二、实验原理伺服电机是一种用于自动控制系统中执行机械运动的电机,其特点是能够精确控制转速、位置和转矩。
直流伺服电机主要由永磁转子、电枢绕组和电刷等部分组成。
当给电枢绕组施加直流电压时,转子在磁场中受力产生转矩,从而使电机旋转。
三、实验设备1. 伺服电机2. 直流电源3. 电机驱动器4. 电流表、电压表5. 万用表6. 电脑及伺服电机控制软件四、实验步骤1. 连接电路:将伺服电机、直流电源、电机驱动器、电流表、电压表等设备按照实验电路图连接好。
2. 启动电机:打开直流电源,观察电机是否能够正常启动。
3. 测量电机参数:使用电流表、电压表和万用表测量电机的电流、电压和电阻等参数。
4. 调整电机转速:通过改变直流电源的输出电压,观察电机转速的变化,记录不同电压下的转速。
5. 控制电机位置:使用伺服电机控制软件,控制电机旋转到指定位置,并记录旋转角度。
6. 测量转矩:在电机旋转过程中,使用扭矩传感器测量电机输出的转矩,记录不同转速下的转矩。
7. 分析实验数据:根据实验数据,分析电机在不同工作条件下的性能特点。
五、实验结果与分析1. 电机启动:实验中,电机在接通直流电源后能够顺利启动。
2. 电机参数测量:通过测量,得到电机在空载和负载条件下的电流、电压和电阻等参数,为后续分析提供依据。
3. 电机转速:实验结果表明,电机转速与直流电源输出电压成正比,当电压升高时,电机转速也随之升高。
4. 电机位置:通过伺服电机控制软件,能够精确控制电机旋转到指定位置,且旋转角度稳定。
5. 电机转矩:实验结果表明,电机转矩与转速成反比,当转速升高时,电机转矩降低。
六、实验结论1. 直流伺服电机能够实现精确控制转速、位置和转矩。
2. 电机转速与直流电源输出电压成正比,转矩与转速成反比。
直流电机的实验报告2-2直流发电机一、实验目的1、掌握用实验方法测定直流发电机的各种运行特性,并根据所测得的运行特性评定该被试电机的有关性能。
2、通过实验观察并励发电机的自励过程和自励条件。
二、预习要点1、什么是发电机的运行特性?在求取直流发电机的特性曲线时,哪些物理量应保持不变,哪些物理量应测取。
2、做空载特性实验时,励磁电流为什么必须保持单方向调节?3、并励发电机的自励条件有哪些?当发电机不能自励时应如何处理?4、如何确定复励发电机是积复励还是差复励?三、实验项目1、他励发电机实验(1)测空载特性保持n=n N使I L=0,测取U0=f(I f)。
(2)测外特性保持n=n N使I f=I fN,测取U=f(I L)。
(3)测调节特性保持n=n N使U=U N,测取I f=f(I L)。
2、并励发电机实验(1)观察自励过程(2)测外特性保持n=n N使R f2=常数,测取U=f(I L)。
3、复励发电机实验积复励发电机外特性保持n=n N使R f2=常数,测取U=f(I L)。
四、实验设备及挂件排列顺序1、实验设备2、屏上挂件排列顺序D55-4,D31、D44、D31、D42、D51五、实验方法1、他励直流发电机(必做)按图1-2-1接线。
图中直流发电机G选用DJ13,其额定值PN=100W,UN =200V,IN=0.5A,nN=1600r/min。
直流电动机DJ23-1作为G的原动机(按他励电动机接线)。
涡流测功机、发电机及直流电动机由联轴器同轴联接。
开关S选用D51组件上的双刀双掷开关。
Rf1选用D44的1800Ω变阻器,Rf2 选用D42的900Ω变阻器,并采用分压法接线。
R1选用D44的180Ω变阻器。
R2为发电机的负载电阻选用D42,采用串并联接法(900Ω与900Ω电阻串联加上900Ω与900Ω并联),阻值为2250Ω。
当负载电流大于0.4 A时用并联部分,而将串联部分阻值调到最小并用导线短接。
直流电动机闭环调速实验本实验主要是利用闭环控制思想来完成直流电动机的调速实验。
直流电动机是工业生产中最常见的驱动装置之一,其广泛应用于动力和万向传动领域,因而其调速功能也显得特别重要。
本实验所采用的直流电动机主要是通过调整直流电源的电压来实现调速的,闭环调速实验主要包括系统建模、控制参数的选择、控制效果的评估等内容。
一、实验原理直流电动机是一种较为简单的电机。
在工作过程中,它的转速与电源电压有很大的关系。
电源电压越高,电机的转速越快;反之,电源电压越低,电机的转速也越慢。
因此,通过改变直流电源的电压,就可以实现直流电动机的调速。
这种方法叫做电压调速。
但是,这种方法的调速精度无法满足需要,因此采用闭环控制调速,可以更加精准地调节直流电动机的转速。
2. 直流电动机闭环控制原理闭环控制是一种基于反馈的控制方法,控制器通过传感器获得输出反馈信号,从而实现对系统控制的精准调节。
在直流电动机的闭环调速中,可以通过安装转速传感器来获得电动机输出的转速信号,控制器则根据转速信号对输出电压进行调节,从而控制电机的转速。
二、实验设备直流电动机、电源、转速传感器、PID调节器、数字万用表、示波器。
三、实验步骤1. 点动实验点动实验是为了检测电机正反转和控制信号的传输情况。
在实验开始之前,先将转速传感器安装在电机上,并将调节器与传感器相连。
将电机接通电源,观察电机是否正常运转。
然后,用调节器控制电机正反转,观察电机运动方向是否正确。
最后,观察调节器的数值是否能够正常反映电机运转的转速。
2. 建立数学模型在实验过程中,需要对电机系统进行建模。
首先,采用传递函数的方法对电机系统进行建模,建立电机系统的传递函数,然后对传递函数进行调整,从而得到合适的控制器参数。
3. 选择控制参数根据实验结果,选择合适的控制参数。
在本实验中,采用PID控制器来完成闭环控制。
将调节器设定为PID控制模式,并分别测试不同比例系数、积分系数和微分系数下的调节效果,选择合适的控制参数。
32单片机pwm控制直流电机的实验报告实验名称:32单片机PWM控制直流电机实验实验目的:通过学习和实验,让学生了解32单片机PWM控制直流电机的原理和实现方式。
实验原理:PWM即脉冲宽度调制,是一种常用的调制方式。
其原理是基于脉冲的占空比,通过改变脉冲的宽度来控制输出信号的平均值。
在32单片机中,我们可以通过配置寄存器和引脚功能来实现PWM输出。
此次实验中,我们需要通过PWM控制直流电机的速度。
对于直流电机,我们可以通过改变电机的电压来改变其转速,因此我们可以通过控制PWM信号的占空比来实现对直流电机速度的控制。
实验过程:1、准备材料:32单片机、电位器、直流电机,电容等。
2、将电位器接入32单片机的ADC引脚,通过调节电位器来改变ADC引脚的电压。
3、编写程序,配置32单片机PWM模块,实现对直流电机的速度控制。
程序示例如下:#include <reg52.h>sbit IN1 = P3^0;sbit IN2 = P3^1;sbit EN = P3^2;unsigned int speed;void timer0_init(){TMOD = 0x02;TH0 = 0xff;TL0 = 0xff;ET0 = 1;EA = 1;TR0 = 1;}{timer0_init();while(1){speed = ADC_Get(1);TH0 = speed >> 8;TL0 = speed;P1 = speed;}}void pwm_init(){TMOD |= 0x10;TL1 = 0x00;TH1 = 0x00;ET1 = 1;TR1 = 1;EA = 1;}void pwm_output(unsigned int duty) {int value;value = duty*10;TL1 = value;TH1 = value >> 8;}void timer1_isr() interrupt 3{IN1 = 0;IN2 = 1;pwm_output(90);}void timer0_isr() interrupt 1{EN = 1;}4、进行编译和下载,将32单片机与电机、电源等接线好。
“直流电机调速控制仿真试验”指导书一、实验目的:在Matlab环境中进行闭环直流电机控制系统搭建,通过改变模型参数,对比仿真结果变化,从而体会直流电机调速控制的基本工作原理。
二、实验准备:2.1 直流电机调速的基本原理什么是调速?要求电机按照给定转速信号对负载进行回转驱动,在此过程中应尽可能减小负载对转动速度的影响。
(他励直流电机)电机转速的调节机制,改变电机电枢两端的电压,实现电机转速的变化。
其过程描述如下:电枢电压升高-> 电枢回路中电流升高-> 系统驱动扭矩增大、加速->感生电动势增加-> 电流减小, 达到新的转速平衡点是否有其他调速方式?通过调节电枢回路中的电流进行电机转速调节。
三、实验要求:下图为带速度和电流闭环直流电机调速系统,请分析其工作原理,并搭建相应仿真电路进行仿真计算和数据说明。
图1 直流电机速度、电流闭环模型示意图四、思考题4.1 试将图中速度控制器(Speed Controller)配置为比例和比例积分环节两种情况,比对电机实际速度和设定速度之间的差异现象,并分析其原因。
4.2 试说明图中D1二极管的作用,并采用仿真方法进行验证。
附录:A.部分元件所在Matlab Simulink库中的位置1)DC machine 在simpowersystems下一级machines中2)GTO和D1二极管在simpowersystems下一级Power Electronice中3)Vd电压测量模块在simpowersystems下一级measurements中4)VDC280V和Vr240V在simpowersystems下一级Electrical sources中5)ls电感在simpowersystems下一级elements中6)Scope在simulink下一级sinks中7)PI模块在simpowersystems下一级extra library下一级discrete control blocks中8)demux在simpowersystems下一级machines中9)延长单元1/Z在simulink下一级discrete中10)速度给定单元在simulink下一级sources中11)电流环滞环控制器在simulink下一级Discontinuities中。
实验二直流并励电动机一.实验目的1.掌握用实验方法测取直流并励电动机的工作特性和机械特性;2.掌握直流并励电动机的调速方法;二.预习要点1.什么是直流电动机的工作特性和机械特性答:工作特性:当U = UN , Rf+ rf= C时,η, n ,T分别随P2变;机械特性:当U = UN , Rf+ rf= C时, n 随 T 变;2.直流电动机调速原理是什么答:由n=U-IR/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速;即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的;三.实验项目1.工作特性和机械特性保持U=UN和If=IfN不变,测取n=fIa及n=fT2;2.调速特性1改变电枢电压调速保持U=UN、If=IfN=常数,T2=常数,测取n=fUa;2改变励磁电流调速保持U=UN,T2 =常数,R1 =0,测取n=fIf;3观察能耗制动过程四.实验设备及仪器1.MEL-I系列电机教学实验台的主控制屏;2.电机导轨及涡流测功机、转矩转速测量MEL-13、编码器、转速表;3.可调直流稳压电源含直流电压、电流、毫安表4.直流电压、毫安、安培表MEL-06;压表MEL-06G :涡流测功机I S :涡流测功机励磁电流调节,位于MEL-13;2测取电动机电枢电流I a 、转速n 和转矩T 2,共取数据7-8组填入表1-8中表1-8 U =U N =220V I f =I f N = K a = Ω速特性电调= 2改变励磁电流的调速表T 2=1一7接线 f :直流电机电枢调节电阻MEL-09 MEL-03中两只900Ω;MEL-05.直流电动机起动前, 测功机加载旋钮调至零. 实验做完也要将测功机负载钮调到零,否则电机起动时,测功机会受到冲击;2.负载转矩表和转速表调零.如有零误差,在实验过程中要除去零误差; 3.为安全起动, 将电枢回路电阻调至最大, 励磁回路电阻调至最小; 4.转矩表反应速度缓慢,在实验过程中调节负载要慢;5.实验过程中按照实验要求, 随时调节电阻, 使有关的物理量保持常量, 保证实验数据的正确性;七.实验数据及分析1.由表1-8计算出 P2和η,并绘出n 、T2、η=fI a 及n=fT 2的特性曲线; 电动机输出功率 P 2=式中输出转矩T 2 的单位为N ·m,转速n 的单位为r /min; 电动机输入功率:P 1=UI 电动机效率 η=12P P ×100% 电动机输入电流:I =I a +I fN 由工作特性求出转速变化率: Δn=NNO n n n ×100% 解:对第一组数据,有:P 2=×1600×=I =I a +I fN =+0.0748A=1.1748AP1=220×= η= P 2/ P 1×100%==77%Δn=1600-1600/1600 ×100%=% 同理可得其他数据,见表1-8;转速n 的特性曲线如下: 转矩T 2的特性曲线如下: η=fI a 的特性曲线如下: n=fT 2的特性曲线如下: 并励电动机调速特性曲线n=fUa 如下: 并励电动机调速特性曲线n=fI f 如下:2.绘出并励电动机调速特性曲线n=fU a 和n=fI f ;分析在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点;解:在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点为: 调压调速是在基速以下调节转速的方法,电压越小,转速越小;调压调速的优点:1可实现无级调速;2相对稳定性较好;3调速范围较宽,D 可达10-20;4调速经济性较好;调压调速的缺点:需要一套可控的直流电源;弱磁调速是在基速以上调节转速的方法,励磁电流减小,磁通变小,转速升高;弱磁调速的优点:1控制方便,能量损耗小;2可实现无级调速;弱磁调速的缺点:由于受电动机机械强度和换向火花的限制,转速不能太高,调速范围窄,一般要与调压调速配合使用;3.能耗制动时间与制动电阻RL的阻值有什么关系为什么该制动方法有什么缺点能耗制动时间与制动电阻RL的阻值的大小有关,制动电阻越大,制动过程的时间越长;反之制动时间越短;这是因为在能耗制动过程中,制动时间主要取决于TMn ,TMn与制动电阻成正比,所以制动电阻越大,制动过程的时间越长;采用能耗制动方法停车的缺点在于在制动过程中,随着转速的下降,制动转矩随着减小,制动效果变差;八.问题讨论1.并励电动机的速率特性n=fIa为什么是略微下降是否会出现上翘现象为什么上翘的速率特性对电动机运行有何影响答:根据并励电动机的速率特性公式,若忽略电枢反应 ,当电枢回路电流增加时,转速下降;若考虑电枢反应的去磁效应,磁通下降可能引起转速的上升,即出现上翘现象;这样的变化与电枢回路电流增大引起的转速降相抵消,对电动机的影响是使电动机的转速变化很小;2.当电动机的负载转矩和励磁电流不变时,减小电枢端压,为什么会引起电动机转速降低答:由直流电动机机械特性的表达式可知,转速与电枢电压成正比、与磁通量成反比,所以降低电压时转速下降;3.当电动机的负载转矩和电枢端电压不变时,减小励磁电流会引起转速的升高,为什么答:由于磁通与励磁电流在额定磁通以下时基本成正比,所以励磁电流减小时,主磁通也随着减小;由机械特性的表达式可知,当磁通减小时,转速升高;4.并励电动机在负载运行中,当磁场回路断线时是否一定会出现“飞速”为什么答:不一定;这是因为当电动机负载较轻时,电动机的转速将迅速上升,造成“飞车”;但若电动机的负载为重载时,则电动机的电磁转矩将小于负载转矩,使电动机转速减小,但电枢电流将飞速增大,超过电动机允许的最大电流值,烧毁电枢绕组;九、实验体会通过这次实验,我们基本掌握了用实验的方法测取直流并励电动机的工作特性和机械特性,知道直流电动机的调速原理并掌握了直流并励电动机的调速方法;使我们更进一步认识了直流电动机;实验三三相变压器一、实验目的1.通过空载和短路实验,测定三相变压器的变比和参数;2.通过负载实验,测取三相变压器的运行特性;二、预习要点1.如何用双瓦特计法测三相功率,空载和短路实验应如何合理布置仪表;答:在一个三相系统中,任何一相都可以成为另一相的参考点或基准点;Y型接法通常选择中性点作为参考点,即便是三相三线制也将中性点作为参考点;Y型接法的好处是每一相的电压、电流和功率都可以独立测量;如果将三相中的某一相作为参考点,就可以用两只瓦特计测量整个三相系统的功率;空载实验:低压侧接电源,功率表、电流表,高压侧开路;短路实验:高压侧接电源、功率表、电流表,低压侧短路;2.三相心式变压器的三相空载电流是否对称,为什么答:不对称;根据磁势与励磁电流的关系式、磁通与磁阻的关系式可知:当外施三相对称电压时,三相空载电流不相等,中间相B相较小,A相和C相较大. B相磁路较短→B 相磁阻较小→空载运行时,建立同样大小的主磁通所需的电流就小.3.如何测定三相变压器的铁耗和铜耗;答:空载实验测铁耗,短路实验测铜耗;4.变压器空载和短路实验应注意哪些问题电源应加在哪一方较合适答:空载实验:空载实验要加到额定电压,当高压侧的额定电压较高时,为了方便于试验和安全起见,通常在低压侧进行实验,而高压侧开路;短路试验:由于短路试验时电流较大,而外加电压却很低,一般电力变压器为额定电压的4%~10%,为此为了便于测量,一般在高压侧试验,低压侧短路;三、实验项目1.测定变比2.空载实验:测取空载特性U0=fI,P=fU,cos0=fU0;3.短路实验:测取短路特性UK =fIK,PK=fIK,cosK=fIK;4.纯电阻负载实验:保持U1=U1N,cos2=1的条件下,测取U2=fI2;四、实验设备及仪器1.MEL-1电机教学实验台主控制屏含指针式交流电压表、交流电流表2.功率及功率因数表MEL-203.三相心式变压器MEL-024.三相可调电阻900ΩMEL-035.波形测试及开关板MEL-056.三相可调电抗MEL-08五、实验方法4.纯电阻负载实验实验线路如图2-7所示在三相变压器实验中,应注意电压表、电流表和功率表的合理布置;做短路实验时操作要快,否则线圈发热会引起电阻变化;七、实验报告:1.计算变比OO Oo I U P 3cos =ϕK ϕcos 2cos ϕ2cos ϕ由空载实验测取变压器的原、副方电压的三组数据,分别计算出变比,然后取其平均值作为变压器的变比K;K=/2.绘出空载特性曲线和计算激磁参数 1绘出空载特性曲线U O =fI O ,P O =fU O ,O ϕcos =fU O ;式中:2计算激磁参数从空载特性曲线上查出对应于Uo=U N 时的I O 和P O 值,并由下式算出激磁参数 3.绘出短路特性曲线和计算短路参数1绘出短路特性曲线U K =fI K 、P K =fI K 、 =fIK ; 2计算短路参数;从短路特性曲线上查出对应于短路电流I K =I N 时的U K 和P K 值,由下式算出实验环境 温度为θO C 短路参数;折算到低压方由于短路电阻r K 随温度而变化,因此,算出的短路电阻应按国家标准换算到基准工作温度75O C 时的阻值;式中:为铜导线的常数,若用铝导线常数应改为228; 阻抗电压I K = I N 时的短路损耗4.利用空载和短路实验测定的参数,画出被试变压器折算到低压方的“Γ”型等效电路;5.变压器的电压变化率ΔU1绘出 =1 和 = 两条外特性曲线U 2=fI 2,由特性曲线计算出I 2=I 2N 时的电压变化率ΔU2根据实验求出的参数,算出I 2=I 2N 、2cos ϕ=1和I 2=I 2N 、2cos ϕ=时的电压变化率ΔU ; ΔU = U Kr cos 2 + U Kx sin 2将两种计算结果进行比较,并分析不同性质的负载对输出电压的影响;2cos ϕ2cos ϕ*2*26.绘出被试变压器的效率特性曲线(1)用间接法算出 =不同负载电流时的变压器效率,记录于表2-5中;表2-5 cos 2 = P o = W P KN = W式中:I P N = P 2W ; P KN 为变压器IK=IN 时的短路损耗W ;Po 为变压器Uo=UN 时的空载损耗W;2由计算数据绘出变压器的效率曲线η=fI ;3计算被试变压器η=ηmax 时的负载系数 βm = ;数据处理:Rm= Zm= Xm= R1k= Z1k= X1k= R2k= Z2k= X2k=Rk75℃= Zk75℃= Xk75℃= Uk=% Ukr=% Ukx=% Pkn=%10020220⨯-=∆U U U U =% ΔU = UKrcos2 + UKx sin2 =% βm =%100)cos 1(22*22*2*2⨯+++-=KNo N KN o P I P P I P I P ϕη2cos ϕ2cos ϕ*2绘图:1.绘出空载特性曲线图1-11、图1-124.绘出 =1 , = 两条外特性曲线U 2=fI 2图1-45.由计算数据绘出变压器的效率曲线η=fI ;图1-5图1-11图1-122.绘出短路特性曲线图1-2图1-23.利用空载和短路实验测定的参数,画出被试变压器折算到低压方的“Γ”型等效电路图1-3图1-4八、实验体会本次实验做了空载、短路实验以及负载实验,测定了三相变压器的变比和其他参数,和三相变压器的运行特性;学会了功率因素表的使用,对三相变压器有了感性的认识;实验四 三相鼠笼异步电动机的工作特性一.实验目的1.掌握三相异步电机的空载、堵转和负载试验的方法; 2.用直接负载法测取三相鼠笼异步电动机的工作特性; 3.测定三相笼型异步电动机的参数;二.预习要点1. 异步电动机的工作特性指哪些特性答:1.转速特性 2.定子电流特性 3.功率因数特性 4.电磁转矩特性5.效率特性2.异步电动机的等效电路有哪些参数它们的物理意义是什么答:励磁电阻Rs 励磁电抗Xs 转子折算到定子侧的电阻R ‘r转子折算到定子侧的电抗X ’ro 转子每相的感应电动势 E ’ro; 3.工作特性和参数的测定方法;答:通过测取输出功率求异步电动机的工作特性;由空载、短路试验测取异步电动机的等效电路的参数;三.实验项目1.测量定子绕组的冷态电阻; 2.判定定子绕组的首未端; 3.空载试验; 4.短路试验; 5.负载试验;四.实验设备及仪器1.MEL-Ⅰ电机教学实验台主控制屏;2.电机导轨及测功机、矩矩转速测量MEL-13;3.交流功率、功率因数表MEL-20;4.直流电压、毫安、安培表MEL-06;5.三相可调电阻器900ΩMEL-03;6.波形测试及开关板MEL-05;7.三相鼠笼式异步电动机M04;五.实验步骤1.测量定子绕组的冷态直流电阻;伏安法测量定子绕组电阻,测量线路如图3-1;R:四只900Ω和900Ω电阻相串联MEL-03;A:直流毫安表,采用MEL-06 200mA档;V:直流电压表,采用万用表直流20V档;符号S表示手动接或不接万用表调节R使A表分别为50mA,40mA,30mA测取三次,取其平均值,测量定子三相绕组的电阻值,记录于表3-1中;注意事项:①在测量时,电动机的转子须静止不动;电机定子一相绕组图3-1 三相交流绕组的电阻的测定先用万用表测出各相绕组的两个线端,将其中的任意二相绕组串联如图3-2所示;4.短路实验测量线路如图3-3;5.负载实验1.计算基准工作温度时的相电阻由实验直接测得每相电阻值,此值为实际冷态电阻值;冷态温度为室温;按下式换算到基准工作温度时的定子绕组相电阻:式中 r lef ——换算到基准工作温度时定子绕组的相电阻,Ω;r 1c ——定子绕组的实际冷态相电阻,Ω;θref ——基准工作温度,对于E 级绝缘为75O C ; θc ——实际冷态时定子绕组的温度,O C2.3.4. 1由短路试验数据求短路参数短路阻抗 Z K =30.5060=短路电阻R K =0.525=50 R 'X 2Z R KKK I UZ =23KK K I P r =σ1X X X O m -=空载电抗 X O =2287.5-952.6=式中 U 0、I 0、P 0 —— 相应于U 0为额定电压时的相电压、相电流、三相空载功率;激磁电抗 X m =激磁电阻 R m =230.4*39.12)(= 式中 P Fe 为额定电压时的铁耗,由图3-4确定;5.作工作特性曲线P 1、I 1、n 、η、S 、cos 1=fP 2 S 关于n 的图像P 1、I 1、cos 1=fP 2 的图像P 1,P 2,K 的关系图像如下图所示:由负载试验数据计算工作特性,填入表3-6中;表3-6 U 1 = 220V △ I f = A式中 I 1——定子绕组相电流,A ; U 1——定子绕组相电压,V ;12113r I P CU =)(2'O O U f P = S ——转差率;η——效率;6.由损耗分析法求额定负载时的效率 电动机的损耗有:铁耗 P Fe 由空载试验可得:P Fe = 机械损耗 mec 有空载试验可知P mec = P O - P Fe =定子铜耗 P cul =3×2×= 转子铜耗P cu2=×÷100=杂散损耗P ad 取为额定负载时输入功率的%; P ad =×%= 式中 P em ——电磁功率,W ;P em = P 1 -P cul - P FeP em = 铁耗和机械损耗之和为: P0′= P Fe + P mec = P O - 3I O 2r 1P0′=+=为了分离铁耗和机械损耗,作曲线, 如图3-4; 延长曲线的直线部分与纵轴相交于P 点,P 点的纵座标即为电动机的机械损耗P mec ,过P 点作平行于横轴的直线,可得不同电压的铁耗P Fe ;电机的总损耗ΣP = P Fe + P cul + P cu2 + P ad ΣP=+++=于是求得额定负载时的效率为: η=÷×100﹪=﹪式中 P 1、S 、I 1由工作特性曲线上对应于P 2为额定功率P N 时查得;七.思考题1.由空载、短路试验数据求取异步电机的等效电路参数时,有哪些因素会引起误差 答:读数时产生的误差,仪表的误差,由于实验时线圈会发热,随着温度的升高电阻也会跟着变化,这也会产生误差;2.从短路试验数据我们可以得出哪些结论 答1.有回馈电源功率;2.短路时线电压很小3.由直接负载法测得的电机效率和用损耗分析法求得的电机效率各有哪些因素会引起误差答:由直接负载法测得的电机效率主要可能引起误差的是测量读数时仪表产生的误差;由损耗分析法求得的电机效率主要可能引起误差的因素是由图像读数时产生的误差;八、实验体会通过本次实验,我们基本掌握了三相异步电机的空载和负载实验的方法,学会了用直接负载法测取三相鼠笼异步电动机的工作特性,并掌握测定三相笼型异步电动机的参数,对异步电机有了更深的了解;。
并励直流电机实验报告实验⼆直流并励电动机⼀.实验⽬的1.掌握⽤实验⽅法测取直流并励电动机的⼯作特性和机械特性。
2.掌握直流并励电动机的调速⽅法。
⼆.预习要点1.什么是直流电动机的⼯作特性和机械特性?答:⼯作特性:当U = UN , Rf+ rf= C时,η, n ,T分别随P2变;机械特性:当U = UN , Rf+ rf= C时, n 随 T 变;2.直流电动机调速原理是什么?答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。
即通过⼈为改变电动机的机械特性⽽使电动机与负载两条特性的交点随之改变,从⽽达到调速的⽬的。
三.实验项⽬1.⼯作特性和机械特性保持U=UN和If=IfN不变,测取n=f(Ia)及n=f(T2)。
2.调速特性(1)改变电枢电压调速保持U=UN、If=IfN=常数,T2=常数,测取n=f(Ua)。
(2)改变励磁电流调速保持U=UN,T2 =常数,R1 =0,测取n=f(If)。
(3)观察能耗制动过程四.实验设备及仪器1.MEL-I系列电机教学实验台的主控制屏。
2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。
3.可调直流稳压电源(含直流电压、电流、毫安表)R 1、Rf:电枢调节电阻和磁场调节电阻,位于MEL-09。
mA、A、V2:直流毫安、电流、电压表(MEL-06)G:涡流测功机IS:涡流测功机励磁电流调节,位于MEL-13。
(2)测取电动机电枢电流Ia 、转速n和转矩T2,共取数据7-8组填⼊表1-8中表1-8 U=UN =220V If=If N=0.0748A Ka= Ω2.调速特性(1)改变电枢端电压的调速(2)改变励磁电流的调速(3)能耗制动1⼀7接线f:直流电机电枢调节电(MEL-09)MEL-03中两只900MEL-05).直流电动机起动前, 测功机加载旋钮调⾄零. 实验做完也要将测功机负载钮调到零,否则电机起动时,测功机会受到冲击。