车联网发展现状及平台架构技术
- 格式:ppt
- 大小:12.71 MB
- 文档页数:38
智能网联汽车的现状和未来1、何为智能网联汽车智能汽车是在一般汽车上增加雷达、摄像头等先进传感器、控制器、执行器等装置,通过车载环境感知系统和信息终端实现与车、路、人等的信息交换,使车辆具备智能环境感知能力,能够自动分析车辆行驶的安全及危险状态,并使车辆按照人的意愿到达目的地,最终实现替代人来做驾驶决策及操作的目的。
智能汽车的初级阶段是具有先进驾驶助系统( Advanced Driver Assistance Systems,ADAS)的汽车,智能汽车与网络相连便成为智能网联汽车。
智能网联汽车本身具备自主的环境感知能力,也是智能交通系统的核心组成部分,是车联网体系的一个结点,通过车载信息终端实现与车、路、行人、业务平台等之间的无线通信和信息交换。
智能网联汽车的聚焦点是在车上,发展重点是提高汽车安全性,其终极目标是无人驾驶汽车。
因此,智能网联汽车( Intelligent Connected Vehicle,ICV)属于一种跨技术、跨产业域的新兴汽车体系。
从不同角度、不同背景对它的理解是有差异的,各国对智能网联汽车的定义不同,叫法也不尽相同,但终极目标都是可上路安全行驶的无人驾驶汽车。
从狭义上上讲,智能网联汽车是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现V2X智能信息交换共享,具备复杂的环境感知、智能决策、协同控制和执行等功能,可实现安全、舒适、节能、高效行驶,并最终可替代人来操作的新一代汽车。
从广义上讲,智能联汽车是以车辆为主体和主要节点,融合现代通信和网路技术,使车辆与外部节点实现信息共享和协同控制,以达到车辆安全、有序、高效、节能行驶的新一代多车辆系统。
2、智能网联汽车的关键技术和技术现状(1)环境感知技术环境感知包括车辆本身状态感知、道路感知、行人感知、交通信号感知、交通标识感知、交通状况感知、周围车辆感知等。
其中车辆本身状态感知包括行驶速度、行驶方向、行驶状态、车辆位置等;道路感知包括道路类型检测、道路标线识别、道路状况判断、是否偏离行驶轨迹等;行人感知主要判断车辆行驶前方是否有行人,包括白天行人识别、夜晚行人识别、被障得物遗挡的行人识别等;交通信号感知主要是自动识别交又路口的信号灯、如何高效通过交又路口等;交通标识感知主要是识别道路两侧的各种交通标志,如限速、弯道等,及时提醒驾驶员注意;交通状况感知主要是检测道路交通拥堵情况、是否发生交通事故等,以便车辆选择通畅的路线行驶;周围车辆感知主要检测车辆前方、后方、侧方的车辆情况,避免发生碰撞,也包括交叉路口被障碍物遮挡的车辆。
车联网体系结构及其关键技术
汽车联网体系结构及其关键技术:
一、汽车联网体系的基本架构
1. 传感层:包含车载传感器、物联网节点等,可实时监控车辆状态,
并传输信息实时更新。
2. 运输层:采用移动通信网络,包括GSM、CDMA等,为汽车联网提
供固定可靠的交通保障。
3. 网络层:网络架构综合多种网络技术标准,如MS Exchange、HTTP、UDP 等协议,保证汽车联网安全可靠。
4. 应用层:软件设计技术,实现车辆诊断、控制、保养和维修等功能,为智能汽车的发展提供支撑。
二、汽车联网关键技术
1. 无线感知:通过建网和协调信息合作,实现高性能的路由模型,实
现无线访问网络,改善基础设施。
2. 车辆控制:通过精密定位系统以及传输和交互,实现车辆远程控制
功能,保证汽车的安全准确性。
3. 汽车数据集成:通过实时传输和处理数据,可以实现数据的集成、
管理和分析,实现数据的各项分析功能。
4. 服务发现:基于GSM/GPRS和Wifi的收发及车辆智能物联网技术,
实时监控、收集和识别车辆状态,使用精确服务路径、延迟优化等技
术,保证汽车联网系统实时可用性。
5. 安全管理:基于安全网络服务,采用静态分析、动态分析等手段,实现汽车联网系统的安全和有效管理,并保护数据安全。
车联网运营平台车联网是一种在汽车与互联网之间建立起联系与交换数据的技术系统。
它通过车载通信设备与现有互联网相连,实现了汽车与各种信息源的迅速联系,从而使得车辆能够实现远程监控、智能控制、车辆维护等功能。
车联网运营平台作为车联网系统中的重要组成部分,负责对车辆进行信息管理、数据存储和服务提供。
本文将从平台的架构、功能和发展前景三个方面来详细介绍车联网运营平台。
首先,车联网运营平台的架构包括前端、后台和数据中心三个主要模块。
前端模块是指与用户进行交互的界面,可以通过手机APP、网页等形式提供服务;后台模块负责处理用户请求,将用户的需求传递给车辆端,同时也负责车辆端与数据中心之间的数据交互;数据中心模块是车联网运营平台获得海量车辆数据的存储和管理中心,同时也是数据分析与挖掘的主要场所。
这种架构能够将车辆端的数据与用户端的需求进行有效的连接与交互,实现了信息的共享和流动。
其次,车联网运营平台的功能主要包括车辆管理、数据分析和运维支持等方面。
车辆管理是指对车辆进行监控和调度,包括车辆位置追踪、行驶记录统计等功能;数据分析是指对车辆产生的数据进行处理和挖掘,提取有价值的信息,如交通拥堵分析、车辆健康状况分析等;运维支持是指为车辆提供远程维护和售后服务,如故障诊断、预防性维修等。
通过这些功能,车联网运营平台能够为用户提供更好的用车体验和服务,为车辆的运营和管理提供支持和保障。
最后,车联网运营平台的发展前景是十分广阔的。
随着汽车产业的快速发展和用户对智能化、便捷化服务需求的提升,车联网运营平台将会成为汽车行业的重要组成部分。
未来,车联网运营平台将会在车辆安全、智能交通、共享出行等领域发挥更大的作用。
例如,通过与交通管理部门合作,车联网运营平台能够实现实时交通信息的获取和分析,为用户提供最佳的路线推荐;通过与车辆制造商合作,车联网运营平台能够实现车辆的远程升级和软件更新,以保持车辆的最新状态。
这些都将为人们的出行带来更多的便利和安全。
智能网联汽车的技术架构与应用场景分析随着信息技术的飞速发展,汽车领域也不例外,从有人驾驶到自动驾驶,再到如今的智能网联汽车,人们的驾车体验正在发生翻天覆地的变化。
在智能网联汽车的领域内,技术架构和应用场景是两个主要的方面,下面将做详细阐述。
一、技术架构智能网联汽车的技术架构主要是基于现有的车联网技术和人工智能技术。
其中的关键环节有以下几个:1. 通信手段智能网联汽车的产品首先是一个大型的物联网系统,其中最主要的环节即通信手段。
目前,国内主要采用的是5G通信技术,这种技术可以提供超高速的数据传输以及稳定的信号覆盖。
2. 安全控制在车联网中,安全是非常重要的一环,如果没有安全控制,那么车联网在实际应用中难免会遇到安全隐患。
对此,智能网联汽车的安全控制主要是通过车载硬件和软件的协同设计进行保障。
硬件方面采用了双片嵌入式芯片和FPGA等技术,为数据保驾护航。
软件方面则是主要通过加密传输、认证授权、可信计算等技术进行保障。
3. 数据采集和处理数据是智能网联汽车的灵魂,因此数据采集和处理也是其技术架构中非常重要的一环。
数据采集原理的本质是通过各种传感器获取车辆内外部的环境信息。
而数据处理则是通过人工智能技术来对这些数据进行深度学习和挖掘,从而实现智能驾驶。
在人工智能技术方面,主要采用了计算机视觉、机器学习等技术。
二、应用场景智能网联汽车的应用场景非常广泛,从驾驶辅助到自动驾驶再到全场景移动出行,可以说无处不在。
以下是几个比较典型的应用场景:1. 自动泊车自动泊车是智能网联汽车最常见的技术之一,它可以通过车载控制系统判断泊车临街的距离和方位,从而自动倒车入位。
这个应用场景成功的防止了驾驶员停车时的边缘误差和时间浪费等问题,可以实现快速泊车。
2. 预热空调预热空调是智能网联汽车的一个特殊应用场景,主要是通过车辆的智能控制系统,可在车辆处于离开或长时间不运转状态时,提前对车辆的空调进行前置预热,从而在最大程度上减少了车辆发动前的空气污染。
车联网智慧出行综合服务平台研究报告第1章研究背景与意义 (3)1.1 车联网发展概况 (3)1.2 智慧出行需求分析 (3)1.3 研究目标与意义 (4)第2章车联网技术概述 (4)2.1 车联网基本概念 (4)2.2 车联网关键技术 (4)2.3 车联网发展现状与趋势 (5)第3章智慧出行综合服务平台架构设计 (5)3.1 平台总体架构 (6)3.1.1 感知层 (6)3.1.2 传输层 (6)3.1.3 平台层 (6)3.1.4 应用层 (6)3.2 系统模块设计 (6)3.2.1 数据采集模块 (6)3.2.2 数据存储模块 (6)3.2.3 数据处理与分析模块 (7)3.2.4 出行服务模块 (7)3.2.5 用户管理模块 (7)3.3 数据流转与处理 (7)3.3.1 数据采集 (7)3.3.2 数据预处理 (7)3.3.3 数据存储 (7)3.3.4 数据处理与分析 (7)3.3.5 出行服务 (7)3.3.6 用户反馈 (7)第4章用户需求分析与功能规划 (7)4.1 用户需求调研 (7)4.2 功能模块划分 (8)4.3 功能实现与优化 (8)第5章车联网安全技术 (9)5.1 车联网安全风险分析 (9)5.1.1 数据安全风险 (9)5.1.2 系统安全风险 (9)5.1.3 硬件安全风险 (10)5.2 安全体系构建 (10)5.2.1 数据安全保护 (10)5.2.2 系统安全防护 (10)5.2.3 硬件设备安全防护 (10)5.3 安全协议与算法 (10)5.3.2 安全算法 (10)第6章智能交通管理与调度 (11)6.1 交通数据采集与分析 (11)6.1.1 数据采集技术 (11)6.1.2 数据分析方法 (11)6.2 智能交通信号控制 (11)6.2.1 信号控制策略 (11)6.2.2 信号控制系统 (11)6.3 交通拥堵缓解策略 (11)6.3.1 路径诱导与优化 (11)6.3.2 交通组织与调度 (11)6.3.3 预防性管控措施 (12)第7章车联网环境下出行服务创新 (12)7.1 出行服务模式创新 (12)7.1.1 个性化定制出行服务 (12)7.1.2 一站式出行服务平台 (12)7.1.3 跨界融合出行服务 (12)7.2 共享出行解决方案 (12)7.2.1 共享出行平台建设 (12)7.2.2 动态定价策略 (12)7.2.3 共享出行安全监管 (12)7.3 新能源汽车推广与运营 (13)7.3.1 新能源汽车政策支持 (13)7.3.2 新能源汽车充电设施建设 (13)7.3.3 新能源汽车运营服务创新 (13)7.3.4 新能源汽车售后服务体系 (13)第8章智慧出行平台数据挖掘与分析 (13)8.1 数据挖掘技术概述 (13)8.1.1 数据挖掘技术原理 (13)8.1.2 数据挖掘技术在智慧出行领域的应用 (13)8.2 用户出行行为分析 (14)8.2.1 用户出行特征分析 (14)8.2.2 用户出行偏好挖掘 (14)8.3 驾驶行为分析与优化 (14)8.3.1 驾驶行为特征分析 (14)8.3.2 驾驶行为优化策略 (14)第9章案例分析与应用示范 (14)9.1 国内外智慧出行案例介绍 (14)9.1.1 国内智慧出行案例 (15)9.1.2 国外智慧出行案例 (15)9.2 应用示范项目规划与实施 (15)9.2.1 项目规划 (15)9.2.2 项目实施 (15)9.3.1 效益评估 (16)9.3.2 推广策略 (16)第十章智慧出行综合服务平台发展前景与挑战 (16)10.1 发展前景展望 (16)10.1.1 技术创新驱动 (16)10.1.2 产业发展协同 (16)10.1.3 市场需求旺盛 (17)10.2 技术与产业挑战 (17)10.2.1 技术瓶颈 (17)10.2.2 产业协同不足 (17)10.2.3 标准体系缺失 (17)10.3 政策与市场环境分析 (17)10.3.1 政策环境分析 (17)10.3.2 市场环境分析 (17)10.3.3 发展建议 (17)第1章研究背景与意义1.1 车联网发展概况车联网作为新一代信息技术与交通运输领域的深度融合,近年来在我国得到了广泛关注与迅速发展。
车联网中的网络架构与优化方法在当今数字化和智能化飞速发展的时代,车联网作为一项关键技术,正逐渐改变着我们的交通出行方式和体验。
车联网通过将车辆与各种设备、网络和服务连接起来,实现了车辆之间、车辆与基础设施之间以及车辆与互联网之间的信息交换和协同工作。
然而,要实现高效、可靠和安全的车联网服务,合理的网络架构设计和优化方法至关重要。
车联网的网络架构主要由车辆终端、路侧单元、基站、核心网和云平台等部分组成。
车辆终端是车联网的基本单元,负责采集车辆的各种信息,如位置、速度、行驶状态等,并将这些信息上传至网络。
路侧单元则分布在道路沿线,用于与车辆终端进行通信,提供实时的路况信息和交通管理指令。
基站作为无线网络的接入点,负责将车辆和路侧单元的信息传输至核心网。
核心网则对数据进行处理和转发,实现不同网络之间的互联互通。
云平台则提供强大的计算和存储能力,用于处理和分析海量的车联网数据,为用户提供各种增值服务。
在车联网的网络架构中,面临着诸多挑战。
首先是网络覆盖问题。
由于车辆的移动性和道路环境的复杂性,如何确保车辆在任何时候、任何地点都能获得稳定的网络连接是一个难题。
其次是数据传输的实时性和可靠性要求高。
车辆在行驶过程中产生的大量实时数据,如车辆控制指令、紧急救援信息等,必须在极短的时间内准确无误地传输。
此外,网络安全也是车联网面临的重要挑战,如何保障车辆和用户的隐私和数据安全,防止黑客攻击和恶意篡改,是车联网发展必须解决的问题。
为了解决这些挑战,需要采用一系列的优化方法。
在网络覆盖方面,可以通过增加基站密度、采用多频段组网和优化天线覆盖等方式来提高网络的覆盖范围和信号质量。
同时,利用卫星通信和自组织网络等技术,为车辆在偏远地区和网络覆盖薄弱区域提供通信保障。
对于数据传输的实时性和可靠性问题,可以采用优先级调度、资源预留和多路径传输等技术。
优先级调度可以根据数据的重要性和紧急程度,为不同类型的数据分配不同的传输优先级,确保关键数据的优先传输。
《车联网系统架构及其关键技术研究》篇一一、引言随着科技的不断进步和人们对智能化、网络化需求的增长,车联网(Vehicular Networking System)技术逐渐成为现代交通领域的重要研究方向。
车联网系统架构及其关键技术研究,对于提升道路交通安全、交通效率以及驾驶体验具有重要意义。
本文将详细探讨车联网系统架构及其关键技术的研究现状与未来发展趋势。
二、车联网系统架构概述车联网系统架构主要包括感知层、网络层和应用层。
感知层主要负责车辆与环境、车辆与车辆之间的信息感知和收集;网络层则负责将感知层收集到的信息传输至应用层;应用层则根据传输的信息进行各种应用服务,如智能导航、自动驾驶等。
1. 感知层感知层主要通过各种传感器、摄像头等设备,实时获取车辆状态、路况信息、环境信息等。
这些信息是车联网系统进行决策和控制的基础。
2. 网络层网络层是车联网系统的核心部分,主要负责将感知层收集到的信息传输至应用层。
网络层采用先进的通信技术,如5G、V2X(Vehicle-to-Everything)等,实现车辆与车辆、车辆与基础设施、车辆与互联网之间的信息交互。
3. 应用层应用层根据网络层传输的信息,进行各种应用服务。
如智能导航系统可以根据实时路况信息为驾驶员提供最佳路线;自动驾驶系统则根据感知到的环境信息,实现车辆的自主驾驶。
三、车联网关键技术研究1. 通信技术通信技术是车联网系统的关键技术之一。
目前,5G和V2X 技术是车联网领域的主要通信技术。
5G技术具有高速率、低时延、大连接数等特点,为车联网提供了强大的通信支持。
而V2X技术则实现了车辆与周围环境的实时信息交互,提高了道路交通安全和交通效率。
2. 数据处理与分析车联网系统需要处理大量的数据信息,因此数据处理与分析技术至关重要。
通过数据挖掘、机器学习等技术,可以从海量的数据中提取有价值的信息,为智能导航、自动驾驶等应用提供支持。
3. 网络安全与隐私保护车联网系统的网络安全和隐私保护问题也不容忽视。
车联网平台架构技术方案车联网平台架构技术方案是一个较为重要且很具挑战性的技术要求,主要是针对车联网的数据交互等技术,在平台技术搭建的过程中提供一个合理化的技术架构方案,以满足车联网平台的高可用性、可靠性、安全性的需求。
下面是一个包含的车联网平台架构技术方案。
1. 系统架构车联网平台的系统架构包括三部分:前端网页开发、后端服务端开发和数据存储。
前端网页开发的目的是为了提供用户友好的网页界面。
后端服务端开发的目的是为了处理业务逻辑、请求数据和提供响应。
数据存储是为了存储平台相关的数据。
2. 技术方案2.1 前端技术车联网平台的前端技术使用HTML、CSS和JavaScript,以及Vue.js框架实现。
HTML实现页面结构,CSS实现页面样式,JavaScript实现页面交互逻辑,Vue.js实现前端组件化开发。
前端技术的整体目的是能够在不同设备上适配不同的屏幕大小,提供用户友好的交互体验。
2.2 后端技术车联网平台的后端技术使用Java语言,以及Spring框架实现。
Spring框架主要包括Spring MVC、Spring Data JPA、Spring Security和Spring Boot。
其中,Spring MVC用于处理Web请求;Spring Data JPA用于操作数据存储;Spring Security用于保障平台安全;Spring Boot用于简化后端开发。
后端技术的整体目的是为平台提供业务逻辑、请求数据和提供响应。
2.3 数据存储车联网平台的数据存储使用MySQL和Redis实现。
MySQL用于存储平台相关的数据,例如用户信息、车辆信息、行程信息等;Redis用于存储平台暂存的临时数据,例如用户登录信息、车辆当前位置信息、任务调度信息等。
数据存储技术的整体目的是为平台提供数据存储的功能。
3. 功能模块车联网平台的功能模块主要包含以下几个方面:3.1 用户管理用户管理是平台管理的核心功能之一,主要包括用户注册、用户登录、用户信息修改、用户密码修改等。
车联网体系结构及关键技术分析摘要:随着我国社会经济的发展,人们生活水平不断提升,人均汽车拥有量不断上升,增加了城市交通的压力,道路承载容量接近饱和,交通安全问题和环保问题日益严峻,对城市的发展产生极为不利的影响。
在这种背景下,企业联网技术的发展,在缓解城市交通压力,提升交通运输效率,疏散交通方面发挥了十分重要的作用。
国外有很多国家开启了智能交通和车辆信息系统,提升了汽车智能驾驶水平,满足了城市良性发展的基本要求。
因此,本文主要针对车联网体系结构及关键技术进行分析。
关键词:车联网体系;结构;关键技术车联网来源于物联网,主要以车辆作为基本的信息单元,整合车辆资源,能够有效改善城市交通现状,丰富信息交通方式,实现了智能化的交通管理。
因此,本文首先分析物联网基础的相关内容,然后结合实际情况,对车联网概念、体系、架构以及关键技术进行分析,从而为当前车联网的发展提供借鉴和帮助。
一、车联网的内容车联网利用电子标签获取车辆的行驶属性和实际运行的状态系想你,利用GPS技术对车辆进行定位,从而获得车辆行驶的位置等信息,通过无线传输技术,实现了汽车联网信息的共享。
通过RFID和传感器获得道路、桥梁等基础设施的基本情况,最大限度实现信息的共享与传输,为车辆驾驶提供高质量的交通服务。
第一,从技术角度来看,车联网技术主要包括电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术,各个技术之间是相互联系,密切配合。
第二,从系统交互的角度来看,具体包括测车辆通信系统、车与人通信系统以及车与路通信系统等。
在车辆通信系统中,可以加强物与物之间的通信,让任何一辆车都可以成为服务器,当作重要的通信终端。
车与路通信系统可以让车辆能够提前获得道路基本运营情况,是否便于车辆行驶。
车与综合信息平台通信系统汇集了大量的车辆行驶信息,为驾驶人员提供信息、出行等方面的信息。
第三,从应用角度来看,车联网技术主要分析监控应用系统、安全系统以及路况信息系统以及安全保障系统。
文/国家信息中心 罗炜宁车联网功能的发展现状和未来趋势编者按:智能化、网联化已经成为未来汽车产业的发展趋势之一,车联网也从最初的车机系统扩展到整车的数字化,“互联网汽车”概念深入人心。
本文研究了几家主流中国品牌和合资品牌车企搭载的车联网系统,发现用户的使用痛点仍未解决,重新取代手机导航、取代用户的U盘、减少车辆控制对驾驶行为的干扰,都成为车联网发展的当务之急。
一、车联网概述车联网系统最初的定义是指通过在车辆仪表台安装车载终端设备,实现对汽车静、动态信息的收发,并经云平台处理信息,监管控制车况信息并提供信息娱乐等服务,也即我们常理解的车机系统的Telematics服务。
目前随着汽车智能化和网联化的不断发展,车联网的定义也在不断扩展。
车联网将不仅仅局限于车机(车载信息娱乐系统),更扩展到车身电子元器件的在线化,车辆ECU的联网化,即实现整车的数字化和在线化。
并且以车内网、车际网和车载移动互联网为基础,实现车与云端、车与人、车与车、车与路等的互联,促进自动驾驶技术创新和应用,缓解交通拥堵,提升交通安全性。
未来等到无人驾驶技术高度成熟,车联网和无人驾驶技术融合,将产生全新的业态,即无人车出行服务,服务体验将得到最大限度的发展和最多场景的应用,成为智能交通的重要一环。
二、车联网功能的发展现状1.车联网功能的总体发展国内车联网功能兴起于2008年左右,正处于2G网络时代,可满足最基础的安防需求和导航需求。
汽车通过T-Box实现了与后台的通讯,使得汽车远程控制功能得到发展,提供以安防需求为核心的功能:离线导航、紧急救援、远程控制、车队管理等。
受用户需求推动,也衍生出了人工酒店机票预订等管家式服务。
但受制于网络连接能力,给用户提供的服务触点局限于人工呼叫键和GPS导航仪,因此在车内一键接通呼叫中心成为最有效、最直接的服务提供方式,呼叫中心成为这一阶段车联网的典型特征。
进入3G、4G时代后,用户更依赖移动互联网服务,导致手机或手机互联应用暂时替代了车联网功能。