5节点电力系统牛顿-拉夫逊法潮流计算
- 格式:doc
- 大小:759.64 KB
- 文档页数:14
牛顿拉夫逊法计算潮流步骤牛顿拉夫逊法(Newton-Raphson Method)是一种常用于计算潮流的数值求解方法。
它是基于潮流计算的功率流方程的非线性特性而设计的,通过迭代求解来逼近潮流计算的稳态解。
下面将介绍牛顿拉夫逊法计算潮流的基本步骤。
首先,我们需要明确潮流计算的目标,即确定电力系统中各节点的电压相角和幅值。
这些节点是电力系统中的发电机、负荷和交流输电线路的连接点。
通过潮流计算,我们可以得到各节点的电压相角和幅值,从而分析系统的功率分布、电压稳定性等运行特性。
接下来,我们需要建立电力系统的潮流计算模型。
这个模型中,我们需要考虑发电机的注入功率、负荷的吸收功率、线路的传输损耗等因素。
通过利用功率流方程,我们可以将这些因素表示为电压、功率和导纳之间的方程。
然后,我们需要进行初始化操作。
在进行牛顿拉夫逊法迭代计算之前,我们需要对电力系统的各节点进行初始电压值的设定。
这些初始值可以根据经验或者历史数据来得到,但需要满足物理约束条件,如一致性、电压幅值在合理范围内等。
接下来,我们进入迭代计算的过程。
首先,我们需要对系统的节点进行编号,然后选择某一节点作为基准节点,其他节点相对于基准节点的电压相角进行计算。
然后,我们根据节点注入功率和导纳矩阵的关系,得到节点注入电流。
接着,我们根据节点注入电流和电压相角的关系,计算各节点的电压相角和幅值的改变量。
在计算改变量后,我们需要对节点电压进行更新。
更新后,我们判断系统是否达到收敛条件。
如果满足收敛条件,则停止迭代,得到最终的潮流计算结果;如果不满足收敛条件,则继续进行下一轮迭代计算。
最后,我们对潮流计算结果进行分析和验证。
通过比较计算得到的结果和实际运行数据进行对比,我们可以评估潮流计算的准确性。
同时,我们还可以通过故障分析、电压稳定性评估等手段对电力系统进行优化和改进。
总而言之,牛顿拉夫逊法是一种常用的求解潮流计算问题的方法。
它通过迭代求解潮流计算的功率流方程,逼近潮流计算的稳态解。
电力系统稳态分析摘要电力系统潮流计算是研究电力系统稳态运行情况的一种重要的分析计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗。
所以,电力系统潮流计算是进行电力系统故障计算,继电保护整定,安全分析的必要工具。
本文介绍了基于MATLAB软件的牛顿—拉夫逊法和P—Q分解法潮流计算的程序,该程序用于计算中小型电力网络的潮流。
在本文中,采用的是一个5节点的算例进行分析,并对仿真结果进行比较,算例的结果验证了程序的正确性和迭代法的有效性。
关键词:电力系统潮流计算;MATLAB;牛顿—拉夫逊法;P-Q分解法;目次1 绪论 01.1背景及意义 01.2相关理论 01。
3本文的主要工作 (1)2 潮流计算的基本理论 (2)2。
1节点的分类 (2)2。
2基本功率方程式(极坐标下) (2)2.3本章小结 (3)3 潮流计算的两种算法 (4)3。
1牛顿—拉夫逊算法 (4)3.2PQ分解算法 (10)3。
3本章小结 (14)4 算例 (15)4.1系统模型 (15)4.2结果分析 (15)4。
3本章小结 (18)结论 (19)参考文献 (20)附录 (21)1 绪论1。
1背景及意义电力系统稳态分析是研究电力系统运行和规划方案最重要和最基本的手段。
电力系统稳态分析根据给定的发电运行方式和系统接线方式来确定系统的稳态运行状态,其中潮流计算针对电力系统的各种正常的运行方式进行稳态分析.潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算.通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等.电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法都离不开迭代.潮流计算方法的改进过程中,经历了高斯-赛德尔迭代法、阻抗法、分块阻抗法、牛顿-拉夫逊法、改进牛顿法、P—Q分解法等。
辽宁工程技术大学电力系统分析综合训练一设计题目5节点电力网络潮流计算指导教师刘健辰院(系、部)电气与控制工程学院专业班级电气12-4学号**********姓名张萌日期2016.5.5电气系综合训练标准评分模板电力系统分析综合训练一 任务书本次综合训练目的在于通过对多节点电网的潮流计算,巩固和运用前面所学到的潮流计算基础理论知识,掌握电力系统潮流计算机计算的一般原则和方法,掌握潮流计算软件的使用方法,培养学生分析问题和解决问题的能力。
5节点系统单线图如下:发电机、变压器、负荷数据见上图和下表。
线路长度和回数数据见后面的班级数据表。
基本数据如下:注:100base S MV A =,节点1和3处15base V kV =,节点2、4、5处345base V kV =。
设计要求:利用PowerWorld建立单线图程序,完成潮流分析计算,给出设计结果。
设计说明书内容:1、任务书2、PowerWorld软件简介及牛顿-拉夫逊潮流计算和PQ分解潮流计算简介3、绘制单线图,进行潮流计算(分别采用牛-拉法和PQ分解法)列表给出潮流计算结果(包括迭代次数,节点电压的幅值和相位,线路有功/无功潮流,发电机输出功率)。
4、手工计算导纳矩阵,并与软件计算结果比较。
5、单步运行牛-拉法潮流计算,给出前3步计算结果(包括节点电压的幅值和相位,线路有功/无功潮流,发电机输出功率)以及雅克比矩阵。
6、在保证每条线路和变压器不过载的情况下,确定节点3上发电机的允许出力范围。
7、在节点2上添加200Mvar并联电容器组,观察节点2电压变化和系统损耗变化。
改变电容器组的容量,提高节点2电压达到0.95。
8、(选做内容)静态安全分析:对“单个线路”和“单个变压器”进行N-1校验分析。
9、结论说明:1. 线路2. 变压器T2为两台并联,并联运行的变压器参数相同。
目录一、综合训练目的: (1)二、简介 (1)1、Power World软件简介: (1)2、潮流计算方法简介 (1)(1)牛顿-拉夫逊潮流计算方法 (1)(2)PQ分解法 (2)三、Power World潮流计算 (2)1、单线图 (2)2、潮流计算结果 (3)(1)牛-拉法潮流计算结果 (3)(2)PQ分解法潮流计算结果 (3)四、计算导纳矩阵 (4)软件计算结果 (5)五、单步运行牛-拉法潮流计算 (5)1、节点以及线路参数 (5)2、雅克比矩阵 (6)六、确定节点3上发电机的允许出力范围 (7)七、并联电容 (8)八、结论 (8)一、综合训练目的:本次综合训练旨在于掌握Power World Simulator 软件构建单线图的方法,通过对软件使用手册的学习,掌握潮流计算软件的使用方法,培养学生分析问题和解决问题的能力。
牛顿拉夫逊法计算潮流步骤牛顿拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程组的迭代方法,它可以用来计算电力系统潮流的解。
潮流计算是电力系统规划和运行中的重要任务,它的目标是求解电力系统中各节点的电压幅值和相角,以及线路的功率流向等参数,用于分析电力系统的稳定性和安全性,以及进行电力系统规划和调度。
下面是使用牛顿拉夫逊法计算潮流的一般步骤:步骤1:初始化首先,需要对电力系统的各个节点(包括发电机节点和负荷节点)的电压幅值和相角进行初始化,一般可以使用其中一种估计值或者历史数据作为初始值。
步骤2:建立潮流方程根据电力系统的潮流计算模型,可以建立节点电压幅值和相角的平衡方程,一般采用节点注入功率和节点电压的关系来表示。
潮流方程一般是一个非线性方程组,包含了各个节点之间的复杂关系。
步骤3:线性化方程组将潮流方程组进行线性化处理,一般采用泰勒展开的方法,将非线性方程组变为线性方程组。
线性化的过程需要计算雅可比矩阵,即方程组中的系数矩阵。
步骤4:求解线性方程组利用线性方程组的求解方法,比如高斯消元法或LU分解法等,求解线性方程组,得到电压幅值和相角的修正量。
步骤5:更新节点电压根据线性方程组的解,更新各个节点的电压幅值和相角,得到新的节点电压。
步骤6:检查收敛性判断节点电压的修正量是否小于设定的收敛阈值,如果满足收敛条件,则停止迭代;否则,返回步骤3,循环进行线性化方程组和线性方程组的求解。
步骤7:输出结果当潮流计算收敛时,输出最终的节点电压幅值和相角,以及线路的功率流向等参数。
牛顿拉夫逊法是一种高效、快速且收敛性良好的方法,广泛应用于电力系统潮流计算。
在实际应用中,可能会遇到多次迭代或者收敛性不好的情况,此时可以采用退火技术或其他优化算法进行改进。
此外,牛顿拉夫逊法的计算也可以并行化,利用多核处理器或者分布式计算集群来加速计算过程。
总之,牛顿拉夫逊法是一种重要的潮流计算方法,通过迭代计算逼近非线性方程组的解,可以得到电力系统中各节点的电压幅值和相角,用于分析电力系统的稳定性和安全性。
电力系统潮流计算完整程序及详细理论说明——秦羽风在我刚开始学习潮流程序时,总是找不到一个正确的程序开始模仿学习。
后来经过多方努力,终于自己写出了一个结构清晰、完整的潮流程序。
此程序是一个通用的程序,只需要修改输入数据的子函数(PowerFlowsData_K)里面的母线、支路、发电机、负荷,就能算任意一个网络结构的交流系统潮流。
很适合初学者学习.为了帮助电力系统的同学一起学习,我将我编写的潮流计算程序分享下来给大家;此程序是在基于牛顿拉夫逊算法的基础上,编写的快速解耦算法。
每一个子程序我都有备注说明。
如果有不对的地方,希望大家指正!下文中呈现的顺序为:网络结构、子程序、主程序、运算结果、程序设计理论说明。
一、网络结构:5节点网络如下图。
二、子程序(共有9个子程序)子程序1:(其他系统,只需要修改Bus、Branch、Generator、Load,这四个矩阵就行了)function [Bus,Branch,Generator,Load]=PowerFlowsData_K%%节点数据% 类型:1-平衡节点;2-发电机PV节点;3—负荷PQ节点;4-发电机PQ节点;Bus=[% 类型电压相角1 1。
06 0;2 1 0;3 1 0;3 1 0;3 1 0];%% 线路数据Branch=[% 发送接收电阻电感(电导电容)并联1 2 0.02 0.06 0 0.06;1 3 0。
08 0。
24 0 0。
05;2 3 0.06 0.18 0 0。
04;2 4 0。
06 0。
18 0 0.04;2 5 0.04 0.12 0 0。
03;3 4 0.01 0.03 0 0。
02;4 5 0.08 0.24 0 0.05];%% 发电机数据Generator=[%节点定有功定无功(上限下限)无功1 0 0 5 —5;2 0。
4 03 —3];%%负载数据Load=[% 节点定有功定无功2 0.2 0.1;3 0。
牛顿—拉夫逊法在电力系统潮流计算的应用与分析潮流计算是电力系统进行稳定计算和故障分析的基础,可以得到各电网各节点的电压,并求得网络的潮流及网络中各元件的电力损耗,进而求得电能损耗。
随着现代电力系统的不断扩大,需要对传统的牛顿-拉夫逊法进行改进,降低初值选取的敏感性和提高收敛速度。
经典的牛顿法给定潮流计算时各节点的类型,确定导纳矩阵、修正方程和迭代收敛条件,将非线性方程组线性化为修正方程组反复迭代求解,因此收敛范围依赖电压的初值;同时求解雅克比矩阵计算量较大,影响计算速度。
1 算法原理1.1 原理介绍牛顿迭代法是取之后,找更接近的方程根,一步一步迭代,找到更接近方程根的近似根。
牛顿迭代法是求方程根的重要方法之一,最大优点是在方程的单根附近具有平方收敛,且还可用来求方程的重根、复根。
电力系统潮流计算,各个母线所供负荷的功率是已知的,各个平衡节点外的节点电压是未知的,可以根据网络结构形成节点导纳矩阵,由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转为求解非线性方程组的问题。
为便于用迭代法解方程组,需将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、未知节点电压不平衡量构成误差方程,解方程得到节点电压不平衡量,节点电压加上其不平衡量构成新的节点电压初值,将其带入原功率平衡方程,重新形成雅可比矩阵,计算新的电压不平衡量,这样不断迭代,一般迭代三到五次就能收敛。
1.2 牛顿—拉夫逊迭代法的一般步骤:(1)形成各节点导纳矩阵 Y。
(2)设节点电压的初始值 U、相角初始值 e、迭代次数初值 0。
(3)计算各节点的功率不平衡量。
(4)根据收敛条件判断是否满足,若不满足则向下进行。
(5)计算雅可比矩阵中的各元素。
(6)修正方程式节点电压。
牛顿拉夫逊法潮流计算牛顿-拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程的数值方法。
它通过迭代逼近根的方式,将非线性方程转化为一系列的线性方程来求解。
在电力系统中,潮流计算用于确定电力网中节点的电压幅值和相角。
潮流计算是电力系统分析的重要基础,可以用于计算电力系统的潮流分布、功率损耗、节点电压稳定度等参数,为电力系统的规划、运行和控制提供参考依据。
牛顿-拉夫逊法是一种常用的潮流计算方法,它的基本思想是通过不断迭代来逼近电网的潮流分布,直到满足一定的收敛条件。
下面将对牛顿-拉夫逊法的具体步骤进行详细介绍。
首先,我们需要建立电力网络的节点潮流方程,即功率方程。
对于每一个节点i,其节点功率方程可以表示为:Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij * sin(θi -θj))) = 0Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij * cos(θi -θj))) = 0其中,Pi和Qi分别为节点i的有功功率和无功功率,Vi和θi分别为节点i的电压幅值和相角,Gij和Bij分别为节点i和节点j之间的导纳和电纳。
接下来,我们需要对每个节点的电压幅值和相角进行初始化。
一般情况下,可以将电压幅值设置为1,相角设置为0。
然后,我们可以开始进行迭代计算。
在每一轮迭代中,我们需要计算每个节点的雅可比矩阵和功率残差,然后更新电压幅值和相角。
雅可比矩阵可以通过对节点功率方程进行求导得到,具体如下:dPi/dVi = -sum(Vj * (Gij * sin(θi - θj) + Bij * cos(θi - θj)))dPi/dθi = sum(Vj * (Gij * Vi * cos(θi - θj) - Bij * Vi * sin(θi - θj)))dQi/dVi = sum(Vj * (Gij * cos(θi - θj) - Bij * sin(θi - θj)))dQi/dθi = sum(Vj * (Gij * Vi * sin(θi - θj) + Bij * Vi * cos(θi - θj)))功率残差可以通过将节点功率方程代入得到,如下:RPi = Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij *sin(θi - θj)))RQi = Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij *cos(θi - θj)))最后,我们可以使用牛顿-拉夫逊法的迭代公式来更新电压幅值和相角,具体如下:Vi(new) = Vi(old) + ΔViθi(new) = θi(old) + Δθi其中,ΔVi和Δθi分别为通过求解线性方程组得到的电压幅值和相角的增量。
(二 〇 一 四 年 十 二 月课 程 论 文 学校代码: 10128 学 号: 20141100304题 目:五节点系统计算机潮流计算编程 学生姓名:张佳羽学 院:电力学院系 别:电力系专 业:电力系统及其自动化指导教师:郭力萍程序设计% 本程序的功能是用牛顿拉夫逊法进行潮流计算n=input('请输入节点数:n=’);nl=input(’请输入支路数:nl=');isb=input('请输入平衡母线节点号:isb=’);pr=input('请输入误差精度:pr=’);B1=input(’请输入由各支路参数形成的矩阵:B1=');B2=input(’请输入各节点参数形成的矩阵:B2=’);X=input('请输入由节点号及其对地阻抗形成的矩阵:X=’);Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);O=zeros(1,n);S1=zeros(nl);for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)—1。
/(B1(i,3)*B1(i,5));Y(q,p)=Y(p,q);Y(q,q)=Y(q,q)+1。
/(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Y(p,p)=Y(p,p)+1。
/B1(i,3)+B1(i,4)./2;end%求导纳矩阵disp('导纳矩阵Y=');disp(Y);G=real(Y);B=imag(Y);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nS(i)=B2(i,1)—B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=real(S);Q=imag(S);ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:nif i~=isbC(i)=0;D(i)=0;for j1=1:nC(i)= C(i)+G(i,j1)*e(j1)—B(i,j1)*f(j1);D(i)= D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);endP1=C(i)*e(i)+f(i)*D(i);Q1=f(i)*C(i)—D(i)*e(i);V2=e(i)^2+f(i)^2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)—B(i,j1)*f(i);X2=B(i,j1)*e(i)—G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1—1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;elseif j1==i&j1~=isbX1=—C(i)-G(i,i)*e(i)—B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X3=D(i)+B(i,i)*e(i)-G(i,i)*f(i);X4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);p=2*i-1;q=2*j1—1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;endendelseDP=P(i)—P1;DV=V(i)^2—V2;for j1=1:nif j1~=isb&j1~=iX1=—G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)—G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isbX1=—C(i)—G(i,i)*e(i)—B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=—2*f(i);p=2*i-1;q=2*j1—1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend%求雅可比矩阵for k=3:N0k1=k+1;N1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ(k,k)=1;if k~=3;k4=k—1;for k3=3:k4for k2=k1:N1J(k3,k2)= J(k3,k2)—J(k3,k)*J(k,k2);endJ(k3,k)=0;endif k==N0,break;endfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endelsefor k3=k1:N0for k2=k1:N1J(k3,k2)= J(k3,k2)—J(k3,k)*J(k,k2);endJ(k3,k)=0;endendendfor k=3:2:N0—1L=(k+1)。
摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。
以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少.本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China,meaning, and then use specific examples,a brief introduction, how to use MALAB to the flow calculation in power systems。
As we all know, is the study of power flow calculation of power system steady-state operation of a calculation,which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part:the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation;number of fault analysis and optimization also requires a corresponding flow calculation for cooperation;power flow calculation program often become the an important part. These,mainly in the way of system design and operation arrangements in the application areas are off—line calculation。
目录摘要11.设计意义与要求2 1.1设计意义21.2设计要求32.牛顿—拉夫逊算法3 2.1牛顿算法数学原理:32.2 直角坐标系下牛顿法潮流计算的原理43 详细设计过程10 3.1节点类型103.2待求量103.3导纳矩阵103.4潮流方程113.5修正方程124.程序设计15 4.1 节点导纳矩阵的形成154.2 计算各节点不平衡量164.3 雅克比矩阵计算- 19 -4.4 LU分解法求修正方程- 22 -4.5 计算网络中功率分布- 25 -5.结果分析- 25 -6.小结- 29 -参考文献- 30 -附录:- 31 -摘要潮流计算是电力网络设计及运行中最基本的计算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中各元件的电力损耗,进而求得电能损耗。
在数学上是多元非线性方程组的求解问题,求解的方法有很多种。
牛顿—拉夫逊法是数学上解非线性方程式的有效方法,有较好的收敛性。
将牛顿法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使牛顿法在收敛性、占用存、计算速度等方面都达到了一定的要求。
本文以一个具体例子分析潮流计算的具体方法,并运用牛顿—拉夫逊算法求解线性方程关键词:电力系统潮流计算牛顿—拉夫逊算法1.设计意义与要求1.1设计意义潮流计算是电力系统分析中的一种最基本的计算,他的任务是对给定运行条件确定系统运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
具体表现在以下方面:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
牛顿—拉夫逊法潮流计算一、 潮流计算的基本原理实际电力系统中的节点类型5二、实际电力系统中的节点类型123452s 3s 4s 过渡节点:PQ 为0的给定PQ 节点,如图的节点5网络中各节点的性质:负荷节点:给定功率P 、Q 如图中的3、4节点如图中的节点1,可能有两种情况:给定P 、Q 运行,给定P 、V 运行3. 负荷发电机混合节点:PQ 节点,如图中的节点2发电机节点负荷节点负荷节点混合节点过渡节点1. 负荷节点:2. 发电机节点:4.潮流计算中节点类型划分6三、潮流计算中节点类型的划分也称为松弛节点,摇摆节点123452s 3s 4s 平衡节点PQ 节点PQ 节点PV 节点PQ 节点PQ∈Ω1. PQ 节点:已知P 、Q负荷、过渡节点,PQ 给定的发电机节点,大部分节点PV ∈Ω给定PV 的发电机节点,具有可调电源的变电所,少量节点2.PV 节点:已知P 、V3. 平衡节点+基准节点:已知V 、δ采用极坐标,节点电压表示为()cos sin i i i i i i V V V j δδδ=∠=+节点功率将写成⎪⎪⎭⎪⎪⎬⎫-=+=∑∑==n j ij ij ij ij j i i nj ij ij ij ij j i i B G V V Q B G V V P 11)cos sin ()sin cos (δδδδ (1) 式中,ij i j δδδ=-,是i 、j 两节点电压的相角差。
方程式把节点功率表示为节点电压的幅值和相角的函数。
在有n 个节点的系统中,假定第1~m 号节点为P Q 节点,第1~1m n +-号节点为PV 节点,第n 号节点为平衡节点。
n V 和n δ是给定的,PV 节点的电压幅值11~m n V V +-也是给定的。
因此,只剩下1n -个节点的电压相角121,,,n δδδ- 和m 个节点的电压幅值12,,,m V V V 是未知量。
实际上,对于每一个P Q 节点或每一个PV 节点都可以列写一个有功功率不平衡量方程式()1(cos sin )01,2,,1ni is i is i j ij ij ij ij j P P P P V V G B i n δδ=∆=-=-+==-∑ (2)而对于每一个P Q 节点还可以再列写一个无功功率不平衡量方程式()1(sin cos )01,2,,ni is i is i j ij ij ij ij j Q Q Q Q V V G B i m δδ=∆=-=--==∑ (3)式(2)和式(3)一共包含了1n m -+个方程式,正好同未知量的数目相等,而比直角坐标形式的方程少了1n m -+个。
牛顿拉夫逊法潮流计算牛顿拉夫逊法是计算电力系统中电流、电压的常用方法之一,也称为牛顿-拉夫逊-里特法或简称为NR法。
资深的电力系统工程师一定对这个方法非常熟悉,但是对于刚刚接触电力系统的人来说,可能会对此感到迷惑。
本文将为大家简单介绍牛顿拉夫逊法的基本步骤,帮助大家更好地理解和使用。
在介绍牛顿拉夫逊法之前,我们需要先了解一些电力系统的基本概念。
电力系统由许多发电厂、输电线路、变电站和用户组成,其中输电线路和变电站是将电能长距离输送和转换的设备。
电力系统中的发电机、负荷和输电线路都具有电阻和电抗,它们之间的复杂相互作用决定了电力系统中的电流和电压。
牛顿拉夫逊法用于计算电力系统节点之间的电流和电压。
节点是指电力系统中有电流和电压变化的点,例如发电机和变电站。
在计算电力系统节点的电流和电压时,我们需要使用一些基本的公式和原理,比如克希荷夫定律和欧姆定律。
下面是牛顿拉夫逊法的基本步骤:1. 确定电力系统中的节点和口纳负荷在计算电力系统的电流和电压之前,我们需要先确定电力系统中所有的节点和负载。
这通常是由电网规划人员完成的。
2. 初始化电力系统中的电流和电压在计算过程中,我们需要先给电力系统中的节点和口纳负荷赋初值。
此时,我们需要假设所有节点的电压相同,即电力系统处于平衡状态。
3. 建立节点电流和电压的方程组建立节点电流和电压的方程组并对其进行求解是计算电力系统电流和电压的关键步骤。
利用克希荷夫定律和欧姆定律,可以得到关于节点电流和电压的一系列方程,这个方程组的解即为电力系统的电流和电压。
4. 更新节点电流和电压求解得到电力系统的电流和电压之后,我们需要更新节点电流和电压的值。
更新后的节点电流和电压将作为下一次计算的初值。
5. 判断计算结果收敛在使用牛顿拉夫逊法计算电力系统电流和电压时,我们需要判断计算结果是否收敛。
如果计算结果没有收敛,即结果不稳定或不趋于一个确定的值,那么我们需要重新建立方程组并进行求解。
牛顿拉斐逊法潮流计算牛顿拉夫逊法(Newton-Raphson method)是一种数值计算方法,用于解非线性方程。
其原理是通过迭代来逼近方程的根。
在电力系统中,牛顿拉夫逊法常用于求解潮流计算问题。
潮流计算是电力系统调度运行和规划的基础工作,其目的是确定电力系统各节点的电压幅值和相角,以及各支线上的功率和无功功率。
通过潮流计算可以有效地评估电力系统的稳定性和运行状态,并为电力系统的调度和规划提供参考依据。
牛顿拉夫逊法的核心思想是通过接近方程的根来求解非线性方程。
其基本步骤如下:1.初始化:选取一个初始点作为方程的近似解,通常选择电力系统的平衡状态作为初值。
2.构造雅可比矩阵:根据潮流方程的特点,建立牛顿拉夫逊法的雅可比矩阵。
雅可比矩阵描述了非线性方程的导数关系,用于迭代计算过程中的线性化。
3.迭代计算:利用雅可比矩阵和当前解向量,构建迭代格式,并计算得到新的解向量。
迭代格式中,包括牛顿方程和拉夫逊方程。
牛顿方程用于计算不平衡功率的校正量,而拉夫逊方程用于计算不平衡电压的校正量。
4.收敛判断:判断迭代计算得到的新解是否满足收敛条件。
通常使用误差向量的范数作为判断依据。
如果误差向量的范数小于预先设定的阈值,即可认为迭代已经收敛。
5.循环迭代:如果迭代计算得到的新解不满足收敛条件,继续进行迭代计算,直到达到收敛条件为止。
牛顿拉夫逊法的优点是收敛速度较快,尤其适用于求解非线性方程的问题。
然而,该方法也存在一些缺点。
首先,牛顿拉夫逊法需要提供一个合适的初始点,如果初始点选择不当,可能会导致迭代过程发散。
其次,构造雅可比矩阵和计算迭代格式的过程较为复杂,需要一定的数学基础和计算能力。
在电力系统潮流计算中,牛顿拉夫逊法广泛应用于求解节点电压和支路功率的平衡方程。
通过牛顿拉夫逊法,可以准确地计算出系统各节点的电压幅值和相角,指导电网的调度运营和规划工作。
总之,牛顿拉夫逊法是一种重要的数值计算方法,特别适用于求解非线性方程。
电力系统网络潮流计算—牛顿拉夫逊法牛顿拉弗逊法(Newton-Raphson Method)是一种常用的电力系统网络潮流计算方法,用于求解复杂电力系统中的节点电压和支路潮流分布。
本文将对牛顿拉弗逊法进行详细介绍,并讨论其优缺点及应用范围。
牛顿拉弗逊法的基本原理是通过迭代计算,将电力系统网络潮流计算问题转化为一个非线性方程组的求解问题。
假设电力系统有n个节点,则该方程组的节点电压和支路潮流分布可以通过以下公式表示:f(x)=0其中,f为非线性函数,x为待求解的节点电压和支路潮流分布。
通过泰勒展开,可以将f在其中一点x_k处展开为:f(x)≈f(x_k)+J_k(x-x_k)其中,J_k为f在x_k处的雅可比矩阵,x_k为当前迭代步骤的解。
通过令f(x)≈f(x_k)+J_k(x-x_k)=0,可以求解方程J_k(x-x_k)=-f(x_k),得到下一步的迭代解x_{k+1}。
通过不断迭代,可以逐步接近真实的解,直到满足收敛条件为止。
牛顿拉弗逊法的迭代公式如下:x_{k+1}=x_k-(J_k)^{-1}f(x_k)其中,(J_k)^{-1}为雅可比矩阵J_k的逆矩阵。
牛顿拉弗逊法的优点之一是收敛速度快。
相比其他方法,如高斯赛德尔法,牛顿拉弗逊法通常需要更少的迭代次数才能达到收敛条件。
这是因为牛顿拉弗逊法利用了函数的一阶导数信息,能够更快地找到接近解的方向。
然而,牛顿拉弗逊法也存在一些缺点。
首先,该方法要求求解雅可比矩阵的逆矩阵,计算量较大。
尤其是在大型电力系统网络中,雅可比矩阵往往非常大,计算逆矩阵的复杂度高。
其次,如果初始猜测值不合理,可能会导致算法无法收敛,需要选择合适的初始值,否则可能陷入局部极小值。
牛顿拉弗逊法在电力系统网络潮流计算中有广泛的应用。
该方法可以用于计算节点电压和支路潮流分布,提供电力系统分析和设计的重要数据。
它可以用于稳态分析、短路分析、负荷流分析等多种电力系统问题的求解。
这些问题在电力系统规划、运行和控制等方面都具有重要意义。
两机五节点网络潮流计算—牛拉法基于Matpower2机5节点系统的潮流计算方法引言Matpower是基于MatlabM文件的组建包,主要用来解决电力潮流和优化潮流的问题。
Matpower的设计理念是尽可能简单易懂,它可以执行电力常规潮流运算,如牛顿拉夫逊法,P-Q分解法等,也可以执行最优潮流程序。
本文主要对执行常规的潮流计算进行分析。
1Matpower的简介内蒙古科技大学课程设计说明书是导线则为0,如果支路元件为变压器,则该变比为fbu侧母线的基准电压与tbu侧母线的基准电压之比;angle用来设置支路的相位角度,如果支路元件为变压器,其值就是变压器的转角,如果支路元件不是变压器,则相位角度为0°。
可以处理高价机组停机的直流OPF;runopf.m是运行最优潮流计算程序,可运行一个潮流计算程序;runuopf.m运行可以处理高价机组停机的OPF。
本文应用的是runpf.m,即将编写好的程序存为caei(i是自己设定的序号),并存在Matpower的文件夹下,接着在Matlab的命令窗口输入runpf(‘caei’),然后回车即可得到结果。
2潮流计算本文以两机五节点系统为例来对其电网潮流情况进行分析。
系统接线图如下:2内蒙古科技大学课程设计说明书G0.45+j0.150.4+j0.0510.08+j0.2430.01+j0.0340.02+j0.0620.04+j0.1 2G-(0.2+j0.2)50.6+j0.10.08+j0.24j0.18+60.0.180.06+j0系统接线图(其中节点1为平衡节点,节点2、3、4、5为PQ节点。
)该系统的基准容量是100MVA,有5个节点数,每个节点就是一条母线,母线下有各供电线路,支路数为3条。
电源点的基准电压设为1.05(p.u.),电源点有功容量为500MW,电源点无功容量为0Mvar。
其已知的节点参数、发电机参数和支路参数如图1所示。
将已知参数输入Matpower软件系统,通过运行分析,所得到的各节点和支路的计算参数如图2所示。
(二 〇 一 四 年 十 二 月课 程 论 文 学校代码: 10128 学 号: ***********题 目:五节点系统计算机潮流计算编程 ****:***学 院:电力学院系 别:电力系专 业:电力系统及其自动化****:***程序设计% 本程序的功能是用牛顿拉夫逊法进行潮流计算n=input('请输入节点数:n=');nl=input('请输入支路数:nl=');isb=input('请输入平衡母线节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入由各支路参数形成的矩阵:B1=');B2=input('请输入各节点参数形成的矩阵:B2=');X=input('请输入由节点号及其对地阻抗形成的矩阵:X='); Y=zeros(n); e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);O=zeros(1,n);S1=zeros(nl);for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5));Y(q,p)=Y(p,q);Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;end%求导纳矩阵disp('导纳矩阵Y=');disp(Y);G=real(Y);B=imag(Y);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nS(i)=B2(i,1)-B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=real(S);Q=imag(S);ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:nif i~=isbC(i)=0;D(i)=0;for j1=1:nC(i)= C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);D(i)= D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);endP1=C(i)*e(i)+f(i)*D(i);Q1=f(i)*C(i)-D(i)*e(i);V2=e(i)^2+f(i)^2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X3=D(i)+B(i,i)*e(i)-G(i,i)*f(i);X4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;endendelseDP=P(i)-P1;DV=V(i)^2-V2;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV; m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend%求雅可比矩阵for k=3:N0k1=k+1;N1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ(k,k)=1;if k~=3;k4=k-1;for k3=3:k4for k2=k1:N1J(k3,k2)= J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endif k==N0,break;endfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endelsefor k3=k1:N0for k2=k1:N1J(k3,k2)= J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endendendfor k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N);k1=k+1;f(L)=f(L)-J(k1,N);endfor k=3:N0DET=abs(J(k,N));if DET>=prIT2=IT2+1;endendICT2(a)=IT2;ICT1=ICT1+1;for k=1:ndy(k)=sqrt(e(k)^2+f(k)^2);endfor i=1:nDy(ICT1,i)=dy(i);endend%用高斯消去法解“w=-J*V”disp('迭代次数');disp(ICT1);disp('没有达到精度要求的个数'); disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);shita(k)=atan(f(k)./e(k))*180/pi;E(k)=e(k)+f(k)*j;enddisp('各节点的实际电压标么值E为(节点号从小到大排列):'); disp(E);disp('各节点的电压大小V为(节点号从小到大排列):');disp(V);disp('各节点的电压相角时shita为(节点号从小到大排列):'); disp(shita);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);disp('各条支路的首端功率Si为(顺序同您输入B1时一样):'); for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q) ))*conj(1./(B1(i,3)*B1(i,5))));disp(Si(p,q));enddisp ('各条支路的末端功率Sj为(顺序同您输入B1时一样):');for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p) ))*conj(1./(B1(i,3)*B1(i,5))));disp(Sj(q,p));enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一样):' );for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endDS(i)=Si(p,q)+Sj(q,p);disp(DS(i));endfor i=1:ICT1Cs(i)=i;enddisp('以下是每次迭代后各节点的电压值(如图所示)');plot(Cs,Dy),xlabel('迭代次数'),ylabel('电压'),title('电压迭代次数曲线');运行结果如下所示:请输入节点数:n=5请输入支路数:nl=5请输入平衡母线节点号:isb=1请输入误差精度:pr=>> 0.00001请输入由各支路参数形成的矩阵:B1=[1 2 0.03i 0 1.05 0;2 3 0.08+0.3i 0.5i 1 0;2 4 0.1+0.35i 0 1 0;3 4 0.04+0.25i 0.5i 1 0;3 5 0.015i 0 1.05 1]请输入各节点参数形成的矩阵:B2=[0 0 1.05 1.05 0 1;0 3.7+1.3i 1 0 0 2;0 2+1i 1 0 0 2;0 1.6+0.8i 1 0 0 2;5 0 1.05 1.05 0 3]请输入由节点号及其对地阻抗形成的矩阵:X=[1 0;2 0;3 0;4 0;5 0]导纳矩阵Y0 -33.3333i 0 +31.7460i 0 0 00 +31.7460i 1.5846 -35.7379i -0.8299 + 3.1120i -0.7547 + 2.6415i 00 -0.8299 + 3.1120i 1.4539 -66.9808i -0.6240 + 3.9002i 0 +63.4921i0 -0.7547 + 2.6415i -0.6240 + 3.9002i 1.3787 - 6.2917i 00 0 0 +63.4921i 0 0 -66.6667i迭代次数5没有达到精度要求的个数7 8 8 6 0各节点的实际电压标么值E为(节点号从小到大排列):1.0500 1.0335 - 0.0774i 1.0260 + 0.3305i 0.8592 - 0.0718i 0.9746 + 0.3907i各节点的电压大小V为(节点号从小到大排列):1.0500 1.0364 1.0779 0.8622 1.0500各节点的电压相角时shita为(节点号从小到大排列):0 -4.2819 17.8535 -4.7785 21.8433各节点的功率S为(节点号从小到大排列):2.5794 + 2.2994i -3.7000 - 1.3000i -2.0000 - 1.0000i -1.6000 - 0.8000i 5.0000 + 1.8131i各条支路的首端功率Si为(顺序同您输入B1时一样):2.5794 + 2.2994i-1.2774 + 0.2032i0.1568 + 0.4713i1.5845 + 0.6726i5.0000 + 1.8131i各条支路的末端功率Sj为(顺序同您输入B1时一样): -2.5794 - 1.9745i1.4155 - 0.2443i-0.1338 - 0.3909i-1.4662 - 0.4091i-5.0000 - 1.4282i各条支路的功率损耗DS为(顺序同您输入B1时一样): -0.0000 + 0.3249i0.1381 - 0.0412i0.0230 + 0.0804i0.1184 + 0.2635i0.0000 + 0.3849i本程序符号说明(1)clc,clear清屏,清除以前显示结果;(2)disp 显示待输出的内容,如disp('节点总数为:'),显示:节点总数为:;(3)for,end;循环语句,用于要循环的地方;(4)/ 正除;\ 反除;(5)sum 求和;(6)conj 复数求共轭;(7)% 注释(8):自然数循环如1:5以下是每次迭代后各节点的电压值(如图1所示):图1 每次迭代后各节点的电压值。