哈尔滨市中考数学模拟试卷含答案解析
- 格式:doc
- 大小:645.00 KB
- 文档页数:27
2024学年黑龙江省哈尔滨市道里区重点中学中考数学模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为()A.1 B.4 C.8 D.122.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是()A.5 B.4 C.3 D.25.在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107B.3.4×106C.3.4×105D.34×1056.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°7.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ8.下列计算或化简正确的是( ) A .234265+= B .842= C .2(3)3-=-D .2733÷=9.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( ) A .1.35×106B .1.35×105C .13.5×104D .135×10310.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④11.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°12.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.14.计算35的结果等于_____.15.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.16.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.17.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.18.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P是切点,AB123OP6=,=则劣弧AB 的长为.(结果保留π)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)20.(6分)如图1,反比例函数kyx=(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN 面积的最大值.21.(6分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.22.(8分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.23.(8分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|24.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)25.(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A 、B 两位同学都最认可“微信”,C 同学最认可“支付宝”D 同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.26.(12分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?27.(12分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),利用二次函数的性质得到P (-2b a ,244ac b a-),利用x 1、x 2为方程ax 2+bx+c=0的两根得到x 1+x 2=-b a ,x 1•x 2=ca ,则利用完全平方公式变形得到AB=|x 1-x 2|=24b ac a - ,接着根据等腰直角三角形的性质得到|244ac b a-|=12•24b aca -,然后进行化简可得到b 2-1ac 的值. 【题目详解】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),顶点P 的坐标为(-2b a ,244ac b a-),则x 1、x 2为方程ax 2+bx+c=0的两根, ∴x 1+x 2=-b a ,x 1•x 2=ca,∴AB=|x 1-x 2=∵△ABP 组成的三角形恰为等腰直角三角形,∴|244ac b a -|=12•a ,222(4)16b ac a -=2244b ac a-, ∴b 2-1ac=1. 故选B . 【题目点拨】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质. 2、A【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106, 故选A.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3、D 【解题分析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案. 【题目详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 、23233x xx y x y ++≠--,错误;B 、22629y yx x≠,错误; C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D . 【题目点拨】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心. 4、C 【解题分析】先解不等式组得到-1<x≤3,再找出此范围内的正整数. 【题目详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个, 故选C . 【题目点拨】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集. 5、B 【解题分析】解:3400000=63.410⨯. 故选B. 6、C 【解题分析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【题目详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【题目点拨】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.7、D【解题分析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【题目详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【题目点拨】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.8、D【解题分析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;=,故C错误;C3===,正确.D3故选D.9、B【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】 解:135000=1.35×105 故选B . 【题目点拨】此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10、C 【解题分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案; ②根据自变量为-1时函数值,可得答案; ③根据观察函数图象的纵坐标,可得答案; ④根据对称轴,整理可得答案. 【题目详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误; ②由图象,得x=-1时,y <0,即a-b+c <0,故②正确; ③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误; ④由对称轴,得x=-2ba=1,解得b=-2a , 2a+b=0 故④正确; 故选D . 【题目点拨】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.11、B【解题分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【题目详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【题目点拨】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.12、B【解题分析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-23≤y≤2【解题分析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【题目详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y最大为2,当x=2时y最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【题目点拨】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.14、5【解题分析】分析:直接利用二次根式的性质进行化简即可.点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.15、1【解题分析】根据弧长公式l=nπr180代入求解即可.【题目详解】解:∵nπrl180 =,∴180lr4nπ==.故答案为1.【题目点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=nπr 180.16、2【解题分析】如图,过A点作AE⊥y轴,垂足为E,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=217、6n+1.【解题分析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒, 第3个图形有10=6×1+8根火柴棒, ……,第n 个图形有6n+1根火柴棒.18、8π.【解题分析】试题分析: 因为AB 为切线,P 为切点,22,636,12,260,60OP AB AP BP OP OB OP PB OP AB OB OPPOB POA ︒︒∴⊥∴===∴=+=⊥=∴∠=∠= 劣弧AB 所对圆心角考点: 勾股定理;垂径定理;弧长公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62【解题分析】(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE 时,△DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【题目详解】解:(1)如图1中,当点E在BC上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO ,∴△AOE ∽△DOE′,∴AO :OD=EO :OE',∴AO :EO=OD :OE',∵∠AOD=∠EOE′,∴△AOD ∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E 的运动轨迹是直线EE′(过点E 与BC 成60°角的直线上),∴EC 的最小值即为线段CM 的长(垂线段最短),设E′N=CN=a ,则AN=4-a ,在Rt △ANE′中,tan75°=AN :NE',∴=4a a -,∴∴在Rt △CE′M 中,∴CE【题目点拨】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20、(1)(2)3,13y x =-;(3)14+【解题分析】试题分析:(1)根据反比例函数图象上点的坐标特征易得(2)作BH ⊥AD 于H ,如图1,根据反比例函数图象上点的坐标特征确定B 点坐标为(1,),则﹣1,﹣1,可判断△ABH 为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC ﹣∠BAH=30°,根据特殊角的三角函数值得tan ∠DAC=3;由于AD ⊥y 轴,则OD=1,Rt △OAD 中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t)(0<t<),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,3t﹣1),则MN=t﹣,根据三角形面积公式得到S△CMN=12•t•),再进行配方得到S=﹣6t2+8(0<t<,最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得×(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=x,得∴B点坐标为(1,),∴1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=3;∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得1kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为﹣1;(3)设M点坐标为(t,23t)(0<t<23),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,33t﹣1),∴MN=23t﹣(33t﹣1)=23t﹣33t+1,∴S△CMN=12•t•(23t﹣33t+1)=﹣36t2+12t+3=﹣36(t﹣32)2+938(0<t<23),∵a=﹣36<0,∴当t=32时,S有最大值,最大值为938.21、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(3+132-,2)或(3132-,2)或(3+172-,2)或(3172--,2)【解题分析】解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).∵抛物线y=-x2+bx+c经过A、B两点,∴164b c0?{c4--+==,解得b3?{c4=-=.∴抛物线解析式为y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如图1,设D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=y P-y E=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).(2)存在.如图2,过N点作NH⊥x轴于点H.设OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴y Q=1-m.又M为OA中点,∴MH=2-m.当△MON为等腰三角形时:①若MN=ON,则H为底边OM的中点,∴m=1,∴y Q=1-m=2.由-x Q2-2x Q+1=2,解得Q 313x-±=.∴点Q坐标为(3+132-,2)或(3132-,2).②若MN=OM=2,则在Rt△MNH中,根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).∴y Q =2,由-x Q 2-2x Q +1=2,解得Q 317x 2-±=. ∴点Q 坐标为(3+172-,2)或(3172--,2). ③若ON=OM=2,则在Rt △NOH 中,根据勾股定理得:ON 2=NH 2+OH 2,即22=(1-m )2+m 2,化简得m 2-1m +6=0,∵△=-8<0,∴此时不存在这样的直线l ,使得△MON 为等腰三角形.综上所述,存在这样的直线l ,使得△MON 为等腰三角形.所求Q 点的坐标为(3+132-,2)或(3132--,2)或(3+172-,2)或(3172--,2). (1)首先求得A 、B 点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x 轴另一交点C 的坐标. (2)求出线段PE 长度的表达式,设D 点横坐标为t ,则可以将PE 表示为关于t 的二次函数,利用二次函数求极值的方法求出PE 长度的最大值.(2)根据等腰三角形的性质和勾股定理,将直线l 的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l 是否存在,并求出相应Q 点的坐标. “△MON 是等腰三角形”,其中包含三种情况:MN=ON ,MN=OM ,ON=OM ,逐一讨论求解.22、(1)6π;(2)GB=DF ,理由详见解析.【解题分析】(1)根据弧长公式l= 计算即可;(2)通过证明给出的条件证明△FDC ≌△GBC 即可得到线段GB 与DF 的长度关系.【题目详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE 的长 l 1= =π,同理弧EF 的长 l 2= =2π,弧FG 的长 l 3= =3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【题目点拨】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.23、1【解题分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【题目详解】解:原式=1﹣1×+1+=1﹣+1+=1.【题目点拨】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.24、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解题分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【题目详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【题目点拨】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.25、(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解题分析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为105126=. 点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26、1人【解题分析】解:设九年级学生有x 人,根据题意,列方程得:19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解.答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x 元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可. 27、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解题分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【题目详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【题目点拨】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.。
黑龙江省哈尔滨市哈十七中学2024届中考数学模拟精编试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一副直角三角板如图放置,其中C DFE 90∠=∠=,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°2.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )A .5.46×108B .5.46×109C .5.46×1010D .5.46×10113.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=60°,则∠2的度数是( )A .60°B .50°C .40°D .30°4.如图,是一个工件的三视图,则此工件的全面积是( )A .60πcm 2B .90πcm 2C .96πcm 2D .120πcm 25.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)6.下列式子一定成立的是( )A .2a+3a=6aB .x 8÷x 2=x 4C .121a a =D .(﹣a ﹣2)3=﹣61a7.下列计算正确的是( )A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 48.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 9.2017年,太原市GDP 突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为( )A .3382×108元B .3.382×108元C .338.2×109元D .3.382×1011元10.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .11.数据”1,2,1,3,1”的众数是( )A .1B .1.5C .1.6D .312.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:﹣22÷(﹣14)=_____.14.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则AB的长是________.15.分解因式:3x2-6x+3=__.16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.17x1+x的取值范围是.18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.20.(6分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下(1)样本中D级的学生人数占全班学生人数的百分比是;(2)扇形统计图中A级所在的扇形的圆心角度数是;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.21.(6分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.23.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.24.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O 点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C距 )运动员乙要抢到第二个落点D,他应再向前跑多少米?守门员多少米?(取43725.(10分)如图,已知在△ABC中,AB=AC=5,cosB=45,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.26.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.27.(12分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【题目详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【题目点拨】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.2、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【题目详解】解:将546亿用科学记数法表示为:5.46×1010,故本题选C.【题目点拨】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.3、D【解题分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【题目详解】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选D.【题目点拨】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.4、C【解题分析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【题目详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长,所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2).故答案选C.【题目点拨】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.5、C【解题分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.6、D【解题分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【题目详解】解:A:2a+3a=(2+3)a=5a,故A错误;B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a =a ,故C 错误;D :(-a -2)3=-a -6=-61a,故D 正确. 故选D. 【题目点拨】 本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.7、B【解题分析】解:A .a 2+a 2=2a 2,故A 错误;C 、a 2a 3=a 5,故C 错误;D 、a 8÷a 2=a 6,故D 错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方8、A【解题分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【题目详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM ,∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆,∵2EF =∴以EF 为直径的圆的半径为1∴点M 运动的路径长为1801=180ππ 当1'3CM CD = 时,同理可得点M 运动的路径长为12π 故选:A .【题目点拨】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.9、D【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】3382亿=338200000000=3.382×1.故选:D .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、A【解题分析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A .11、A【解题分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【题目详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A .【题目点拨】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12、B【解题分析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:10010060x x -=.故选B . 点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】解:原式=4(4)-⨯-=1.故答案为1.14、3cm π.【解题分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【题目详解】∵∠ACB=30°,∴∠AOB=60°,∵OA=1cm ,∴AB 的长=60111803ππ⨯=cm. 故答案为:3cm π. 【题目点拨】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=180n r π. 15、3(x-1)2【解题分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【题目详解】 ()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【题目点拨】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、3.6【解题分析】分析:根据题意,甲的速度为6km/h ,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h .当甲开始运动时相距36km ,两小时后,乙开始运动,经过2.5小时两人相遇. 设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.17、x 1≥-且x 0≠【解题分析】∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.18、2481632378x x x x x x +++++=;【解题分析】设第一天走了x 里,则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里,根据总路程为378里列出方程可得答案. 【题目详解】解:设第一天走了x 里, 则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里, 依题意得:3782481632x x x x x x +++++=, 故答案:3782481632x x x x x x +++++=.【题目点拨】本题主要考查由实际问题抽象出一元一次方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)①见解析;②.【解题分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM 的长,可得结论【题目详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【题目点拨】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC20、(1)10%; (2)72; (3)5,见解析; (4)330.【解题分析】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A级和B级的学生人数之和是330名.【题目点拨】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.21、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解题分析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000;故最高利润为45000元,最低利润为25000元.22、(1)y1=﹣15t(t﹣30)(0≤t≤30);(2)∴y2=2(020)4120(2030)t tt t≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.【解题分析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【题目详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣1 5∴y1=﹣15t(t﹣30)(0≤t≤30)(2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩,(3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80, 当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80, 故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.23、路灯高CD 为5.1米.【解题分析】根据AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA 得到MA ∥CD ∥BN ,从而得到△ABN ∽△ACD ,利用相似三角形对应边的比相等列出比例式求解即可.【题目详解】设CD 长为x 米,∵AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA ,∴MA ∥CD ∥BN ,∴EC =CD =x 米,∴△ABN ∽△ACD , ∴BN CD =AB AC ,即1.8 1.21.8x x =-, 解得:x =5.1.经检验,x =5.1是原方程的解,∴路灯高CD 为5.1米.【题目点拨】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24、(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解题分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【题目详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.25、(1)12(2)y=21212255x x -+(0<x <5)(3)3532或12532 【解题分析】试题分析:(1)过点A 作AH ⊥BC 于点H ,根据cosB=45求得BH 的长,从而根据已知可求得AH 的长,BC 的长,再利用三角形的面积公式即可得;(2)先证明△BPD ∽△BAC ,得到BPD S =21225x ,再根据APD BPD S AP S BP= ,代入相关的量即可得; (3)分情况进行讨论即可得. 试题解析:(1)过点A 作AH ⊥BC 于点H ,则∠AHB=90°,∴cosB=BH AB, ∵cosB=45,AB=5,∴BH=4,∴AH=3, ∵AB=AC ,∴BC=2BH=8, ∴S △ABC =12×8×3=12 (2)∵PB=PD ,∴∠B=∠PDB ,∵AB=AC ,∴∠B=∠C ,∴∠C=∠PDB ,∴△BPD ∽△BAC ,∴2BPD BAC S PB SAB ⎛⎫= ⎪⎝⎭ , 即2125BPD S x ⎛⎫= ⎪⎝⎭, 解得BPD S =21225x , ∴APDBPD SAP S BP= , ∴251225y x x x -= ,解得y=21212255x x -+(0<x <5); (3)∠APD <90°, 过C 作CE ⊥AB 交BA 延长线于E ,可得cos ∠CAE=725 , ①当∠ADP=90°时,cos ∠APD=cos ∠CAE=725, 即7525x x =- , 解得x=3532; ②当∠PAD=90°时, 5725x x -= , 解得x=12532, 综上所述,PB=3532或12532. 【题目点拨】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.26、(1)笔记本单价为14元,钢笔单价为15元;(2)y 1=14×0.9x=12.6x ,y 2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解题分析】(1)设每个文具盒z 元,每支钢笔y 元,可列方程组得解之得 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式是y 1=14×90%x ,即y 1=12.6x .买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y 2=15x :当买10支以上时,超出的部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +1.(3)因为x >10,所以y 2=12x +1.当y 1<y 2,即12.6x <12x +1时,解得x <2;当y 1=y 2,即12.6x =12x +1时,解得x =2;当y 1>y 2,即12.6x >12x +1时,解得x >2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.27、(1)12;(2)16. 【解题分析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【题目详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:21 42 =,故答案为:12;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:21 346=⨯,即顾客享受折上折优惠的概率是16.【题目点拨】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.。
2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或52.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.3.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直4.在实数π,0,17,﹣4中,最大的是()A.πB.0 C.17D.﹣45.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.66.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是()A.x>2 B.x<﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>27.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.8.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且(3,0)A ,(2,)B b,则正方形ABCD的面积是()A.13B.20C.25D.349.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A .(3,2) B.(4,1) C.(4,3) D.(4,23)10.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.1912.下列计算正确的是()A.x4•x4=x16 B.(a+b)2=a2+b2C.=±4 D.(a6)2÷(a4)3=1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:4= .14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.15.分解因式:2m2-8=_______________.16.不等式5x﹣3<3x+5的非负整数解是_____.17.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.18.分解因式:3a2﹣12=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.20.(6分)如图,四边形AOBC是正方形,点C的坐标是(20).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).21.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.22.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.23.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.24.(10分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x0123456y 5.2 4.2 4.6 5.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图1 中的什么位置.y(升)关于加满油后已行驶的路程x(千25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.26.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.27.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C 出发,沿斜面坡度1:3i的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,∴x1+x2=2,x1∙x2=-1∴2112x xx x+=2221212121212()24261x x x x x xx x x x++-+===--.故选A.2、D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.3、B【解析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.4、C【解析】根据实数的大小比较即可得到答案.【详解】解:∵16<17<25,∴417517π>0>-417,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.5、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6、D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.7、C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x-;故D选项错误.故选C.考点:动点问题的函数图象.8、D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴+=+=,∴正方形ABCD的面积是343434=,故选D.9、D【解析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到22AD OA'-3【详解】解:∵AD′=AD=4,AO=12AB=1,∴OD′=22AD OA'-=23,∵C′D′=4,C′D′∥AB,∴C′(4,23),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.10、D【解析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.11、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为4 9,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴4=2.【点睛】本题考查求算术平方根,熟记定义是关键.14、25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、2(m+2)(m-2)【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.16、0,1,2,1【解析】5x﹣1<1x+5,移项得,5x﹣1x<5+1,合并同类项得,2x<8,系数化为1得,x<4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键. 17、1:3 【解析】根据相似三角形的判定,由DE ∥AC ,可知△DOE ∽△COA ,△BDE ∽△BCA ,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDES ∆与CDES ∆的比是1:3.故答案为1:3. 18、3(a+2)(a ﹣2) 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此, 3a2﹣12=3(a2﹣4)=3(a+2)(a ﹣2).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)13;(2)13【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得. 【详解】 解:(1)由于共有A 、B 、W 三个座位,∴甲选择座位W 的概率为13, 故答案为:13;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P (甲乙相邻)=26=13.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =.【解析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积; (2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t . 【详解】 解:(1)连接AB ,与OC 交于点D , 四边形AOBC 是正方形, ∴△OCA 为等腰Rt △,∴AD=OD=12OC=22,∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴AOB 90∠=,AOC 45∠=. ∵ 将正方形AOBC 绕点O 顺时针旋转45, ∴ 点A '落在x 轴上. ∴OA OA 4'==. ∴ 点A '的坐标为()4,0.∵OC 42= ∴A C OC OA 424=-=''.∵ 四边形OACB ,OA C B '''是正方形,∴OA C 90∠''=,ACB 90∠=. ∴CA E 90∠'=,OCB 45∠=. ∴A EC OCB 45∠∠=='. ∴A E A C 424=='-'. ∵2ΔOBC AOBC 11 S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 4242416222'=⋅=-=-'',∴ΔOBC ΔA EC OA EB S S S ''=-=四边形()82416216216--=-.∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时, ∵POQ 90∠=,OP=t ,OQ=2t ∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP ,QM 为OP 的垂直平分线, OP=2OM=2BQ ,OP=t ,BQ=2t-4, t=2(2t-4),解得:t=83.③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形综上所述,当8t3=时ΔOPQ是等腰三角形【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.21、骑共享单车从家到单位上班花费的时间是1分钟.【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得:881.5,20 x x⨯=-解得x=1.经检验,x=1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟.22、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)60,90°;(2)补图见解析;(3)300;(4)2 3.【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.24、(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处.【解析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.25、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k=+≠,把点()0,70,()400,30坐标分别代入得70b=,0.1k=-,∴0.170y x=-+,当5y=时,650x=,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.26、(1)抽样调查(2)150°(3)180件(4)25【解析】 分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案. 详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件,C 班有24﹣(4+6+4)=10件, 补全条形图如图所示,扇形统计图中C 班作品数量所对应的圆心角度数360°×1024=150°;故答案为150°;(3)∵平均每个班244=6件,∴估计全校共征集作品6×30=180件. (4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为82=205. 点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=mn ,求出P(A)..27、33+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i=333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×323∴333过点E作EG⊥AB于点G,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠3,则33+3.5,故旗杆AB的高度为(3+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题。
黑龙江省哈尔滨市南岗区市级名校2024年中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.2.下列图形不是正方体展开图的是()A.B.C.D.3.已知反比例函数y=kx的图象在一、三象限,那么直线y=kx﹣k不经过第()象限.A.一B.二C.三D.四4.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.45.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A.60°B.50°C.40°D.30°7.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.68.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.309.9的值是()A.±3 B.3 C.9 D.8110.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.12.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.13.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S 四边形DECA的值为_____.15.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)16.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.19.(5分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从21.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(15,22)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.22.(10分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.24.(14分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】本题主要考查二次函数的解析式【题目详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为. 故选D.【题目点拨】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.2、B【解题分析】由平面图形的折叠及正方体的展开图解题.【题目详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.根据反比例函数的性质得k >0,然后根据一次函数的进行判断直线y=kx-k 不经过的象限.【题目详解】∵反比例函数y =k x的图象在一、三象限, ∴k >0, ∴直线y=kx ﹣k 经过第一、三、四象限,即不经过第二象限.故选:B .【题目点拨】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.4、B【解题分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【题目详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【题目点拨】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6、C【解题分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【题目详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【题目点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7、A【解题分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【题目详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902ππ⨯⨯⨯⨯-=1312π-,故选A.【题目点拨】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、D【解题分析】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.9、C【解题分析】试题解析:∵93∴9的值是3故选C.10、D【解题分析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【题目详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,12、60°【解题分析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°13、2 2【解题分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【题目详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为22.故答案为:2.【题目点拨】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.14、1:1【解题分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【题目详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15、//DF AC 或BFD A ∠=∠【解题分析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.16、5750【解题分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【题目详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%,∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【题目点拨】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格17、8【解题分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【题目详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x(x <0)中,得k=8. 给答案为:8.【题目点拨】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析.【解题分析】试题分析:(1)选取①②,利用ASA 判定△BEO ≌△DFO ;也可选取②③,利用AAS 判定△BEO ≌△DFO ;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.19、⑴;⑵答案不唯一.如;⑶.【解题分析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.20、【解题分析】试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×35100=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=61 122.考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.21、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解题分析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【题目详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【题目点拨】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用. 22、(1)m=3,k=12;(2)或【解题分析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【题目详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【题目点拨】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.23、(1)见解析;(2)见解析;【解题分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.24、(6+23)米【解题分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【题目详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,33x,∴在Rt△PBC中3BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3,3PQ=PC-CQ=3x-x=2x=6+23PQ高为(6+23解得33【题目点拨】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.。
2024届黑龙江省哈尔滨市香坊区中考数学适应性模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点P (x ,y )(x >0)是反比例函数y=k x (k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .3.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 4.矩形ABCD 的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D 的坐标为( )A .(5,5)B .(5,4)C .(6,4)D .(6,5)5.下列四个几何体中,左视图为圆的是( )A .B .C .D .6.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( )A .k >4B .k <4C .k≤4D .k≥47.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A .30°B .40°C .50°D .60° 8.已知A (,1y ),B (2,2y )两点在双曲线32m y x +=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-9.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .210.如图,空心圆柱体的左视图是( )A .B .C .D .11.在Rt △ABC 中,∠C=90°,AC=1,BC=3,则∠A 的正切值为( )A .3B .13C .1010D .3101012.在3,0,-2,-四个数中,最小的数是( ) A .3 B .0C .-2D .- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.14.如图,在反比例函数y=10x(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1+S2+S3+…+S n=_____(用含n的代数式表示)15.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.16.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____17.若a、b为实数,且b=22117a aa-+-++4,则a+b=_____.18.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+2a化简为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.20.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?21.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.22.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.23.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.12310≈3.16)24.(10分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)先化简,再求值:22111xx x x⎛⎫-+⎪--⎝⎭,其中x满足2410x x-+=.26.(12分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。
2023—2024学年度下学期哈尔滨市第四十九中学校九年级毕业考试试卷一、选择题(每题3分,共30分)1.下列实数是无理数的是( )A .B .CD .2.马虎同学在下面的计算中只做对了一道题,他做对的题目是( )A .B .C .D .3.下列立体图形中,三视图都相同的是()A .B .C .D .4.下面图形中是中心对称图形但不是轴对称图形的是()A .科克曲线B .笛卡尔心形线C .阿基米德螺旋线D .赵爽弦图5.将抛物线向左平移1个单位,再向下平移3个单位得到的解析式是( )A .B .C .D .6.如图,等腰内接于,点D 是圆中优孤上一点,连接DB 、DC ,已知,,则的度数为( )A .10°B .20°C .30°D .40°52-π2-23325a a a +=()222b a b a-=-326236a a a⋅=2632a a a-÷=-22y x =+()211y x =+-()211y x =--()211y x =++()211y x =-+ABC △O AB AC =70ABC ∠=︒BDC ∠7.如图,将45°的按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的左端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为.若按相同的方式将37°的放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数是(结果精确到,参考数据,,).( )A .B .C .D .8.下列各点中,在反比例函数的图象上的是( )A .B .C .D .9.如图,在中,,分别以A ,C为圆心,大于长为半径作弧(弧所在圆的半径都相等),两弧相交于P ,Q 两点,直线PQ 分别交AB ,AC 于点D ,E ,连接CD ,则下列结论一定正确的是( )A .B .C .D .10.如图,矩形ABCD 的对角线交于点O ,,,动点P 从点A 出发,沿折线以每秒1个单位长的速度运动到点O 停止,设运动时间为x 秒,,则y 与x 的函数图象大致为( )A .AB .BC .CD .D二、填空题(每题3分,共30分)11.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知:,则32.95纳米用科学记数法表示为______米.12.在函数中,自变量x 的取值范围为______.AOB ∠2cm AOC ∠0.1cm sin 37060︒≈.cos370.80︒≈tan 370.75︒≈2.3cm 2.5cm 2.7cm 3cm12y x=-()2,4-()3,4-()2,6()4,3--ABC △90ACB ∠=︒12AC 12DE AE =12DE BC =2AB BC =2AC CD=60BOC ∠=︒3AD =AD DO -poc y S =△9110-=纳米米726y x =-13______.14.分解因式:______.15.2019年泉州市初中学业水平考试中,每位参加体育考试的学生都必需从“篮球、足球、排球”中选择一种球类参加测试,则小聪和小明同时选考“足球”的概率是______.16.将两块直角三角尺的直角顶点重合为如图的位置,若,则______度.17.在中,,D 为AB 边的中点,,交直线AC 于点E ,连接BE ,若,则的度数为______.18.某医院内科病房有护士x 人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人同班,最长需要的天数是70天,则______.19.如图,边长为1的正方形ABCD 的顶点A 在扇形EOF 的半径OE 上,点B 、C 在OF 上,点D 在EF 上,若,则扇形EOF 的面积为______.20.如图,在矩形ABCD 中,点E 为边AD 上一点,连接BE ,作的平分线,交CD 于点F ,连接EF ,若,,且,则______.三、解答题(21、22各7分,23、24各8分,25,26,27各10分)21.先化简,再求值:,其中.22.图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形AB CD 的面积等于(1)中等腰直角三角形MON 面积的4倍.3234x y x -=110AOD ∠=︒COB ∠=ABC △AB AC =DE AB ⊥50BED ∠=︒ABC ∠x =45EOF ∠=︒EBC ∠4CF =2DF =45EFB ∠=︒BE =2211211x x x x ⎛⎫÷+ ⎪-+-⎝⎭sin 4530x =︒︒90MON ∠=︒23.为了解学生完成书辆作业所用时间的情况,进步优化作业管理某中学从全校学生中随机抽取部分学生,对他们周平均每天完成书面作业的时间t (单位:分钟)进行调查将调查数据进行整理后分为五组:A 组“”;B 组“”;C 组“”;D 组“”;E 组“”.现将调查结果绘制成如下两幅不完整的统计图根据以上信息,解答下列问题:(1)这次调查的样本容量为______,请补全条形统计图;(2)在扇形统计图中,A 组对应的圆心角的度数是______°,本次调查数据的中位数落在______组内;(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?24.如图,菱形ABCD 中,E 为对角线BD 的延长线上一点.(1)求证:.(2)若,,,则BE 的长______,DE 的长为______.25.某居民小区为美化环境,计划对面积为的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若小区每天需付给甲队的绿化费用为0.2万元,乙队为0.15万元,要使这次的绿化总费用不超过5万元,至少应安排甲队工作多少天?26.已知,在圆O 中,AB 是圆O 的弦,点C 是优弧AB 的中点,点E 在弦AB 上,且,连接CE 并延长交圆O 于点D .(1)如图(1)求证:CD 是圆O 直径;(2)如图(2)连接AC 、BC ,点F 在弦AB 上,且,连接CF ,并延长交圆O 于点G ,连接AG,045t <≤4560t <≤6075t <≤7590t <≤90t >AE CE =6BC =10AE =120BAE ∠=︒21200m 2300m 2m AE BE =BF AC =求证:;(3)如图(3)在(2)的条件下,过点D 作,交BC 于点K ,,过B 作于点M ,交CD 于点N ,若,求ON 的长.27.如图:直线分别与x 轴负半轴、y 轴正半轴交于点A 、B ,点C 在x 轴正半轴上,,(1)求a 值;(2)直线过点A 交y 轴负半轴于点D ,点P 在线段BC 上,,垂足为H ,PH 交y 轴于点T ,点P 的横坐标为t ,若线段,求d 与t 之间的函数关系式(不用写出自变量t 的取值范围);(3)在(2)的条件下,若延长BC 和AD 相交于点Q ,点E 在BQ 延长线上一点,点G 为第四象限内线段BE 右侧一点,连接GE 并延长交y 轴于点F ,若,,,,求点E 的坐标.2024哈49中考数学毕业考0531参考答案一、填空题12345678910B DDDADCBBA二、填空题11121314152BAC DCF ∠=∠HD CF ∥2CD CK =BM AC ⊥2AF =34y x a =+10AB AC ==12y x b =-+PH AD ⊥BT d =PGQ BQA ∠=∠PG BF =GE EF =92HQG S =△三、简答题21.解:原式,∴原式22.如下图23.(1)10(人)(2)36°C (3)1920(人)24.证明:(1)∵四边形ABCD 是菱形,∴,在与中,,,∴(2)过点E 做的延长线于F ,∴∵,∴,∴∴在,由勾股定理得,∵四边形ABCD 是菱形,∴25.解:(1)设,乙队每天能完成绿化的面积是,则甲队每天能完成绿化的面积是21x =-sin 45tan 301x =︒+︒=+===ABE CBE ∠=∠AB CB=ABE △CEB △ABE CBE BD A C D B B D∠=∠==⎧⎪⎨⎪⎩ABE CEB ≌△△AE CE=EF BA ⊥90AFE ∠=︒120BAE ∠=︒18060FAE BAE ∠=︒-∠=︒9030FEA FAE ∠=︒-∠=︒Rt AFE △152AF AE ==FE ===6AB BC ==2m x 22m,解得,,检验:当时,∴原分式方程的解是,∴.答:略.(2)设,安排甲工作a 天,则安排乙工作天,,解得,.答:略.30030052x x=+30x =30x =20x ≠30x =260x =12006030a-120060.20.15530aa -+⨯≤10a ≥。
2024届黑龙江省哈尔滨市风华中学中考数学模拟精编试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a62.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE =2,则EF的长为()A.4 B..5 C.6 D.83.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°4.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.55.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m6.下列博物院的标识中不是轴对称图形的是( )A .B .C .D .7.如图,立体图形的俯视图是( )A .B .C .D .8.下列方程中有实数解的是( ) A .x 4+16=0 B .x 2﹣x+1=0 C .+2x x =-D .22111x x x =-- 9.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为2 10.若 |x | =-x ,则x 一定是( ) A .非正数B .正数C .非负数D .负数11.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)一、单选题1.-5的相反数是( ) A .15-B .15C .5D .-52.下列运算正确的是( ) A .2232a a -=B .23a a a +=C .()3328a a -=-D .623a a a ÷=3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .5.如图,AB 是O e 的直径,C 、D 是O e 上两点,CD AB ⊥,若70DAB ∠=︒,则BOC ∠=( )A .70︒B .130︒C .140︒D .160︒6.分式方程12x x 3=+的解是【 】 A .x=﹣2 B .x=1 C .x=2 D .x=37.如图,在ABC V 中,70CAB ∠=︒,将ABC V 绕点A 旋转到AB C ''△的位置,点B 和点B '是对应顶点,点C 和点C '是对应顶点,若CC AB '∥,则BAB ∠'的度数为( )A .30︒B .35︒C .40︒D .50︒8.一个不透明的袋子中装有5个小球,其中3个红球,2个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( ) A .16B .15C .25D .359.如图,已知AB CD EF ∥∥,:3:5AD AF =,12BE =,那么CE 的长等于( )A .365B .245C .152 D .9210.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,数据2 500 000用科学记数法表示为.12.如图,在小孔成像问题中,小孔 O 到物体AB 的距离是60 cm ,小孔O 到像CD 的距离是30 cm ,若物体AB 的长为16 cm ,则像 CD 的长是 cm.13. 14.把多项式22ma mb -分解因式的结果是. 15.函数294y x =-的顶点坐标是. 16.不等式组2841+2x x x ⎧⎨-⎩<>的解集是.17.如图,随机闭合开关123S S S ,,中的两个,能够让灯泡发亮的概率是.18.正方形ABCD 的边长为8,E 为BC 边上一点,BE =6,M 为AE 上一点,射线BM 交正方形一边于点F ,且BF =AE ,则BM 的长为.19.半径为4 cm ,圆心角为60°的扇形的面积为cm 2.20.如图,在ABC V 中,D 为ABC V 内的一点,且=90BDC ∠︒,且A B D C D E ∠=∠,若点E 为AC 的中点,3,8DE AB ==,则BC 的长.三、解答题21.先化简,再求代数式()211x x x x -⎛⎫-÷- ⎪⎝⎭的值,其中2cos451x ︒=+22.如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .23.近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数; (3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.24.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m 的视力表,但两面墙的距离只有3m .在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙. 图例(1)甲生的方案中如果大视力表中“E ”的高是3.5cm ,那么小视力表中相应“E ”的高是多少? (2)乙生的方案中如果视力表的全长为0.8m ,请计算出镜长至少为多少米.25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元. (1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?26.已知四边形ABCD 内接于O e ,AB 是O e 的直径»»CDBC ,连接OC .(1)如图1,求证AD OC ∥;(2)如图2,连接BD ,过点C 作CH AB ⊥,垂足为H ,CH 交BD 于点E ,求证:CE BE =; (3)如图3,在(2)的条件下,连接AC ,过O 作OF BC ∥,交AC 于点F ,连接DF 并延长交O e 于点G ,若45ADG ∠=︒,FG EH 的长.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线235y ax ax =--与x 轴交于点A ,点B ,与y 轴交于点C ,点A 坐标为()2,0-(1)求抛物线解析式;(2)点P 为抛物线上一点,连接PA 交y 轴于点D ,设P 的横坐标为,t CD 的长为d ,求d 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)当7d =时,过点A 作AG PA ⊥交抛物线于点G ,连接PG ,点E F 、分别是PAG △的边AP GP 、上的动点,且PE GF =,连接AF GE 、,设AF GE m +=,求m 的最小值,并直接写出当m 有最小值时EGP ∠的正切值.。
2024年黑龙江省哈尔滨市南岗区中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数中,最大的数是( )A. −1B. 0C. 1D. 22.下列运算正确的是( )A. a2+a3=a5B. a2⋅a3=a5C. a2÷a3=a5D. (a2)3=a53.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( )A. B. C. D.4.如图是一个立体图形的三视图,该立体图形是( )A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥5.在反比例函数y=4−kx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则k的取值范围是( )A. k<0B. k>0C. k<4D. k>46.方程5x+1−1x−1=0的解为( )A. x=12B. x=1 C. x=32D. x=27.某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1−x)2=2.36D. 2.36(1−x)2=2.78.爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025−cosα)J,若某人爬了1000m,该坡角为30°,则他耗能(参考数据:3≈1.732,2≈1.414)( )A. 58JB. 159JC. 1025JD. 1732J9.如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD的大小是( )A. 35°B. 40°C. 45°D. 50°10.甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为( )A. 8:28B. 8:30C. 8:32D. 8:35二、填空题:本题共10小题,每小题3分,共30分。
2024学年哈尔滨市重点中学中考数学五模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体2.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.123.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形4.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%5.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣236.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=32;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④7.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.28.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差9.以下各图中,能确定12∠=∠的是( )A .B .C .D .10.估算9153+÷的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间二、填空题(共7小题,每小题3分,满分21分) 11.已知x +y =8,xy =2,则x 2y +xy 2=_____.12.把多项式3x 2-12因式分解的结果是_____________.13.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.14.一个正多边形的每个内角等于150,则它的边数是____.15.方程21x x =-的解是__________. 16.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.17.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 三、解答题(共7小题,满分69分)18.(10分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE=60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.(1)小明发现,过点D 作DF//AC ,交AC 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.19.(5分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(10分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,2,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7 B.8 C.14 D.1622.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.23.(12分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A 且a、b满足4﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.24.(14分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.2、D【解题分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【题目详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【题目点拨】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.3、C【解题分析】A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D 选项,因为由添加的条件“AB=AC ,AD ⊥BC”可证明AD 平分∠BAC ,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D 正确.故选C.4、D【解题分析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x a x x a+-=+ 故选D.5、C【解题分析】先判断出PQ ⊥CF ,再求出AC=23,AF=2,CF=2AF=4,利用△ACF 的面积的两种算法即可求出PG ,然后计算出PQ 即可.【题目详解】解:如图,连接PF ,QF ,PC ,QC∵P 、Q 两点分别为△ACF 、△CEF 的内心,∴PF 是∠AFC 的角平分线,FQ 是∠CFE 的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°, ∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ ⊥CF ,∴△PQF 是等边三角形,∴PQ=2PG ;易得△ACF ≌△ECF ,且内角是30º,60º,90º的三角形,∴AF=2,CF=2AF=4,∴S △ACF =12AF×AC=12×2× 过点P 作PM ⊥AF ,PN ⊥AC ,PQ 交CF 于G ,∵点P 是△ACF 的内心,∴PM=PN=PG ,∴S △ACF =S △PAF +S △PAC +S △PCF =12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×PG+12×4×PG=(+2)PG=()PG∴1,∴1故选C.【题目点拨】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.6、B【解题分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【题目详解】如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=32,故③正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.故选B.【题目点拨】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.7、C【解题分析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S △AOC =×2=1,∴S △OBD =2,∴k=-1.故选C .考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.8、A【解题分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【题目详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【题目点拨】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9、C【解题分析】逐一对选项进行分析即可得出答案.【题目详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误.故选:C .【题目点拨】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.10、D【解题分析】 915335,∵25<3,∴355到6之间.故选D .【题目点拨】此题主要考查了估算无理数的大小,正确进行计算是解题关键.二、填空题(共7小题,每小题3分,满分21分) 11、1 【解题分析】将所求式子提取xy 分解因式后,把x+y 与xy 的值代入计算,即可得到所求式子的值. 【题目详解】 ∵x+y=8,xy=2,∴x 2y+xy 2=xy (x+y )=2×8=1. 故答案为:1. 【题目点拨】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式. 12、3(x+2)(x-2) 【解题分析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x 2-12因式分解先提公因式3,再利用平方差公式因式分解.【题目详解】3x 2-12=3(24x -)=3(2)(2)x x +-. 13、1. 【解题分析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数. 【题目详解】根据题意分析可得:第1个图案中棋子的个数5个. 第2个图案中棋子的个数5+6=11个. ….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=1个. 故答案为1. 【题目点拨】考核知识点:图形的规律.分析出一般数量关系是关键.14、十二 【解题分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可. 【题目详解】∵一个正多边形的每个内角为150°, ∴它的外角为30°, 360°÷30°=12, 故答案为十二. 【题目点拨】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角. 15、2x =. 【解题分析】根据解分式方程的步骤依次计算可得. 【题目详解】解:去分母,得:21x x =(﹣), 解得:2x =,当2x =时,110x ﹣=, 所以2x =是原分式方程的解, 故答案为:2x =. 【题目点拨】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 16、1 【解题分析】连接AD ,根据PQ ∥AB 可知∠ADQ=∠DAB ,再由点D 在∠BAC 的平分线上,得出∠DAQ=∠DAB ,故∠ADQ=∠DAQ ,AQ=DQ .在Rt △CPQ 中根据勾股定理可知,AQ=11-4x ,故可得出x 的值,进而得出结论. 【题目详解】 连接AD ,∵PQ ∥AB , ∴∠ADQ=∠DAB ,∵点D 在∠BAC 的平分线上, ∴∠DAQ=∠DAB , ∴∠ADQ=∠DAQ , ∴AQ=DQ ,在Rt △ABC 中,∵AB=5,BC=3, ∴AC=4, ∵PQ ∥AB , ∴△CPQ ∽△CBA ,∴CP :CQ=BC :AC=3:4,设PC=3x ,CQ=4x , 在Rt △CPQ 中,PQ=5x , ∵PD=PC=3x , ∴DQ=1x , ∵AQ=4-4x , ∴4-4x=1x ,解得x=23, ∴CP=3x=1; 故答案为:1. 【题目点拨】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 17、2k <且1k ≠ 【解题分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可. 【题目详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k<2且k≠1.故答案为k<2且k≠1.【题目点拨】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.三、解答题(共7小题,满分69分)18、(1)AD=DE;(2)AD=DE,证明见解析;(3)13.【解题分析】试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.试题解析:(10分)(1)AD=DE.(2)AD=DE.证明:如图2,过点D作DF//AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3)13.考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.19、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解题分析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【题目详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【题目点拨】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键21、C【解题分析】根据在OB上的两个交点之间的距离为32,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.【题目详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.故选C.【题目点拨】本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.22、证明见解析.【解题分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【题目详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【解题分析】试题分析:(160.b-=可以求得,a b的值,根据长方形的性质,可以求得点B的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O----的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题解析:(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.24、(1)见解析;(2)140人;(1)1 4 .【解题分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【题目详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)0 1 7 6 4乙(人) 2 2 5 8 4全体(%) 5 12.5 10 15 17.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,∴所选两人正好分在一组的概率是:41= 164.【题目点拨】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.。
2018年黑龙江省哈尔滨中考数学模拟试卷一、选择题(每题3分,共30分)1.(3分)小明家使用的电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低18℃,则冷冻室的温度是()A.﹣14℃B.14℃C.22℃D.﹣22℃2.(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.(a3)2=a5C.2+3=5D.÷=3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)函数y=的图象经过点(2,﹣2),则m的值是()A.m=B.m=﹣C.m=D.m=﹣5.(3分)如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()A.B.C.D.6.(3分)一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是()A.800•sinα米B.米C.800•cosα米 D.米7.(3分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°8.(3分)如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.=C.=D.=9.(3分)商店把彩电按标价的9折出售,仍可获利进价的20%,若该彩电的进价是2400元,则彩电的标价是()A.3200元B.3429元C.2667元D.3168元10.(3分)快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y(千米)与所用的时间x(时)的关系如图所示,下列说法正确的有()①快车返回的速度为140千米/时;②慢车的速度为70千米/时;③出发小时时,快慢两车距各自出发地的路程相等;④快慢两车出发小时时相距150千米.A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.(3分)在11月2日,哈尔滨早晨部分区域仍雾霾严重,直径小于等于0.0000025米的污染物颗粒是雾霾的主要组成部分.把0.0000025用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围为.13.(3分)把ax3﹣2ax2+ax分解因式的结果是.14.(3分)化简:=.15.(3分)不等式组的解集是.16.(3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为奇数的概率是.17.(3分)已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是cm.18.(3分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB 交OC于点D.若AC=1,AO=2,则BD的长度为.19.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.20.(3分)在△ABC中,D、E分别为BC、AB的中点,EG⊥AC于点G,EG、AD交于点F,若AG=4,BC=2,tan∠DAC=,则AC=.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分)21.(7分)先化简,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.22.(7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以DE为一边、一个内角为钝角的等腰三角形DEF,点F在小正方形的顶点上,且三角形DEF的面积为4.连接CF,请直接写出线段CF的长.23.(8分)为提高同学们体育运动水平,某校九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图4和图5).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数;并补全条形统计图.(3)若全校有1000人,请你估计全校参与羽毛球项目的人数.24.(8分)如图,在正方形ABCD中,P是射线BD上的一点,PE⊥CD,PF⊥BC,垂足分别是E、F,连接AP、EF.(1)如图(1),线段AP、EF的关系为;(2)如图(2),线段AP、EF的上述关系是否仍然成立,并证明你的结论.25.(10分)我是地铁工程某一路段工程招标,经测算,甲队单独完成这项工程需要60天.若由甲队先做5天,再由甲、乙合作9天,共完成总工作量的.(1)求乙队单独完成这项工程需要多少天?(2)甲队施工1天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余部分.若要求完成此项工程的工程款不超过186万元,则甲、乙两队最多合作多少天?26.(10分)已知,点P为⊙O外一点,PA切⊙O于点A,直线PC交⊙O于B、C两点,OD⊥BC于点H,交⊙O于D,连接AD交PC于点E.(1)如图1,求证:PA=PE;(2)如图2,连接AC、CD,点F为AD上一点,且DF=CD,求证:CF平分∠ACP;(3)在(2)的条件下,连接AB,直线CF交AB于G,若OH=HD,BG=,DF=,求PA的长.27.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c过点A(﹣1,0),C(5,6).抛物线的顶点为D,点P在线段CD上,点C、D到直线AP的距离记为d1、d2.(1)求a、c的值;(2)当d1+d2取最大值时,求点P的坐标;(3)若△APC的面积为10.5时,将△APC沿直线AC折叠,点P的对应点为点Q,求点Q的坐标并判断点Q是否在抛物线上.2018年黑龙江省哈尔滨中考数学模拟试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)小明家使用的电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低18℃,则冷冻室的温度是()A.﹣14℃B.14℃C.22℃D.﹣22℃【解答】解:4﹣18,=4+(﹣18),=﹣14℃.故选A.2.(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.(a3)2=a5C.2+3=5D.÷=【解答】解:A、a6÷a3=a3,故不对;B、(a3)2=a6,故不对;C、2和3不是同类二次根式,因而不能合并;D、符合二次根式的除法法则,正确.故选D.3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.4.(3分)函数y=的图象经过点(2,﹣2),则m的值是()A.m=B.m=﹣C.m=D.m=﹣【解答】解:∵函数y=的图象经过点(2,﹣2),∴点(2,﹣2)满足该函数的解析式,∴﹣2=,解得,m=﹣.故选B.5.(3分)如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是()A.B.C.D.【解答】解:从上面看,下面一行第1列只有1个正方形,上面一行横排3个正方形.故选C.6.(3分)一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是()A.800•sinα米B.米C.800•cosα米 D.米【解答】解:如图,∠A=α,∠C=90°,则他上升的高度BC=ABsinα=800•sinα米.故选A.7.(3分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.8.(3分)如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.=C.=D.=【解答】解:A、∵DE∥BC,EF∥AB,∴,错误;B、∵DE∥BC,EF∥AB,∴,错误;C、∵DE∥BC,EF∥AB,∴,错误;D、∵DE∥BC,EF∥AB,∴,正确;故选D9.(3分)商店把彩电按标价的9折出售,仍可获利进价的20%,若该彩电的进价是2400元,则彩电的标价是()A.3200元B.3429元C.2667元D.3168元【解答】解:设彩电的标价是元,则商店把彩电按标价的9折出售即0.9x,若该彩电的进价是2400元.根据题意列方程得:0.9x﹣2400=2400×20%,解得:x=3200元.则彩电的标价是3200元.故选A.10.(3分)快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y(千米)与所用的时间x(时)的关系如图所示,下列说法正确的有()①快车返回的速度为140千米/时;②慢车的速度为70千米/时;③出发小时时,快慢两车距各自出发地的路程相等;④快慢两车出发小时时相距150千米.A.1个 B.2个 C.3个 D.4个【解答】解:∵快车到达乙地后停留1小时,快车比慢车晚1小时到达甲地,∴快车往返行驶的时间与慢车驶往甲地的时间相同,∴快车的速度==140千米/时,故①正确;慢车的速度==70千米/时,故②正确;x=时,快车到达乙地又返回,行驶路程=(﹣1)×140=千米,慢车路程=×70=千米,∵420×2﹣=千米,∴快慢两车距各自出发地的路程相等,故③正确;x=时,甲乙还没有相遇,二者相距:420﹣×(140+70)=420﹣270=150千米,故④正确.综上所述,说法正确的有①②③④共4个.故选:D.二、填空题(每题3分,共30分)11.(3分)在11月2日,哈尔滨早晨部分区域仍雾霾严重,直径小于等于0.0000025米的污染物颗粒是雾霾的主要组成部分.把0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.12.(3分)函数y=中,自变量x的取值范围为x≠1.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.13.(3分)把ax3﹣2ax2+ax分解因式的结果是ax(x﹣1)2.【解答】解:原式=ax(x2﹣2x+1)=ax(x﹣1)2,故答案为:ax(x﹣1)214.(3分)化简:=7.【解答】解:原式=4+3=7.故答案为:7.15.(3分)不等式组的解集是≤x<2.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.16.(3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为奇数的概率是.【解答】解:列表得:∴一共有20种情况,这两个球上的数字之和为奇数的12种情况,∴这两个球上的数字之和为奇数的概率是=.故答案为:.17.(3分)已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是24cm.【解答】解:设扇形的半径是r,则=20π解得:R=24.故答案为:24.18.(3分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB 交OC于点D.若AC=1,AO=2,则BD的长度为4.【解答】解:AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OA C=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;在Rt△OAC中,AC=CD=1,AO=2,OC=OD+DC=OD+1,根据勾股定理得:OC2=AC2+AO2,即(OD+1)2=12+(2)2,解得:OD=2.在Rt△OBD中,BD=2OD=4故答案为4.19.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.20.(3分)在△ABC中,D、E分别为BC、AB的中点,EG⊥AC于点G,EG、AD 交于点F,若AG=4,BC=2,tan∠DAC=,则AC=12.【解答】解:设AC=2a,连接DE,过D作DH⊥AC于H,∵D、E分别为BC、AB的中点,∴DE=AC=a,DE∥AC,CD==,∵tan∠DAC==,∴FG=2,∵DE∥AC,∴△AGF∽△DFE,∴,即,∴EF=a,∴DH=EH=2+a,HC=2a﹣4﹣a=a﹣4,在Rt△DHC中,DH2+CH2=DC2,即,解得:a=6,a=﹣(舍去),∴AC=12.故答案为:12.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分)21.(7分)先化简,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.【解答】解:原式=•=,当a=3tan30°+1=3×+1=+1,b=cos45°=×=1,原式==.22.(7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以DE为一边、一个内角为钝角的等腰三角形DEF,点F在小正方形的顶点上,且三角形DEF的面积为4.连接CF,请直接写出线段CF的长.【解答】解:(1)如图:(2)如图,CF=.23.(8分)为提高同学们体育运动水平,某校九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图4和图5).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数;并补全条形统计图.(3)若全校有1000人,请你估计全校参与羽毛球项目的人数.【解答】解:(1)九年(2)班学生数20÷40%=50人,答:九年(2)班共有50名学生;(2)参加乒乓球运动的人数50×20%=10人,补图如下:(3)根据题意得:1000×(1﹣40%﹣20%﹣24%=16%)=160(人),答:全校参与羽毛球项目的人数有160人.24.(8分)如图,在正方形ABCD中,P是射线BD上的一点,PE⊥CD,PF⊥BC,垂足分别是E、F,连接AP、EF.(1)如图(1),线段AP、EF的关系为AP=EF且AP⊥EF;(2)如图(2),线段AP、EF的上述关系是否仍然成立,并证明你的结论.【解答】解:(1)结论:AP=EF,AP⊥EF;理由:证明:如图,延长EP交AB于点G,延长AP交EF于点H,∵四边形ABCD为正方形,∴∠C=∠ABC=90°,又∵PF⊥BC,PE⊥CD,∴四边形PFCE为矩形,同理四边形BCEG也为矩形,∴PF=EC=GB,又∵BD平分∠ABC,∴∠GBD=45°,∴PG=BG=PF,又∵AB=BC=CD,∴AG=FC=PE,在△PAG和△EFP中,,∴△PAG≌△EFP(SAS),∴∠APG=∠EFP=∠EPH,PA=EF,∵∠EFP+∠PEH=90°,∴∠EPH+∠PEH=90°,∴AP⊥EF.∴PA=EF,PA⊥EF.故答案为AP=EF且AP⊥EF.(2)成立.理由:证明:如图,延长PE交BA的延长线于点G,AP交EF于点H,∵四边形ABCD为正方形,∴∠BCD=∠ABC=90°,又∵PF⊥BC,PE⊥CD,∴四边形PFCE为矩形,同理四边形BCEG也为矩形,∴PF=EC=GB,又∵BD平分∠ABC,∴∠GBD=45°,∴PG=BG=PF,又∵AB=BC=CD,∴AG=FC=PE,在△PAG和△EFP中,,∴△PAG≌△EFP(SAS),∴∠APG=∠EFP=∠EPH,PA=EF,∵∠EFP+∠PEH=90°,∴∠EPH+∠PEH=90°,∴AP⊥EF.∴PA=EF,PA⊥EF.25.(10分)我是地铁工程某一路段工程招标,经测算,甲队单独完成这项工程需要60天.若由甲队先做5天,再由甲、乙合作9天,共完成总工作量的.(1)求乙队单独完成这项工程需要多少天?(2)甲队施工1天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余部分.若要求完成此项工程的工程款不超过186万元,则甲、乙两队最多合作多少天?【解答】解:(1)设乙单独完成需x天由题意得,解得x=90,经检验x=90是分式方程的解,答:乙单独约需90天.(2)设甲、乙两队合作a天,∵甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,∴甲、乙两队合作一天完成工程的+=,∴3.5a+2[a+90(1﹣)]≤186,解得:a≤12,∴a的最大值为12,答:最多合做12天.26.(10分)已知,点P为⊙O外一点,PA切⊙O于点A,直线PC交⊙O于B、C两点,OD⊥BC于点H,交⊙O于D,连接AD交PC于点E.(1)如图1,求证:PA=PE;(2)如图2,连接AC、CD,点F为AD上一点,且DF=CD,求证:CF平分∠ACP;(3)在(2)的条件下,连接AB,直线CF交AB于G,若OH=HD,BG=,DF=,求PA的长.【解答】(1)证明:如图1,连接AO,∵PA切⊙O于A,∴∠PAD+∠OAD=90°,∵OD⊥BC,∴∠D+∠HED=∠D+∠AEP=90°,∵OA=OD,∴∠OAD=∠D,∴∠PAD=∠AEP,∴PA=PE;(2)如图2,∵OD⊥BC,∴=,∴∠DAC=∠BCD,∵DF=CD,∴∠DFC=∠DCF,∴∠DAC+∠ACF=∠FCP+∠BCD,∴∠ACF=∠PCF,∴CF平分∠ACP;(3)如图3中,连接OC,作BM⊥AC于M,GN⊥AC于N,GK⊥BC于K.∵OH=HD,BC⊥OD,∴CO=CD=OD,∴△OCD 是等边三角形,∵OD⊥BC,∴BH=CH,=,∴∠BAD=∠DAC=∠DOC=30°,∴∠BAC=60°,在Rt△CDH中,∵CD=,∠HCD=30°,∴CH=,∴BC=2CH=7,∵GC平分∠ACB,GN⊥CA,GK⊥CB,∴GN=GK,∴==,∴=,∴=,∴AG:AC=1:3,设AG=k,AC=3k,易知AM=(k+),BM=(k+),CM=3k﹣(k+)=k﹣,在Rt△CBM中,∵BM2+CM2=BC2,∴[(k+)]2+(k﹣)2=49,整理得,9k2﹣3k+56=0,解得k=或﹣(舍弃),∴AG=,AC=8,AB=5,设PA=x,PB=y,∵PA是⊙O的切线,∴∠PAB=∠ACP,∵∠P=∠P,∴△PAB∽△PCA,∴==,∴==,解得x=,y=,∴PA=.27.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c过点A(﹣1,0),C(5,6).抛物线的顶点为D,点P在线段CD上,点C、D到直线AP的距离记为d1、d2.(1)求a、c的值;(2)当d1+d2取最大值时,求点P的坐标;(3)若△APC的面积为10.5时,将△APC沿直线AC折叠,点P的对应点为点Q,求点Q的坐标并判断点Q是否在抛物线上.【解答】解:(1)把A(﹣1,0),C(5,6)代入y=ax2﹣x+c中得:,解得:a=,c=﹣;(2)如图,CM≤CP,DN≤DP∴当d1+d2取最大值时,AP⊥CD,即d1+d2=CD,y=x2﹣x﹣=(x﹣1)2﹣2,即D(1,﹣2),∵C(5,6),∴直线CD的解析式为y=2x﹣4,∵AP⊥CD,设直线AP的解析式为y=﹣x+b,将A点坐标代入,得﹣×(﹣1)+b=0,解得b=﹣,直线AP的解析式为y=﹣x﹣,联立AP与CD,得,解得,∴P(,﹣);(3)如图1,设P点的纵坐标为y,直线CDy=2x﹣4,当y=0时,2x﹣4=0,解得x=2,直线CD与x轴交于点F,则F(2,0),作CS⊥x轴于S,PT⊥x轴于T,由△APC的面积为10.5,C(5,6)得×[2﹣(﹣1)]×(6﹣y)=10.5,解得y=﹣1,2x﹣4=﹣1,解得x=,∴P(,﹣1).过P作PQ⊥AC,使AC垂直平分PQ,∵A(﹣1,0),C(5,6),∴直线AC的解析式为y=x+1,∵PQ⊥AC,设PQ的解析式为y=﹣x+b,将P点坐标代入,解得b=,∴直线PQ的解析式为y=﹣x+,联立直线AC与PQ,得,解得E交点坐标为(﹣,),由P与Q关于E点对称,得Q(﹣2,),将Q点坐标代入解析式,得y=x2﹣x﹣=∴点Q(﹣2,)在抛物线y=x2﹣x﹣图象上.。