北师大版九年级数学上册知识点归纳:第六章反比例函数
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
九上第6章 反比例函数知识清单一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为k y x =,其中k 是不等于零的常数. 一般地,形如k y x= (k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数. 特别说明:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点. (2)k y x= ()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件. (3)k y x = ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数k y x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:k y x= (0k ≠); (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式k y x=中. 三、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数k y x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:k y x= (0k ≠); (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式k y x=中. 四、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.特别说明:(1)若点(a b ,)在反比例函数k y x =的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠) 中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;特别说明:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.五、反比例函数()中的比例系数k 的几何意义过双曲线x k y =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x k y =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.六、利用反比例函数解决实际问题1. 基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2. 一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系 数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.七、反比例函数在其他学科中的应用1.当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2.当工程总量一定时,做工时间是做工速度的反比例函数;3.在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;4.电压一定,输出功率是电路中电阻的反比例函数.。
第01讲_反比例函数图象和性质知识图谱反比例函数的概念知识精讲一.反比例函数反比例函数的概念:形如函数kyx=(k为常数,0k≠)叫做反比例函数,其中k叫做比例系数,x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.二.成反比例关系两个相关联的变量,一个量随着另一个量的增加而减少或一个量随着另一个量的减少而增加,且它们的乘积相同,那么这两个量就成反比例关系.三点剖析一.反比例函数反比例函数的概念:形如函数kyx=(k为常数,0k≠)叫做反比例函数,其中k叫做比例系数,x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.二.成反比例关系两个相关联的变量,一个量随着另一个量的增加而减少或一个量随着另一个量的减少而增加,且它们的乘积相同,那么这两个量就成反比例关系.三.易错点1.注意自变量的取值范围2.注意区分反比例函数与成反比例关系北师大版本数学九年级上册第六章反比例函数反比例函数例题1、下列函数中,能表示y 是x 的反比例函数的是()A.y=12x B.y=11x - C.y=2xD.【答案】A【解析】根据反比例函数的定义判断即可.y=12x 表示y 是x 的反比例函数,A 正确;y=11x -不能表示y 是x 的反比例函数,C 错误;y=2x 是正比例函数,C 错误;不能表示y 是x 的反比例函数,D 错误,故选:A .例题2、若2(1)zay a x -=+是反比例函数,则a 的取值为()A.1B.﹣1C.±lD.任意实数【答案】A【解析】∵此函数是反比例函数,∴21021a a +≠⎧⎨-=-⎩,解得a=1.随练1、已知函数y 与1x +成反比例,且当2x =-时,3y =-.(1)求y 与x 的函数关系式;(2)当12x =时,求y 的值.【答案】(1)31y x =+(2)2【解析】该题考查的是反比例函数.(1)设1k y x =+,把()2,3--代入得,3k =,∴31y x =+.(2)把12x =,代入解析式得:2y =.随练2、下面的函数是反比例函数的是()A.31y x =+B.22y x x=+ C.2xy = D.2y x=【答案】D 【解析】该题考查的是反比例函数定义.反比例函数形如()0ky k x=≠,本题中,A 为一次函数;B 为二次函数;C 为一次函数;D 为反比例函数,故本题选D .随练3、若函数11m y x -=(m 是常数)是反比例函数,则m =____________,解析式为_____________.【答案】2;1y x=【解析】由反比例函数的定义可知11m -=,所以2m =,1y x=.随练4、某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为___________,是___________函数.【答案】wy x=;反比例【解析】由题意可得wy x=,是反比例函数.成反比例关系例题1、已知y 与x 成反比例,当3x =时,4y =,那么3y =时,x 的值等于()A.4B.4- C.3D.3-【答案】A【解析】因为y 与x 成反比例,所以可设k y x =(0k ≠),因为当3x =时,4y =,所以43k =,即12k =,所以12y x =,当3y =时,4x =,故答案为A 选项.例题2、下列各问题中,两个变量之间的关系不是反比例函数的是()A.小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m /s )之间的关系B.菱形的面积为48cm 2,它的两条对角线的长为y (cm )与x (cm )的关系C.一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的密度ρ之间的关系D.压力为600N 时,压强P 与受力面积S 之间的关系【答案】C【解析】暂无解析反比例函数的图象和性质知识精讲一.反比例函数的图像和性质反比例函数的图像:反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.反比例函数的性质:反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线;当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.反比例函数的对称性:反比例函数关于坐标原点中心对称,关于y x =±这两条直线轴对称.二.反比例函数k 的几何意义反比例函数k y x =(k 为常数,0k ≠)中比例系数k 的几何意义,即过双曲线ky x=上任意一点引x 轴、y 轴垂线,所得矩形面积为k .三点剖析一.考点:反比例函数的图像和性质,反比例函数k 的几何意义.二.重难点:反比例函数k 的几何意义.三.易错点:1.k 的几何意义求出面积时注意k 的正负;2.反比例函数图像隐藏的对称性.反比例函数的图象和性质例题1、关于反比例函数y=﹣2x,下列说法正确的是()A.图象过(1,2)点B.图象在第一、三象限C.当x >0时,y 随x 的增大而减小D.当x <0时,y 随x 的增大而增大【答案】D【解析】∵k=﹣2<0,所以函数图象位于二四象限,在每一象限内y 随x 的增大而增大,图象是轴对称图象,故A 、B 、C 错误.例题2、己知k >0,则函数y =kx ,ky x=-的图象大致是()A. B. C. D.【答案】C【解析】暂无解析例题3、已知(﹣1,y 1)(﹣2,y 2)(12,y 3)都在反比例函数y=﹣2x的图像上,则y 1,y 2,y 3的大小关系是_________.【答案】y 3<y 2<y 1【解析】∵反比例函数y=﹣2x中,k=﹣2<0,∴函数图像的两个分支分别位于二、四象限,且在每一象限内,y 随x 的增大而增大.∵﹣2<﹣1<0,12>0,∴点A (﹣2,y 2),B (﹣1,y 1)在第二象限,点C (12,y 3)在第四象限,∴y 3<y 2<y 1.例题4、点(a ﹣1,y 1)、(a+1,y 2)在反比例函数y=kx(k >0)的图象上,若y 1<y 2,则a 的范围是____________.【答案】﹣1<a <1【解析】∵k >0,∴在图象的每一支上,y 随x 的增大而减小,①当点(a ﹣1,y 1)、(a+1,y 2)在图象的同一支上,∵y 1<y 2,∴a ﹣1>a+1,解得:无解;②当点(a ﹣1,y 1)、(a+1,y 2)在图象的两支上,∵y 1<y 2,∴a ﹣1<0,a+1>0,解得:﹣1<a <1.随练1、对于反比例函数y=kx(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而减小C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上【答案】D【解析】A、当k>0时,在每个单调区间内,y随x增大而减小,∴A不正确;B、当k<0时,在每个单调区间内,y随x增大而增大,∴B不正确;C、当k>0时,该函数图象在第一、三象限,∴C不正确;D、∵1×2=2=2×1,∴若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上,即D正确.随练2、反比例函数y=1mx-的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=12m-;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③B.①③④C.①②③④D.①④【答案】D【解析】由图象可知,反比例函数1myx-=在一、三象限,则1﹣m>0,得m<1,故①正确;由图象可知,反比例函数1myx-=在每个象限内y随x的增大而减小,故②错误;求不出三角形的面积,故③错误;因为反比例函数的图象关于原点对称,故若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,故④正确;由上可得,结论正确的是①④,故选D.反比例函数k的几何意义例题1、如图,在平面直角坐标系中,点P是反比例函数y=kx(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.32D.﹣32【答案】A【解析】∵点P 是反比例函数y=kx(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B .若四边形OAPB 的面积为3,∴矩形OAPB 的面积S=|k|=3,解得k=±3.又∵反比例函数的图象在第一象限,∴k=3.例题2、如图,已知反比例函数ky x=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B .若△AOB的面积为1,则k =________.【答案】-2【解析】依据比例系数k 的几何意义可得两个三角形的面积都等于1||12k =,解得k =-2.例题3、如图,点A 、B 是双曲线y=2x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若S 阴影=1,则S 1+S 2=()A.2B.3C.4D.5【答案】A 【解析】∵点A 、B 是双曲线y=2x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 2=2+2﹣1×2=2.随练1、如图,在反比例函数y=(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=.【答案】.【解析】由题意,可知点P 1、P 2、P 3、P 4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S 1=1×(2﹣1)=1,S 2=1×(1﹣)=,S 3=1×(﹣)=,∴S 1+S 2+S 3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P 1向x 轴、y 轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.随练2、如图,点A 、B 在反比例函数y=kx(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC ,△AOC 的面积为6,则k 的值为_________.【答案】4【解析】设OM=a ,∵点A 在反比例函数y=k x,∴AM=k a,∵OM=MN=NC ,∴OC=3a ,∴S △AOC =12•OC •AM=12×3a ×k a =32k=6,解得k=4.随练3、如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【答案】(1)4;y x yx=-=-;(2)6【解析】(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S△OBC=×BO×x C=×3×4=6.反比例函数的应用知识精讲一.利用反比例函数解决实际生活问题用反比例函数来解决实际问题的步骤:由实验获得数据用描点法画出图象根据所画图象判断函数类型用待定系数法求出函数解析式用实验数据验证三点剖析一.考点:反比例函数的应用.二.重难点:反比例函数的应用.三.易错点:注意自变量取值范围要符合实际意义.利用反比例函数解决实际生活问题例题1、某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷【答案】D【解析】如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=kx(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=50 x,把y=2代入上式得:x=25,∴C错误,把x=50代入上式得:y=1,∴D正确.例题2、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.【答案】R≥3.6【解析】设反比例函数关系式为:I=k R,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=36 R,当I≤10时,则36R≤10,R≥3.6.例题3、环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L )与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系.(1)求整改过程中硫化物的浓度y 与时间x 的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L ?为什么?【答案】(1)当0≤x ≤3时,y=﹣2x +10;当x >3时,y=12x;(2)能;理由如下:令y=12x=1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L .【解析】(1)分情况讨论:①当0≤x ≤3时,设线段AB 对应的函数表达式为y=kx +b ;把A (0,10),B (3,4)代入得b=103k+b=4⎧⎨⎩,解得:k=-2b=10⎧⎨⎩,∴y=﹣2x +10;②当x >3时,设y=m x,把(3,4)代入得:m=3×4=12,∴y=12x;综上所述:当0≤x ≤3时,y=﹣2x +10;当x >3时,y=12x;(2)能;理由如下:令y=12x=1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L .随练1、某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为()A.100y x =B.100y x=C.100100y x=-D.100y x=-【答案】B【解析】由题意可得100y x =,故答案为B 选项.随练2、家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R (k Ω)随温度t (℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加k Ω.(1)求当10≤t ≤30时,R 和t 之间的关系式;(2)求温度在30℃时电阻R 的值;并求出t ≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6k Ω?【答案】(1)10≤t≤30时,R=;(2)当温度为30℃时,R=2;R=t ﹣6;(3)温度在10℃~45℃时,电阻不超过6kΩ【解析】(1)∵温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,∴可设R 和t 之间的关系式为R=,将(10,6)代入上式中得:6=,k=60.故当10≤t ≤30时,R=;(2)将t=30℃代入上式中得:R=,R=2.∴温度在30℃时,电阻R=2(k Ω).∵在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加k Ω,∴当t ≥30时,R=2+(t ﹣30)=t ﹣6;(3)把R=6(k Ω),代入R=t ﹣6得,t=45(℃),所以,温度在10℃~45℃时,电阻不超过6kΩ.拓展1、下列函数关系式中,一定是反比例函数的是()A.32+2y x = B.27y x=-+ C.1k y x += D.2y x =-【答案】D【解析】该题考查的是反比例函数的概念.只有形如()0k y k x=≠的才是反比例函数,故答案选D .2、函数y=k x的图象经过点(2,3),则k=()A.2B.3C.6D.﹣6【答案】C【解析】∵函数y=k x 的图象经过点(2,3),∴2k =3,解得k=6.3、当m =________时,函数y =(m -2)x |m|-3是反比例函数.【答案】-2【解析】暂无解析4、若函数25(2)k y k x -=-(k 为常数)是反比例函数,则k 的值是______,解析式为_______________.【答案】2-;14y x -=-【解析】由反比例函数定义可知251k -=-且20k -≠,所以2k =-,14y x -=-.5、某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为___________,是___________函数.【答案】w y x =;反比例【解析】由题意可得w y x=,是反比例函数.6、如图,已知直线y =k 1x (k 1≠0)与反比例函数2k y x=(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是() A.(-1,-2)B.(-1,2)C.(1,-2)D.(-2,-1)【答案】A【解析】∵直线y =k 1x (k 1≠0)与反比例函数2k y x=(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).7、函数y=k x 与y=﹣kx 2+k (k ≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【解析】由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y 轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y 轴的正半轴上,本图象与k的取值相矛盾,故D错误.8、函数y=ax(a≠0)与y=ax在同一坐标系中的大致图像是()A.B.C.D.【答案】D【解析】A、由反比例函数的图象可知a>0,由正比例函数的图象可知a<0,二者相矛盾,故本选项错误;B、由反比例函数的图象可知a<0,由正比例函数的图象可知a>0,二者相矛盾,故本选项错误;C、由反比例函数的图象可知a>0,由正比例函数的图象可知a<0,二者相矛盾,故本选项错误;D、由反比例函数的图象可知a>0,由正比例函数的图象可知a>0,二者一致,故本选项正确.9、如图,在平面直角坐标系中,点P在函数y=6x(x>0)的图像上.过点P分别作x轴、y轴的垂线,垂足分别为A、B,取线段OB的中点C,连结PC并延长交x轴于点D.则△APD的面积为______.【解析】∵PB ⊥y 轴,PA ⊥x 轴,∴S 矩形APBO =|k|=6,在△PBC 与△DOC 中,90PBC COD BC OC PCB OCD ⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△PBC ≌△DOC ,∴S △APD =S 矩形APBO =6.10、如图,点A 是反比例函数图象上y=K X一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则k=__________.【答案】﹣3【解析】设点A 的坐标为(m ,n ),∵AB ⊥y 轴,CD ⊥y 轴,∴AB ∥CD ,又∵BC ∥AD ,∴四边形ABCD 为平行四边形.S 平行四边形ABCD =AB •OB=﹣m •n=3,∴k=mn=﹣3.11、如图,点A 是反比例函数y 1=1x (x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数y 2=k x(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为___________.【答案】5【解析】延长BA ,与y 轴交于点C ,∵AB ∥x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x (x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =2,即2k ﹣12=2,解得:k=5.12、如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=______.【答案】3【解析】连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=kx(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=12四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=12△OBE的面积=32,∴k=313、如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数myx的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.【答案】(1)y=x+1;y=6x;(2)OP=1.【解析】(1)∵反比例函数y=mx的图象经过点A(2,3),∴m=6.∴反比例函数的解析式是y=6 x,∵B点(﹣3,n)在反比例函数y=6x的图象上,∴n=﹣2,∴B(﹣3,﹣2),∵一次函数y=kx+b的图象经过A(2,3)、B(﹣3,﹣2)两点,∴23 32k bk b+=⎧⎨-+=-⎩,解得:11 kb=⎧⎨=⎩,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C(0,1),OC=1,根据题意得:S△ABP=12PC×2+12PC×3=5,解得:PC=2,则OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.14、甲、乙两地间的公路长为300km,一辆汽车从甲地去乙地,汽车在途中的平均速度为(/)v km h,到达时所用的时间为()t h,那么t是v的______函数,v关于t的函数关系式为_____________.【答案】反比例;300 tv =【解析】由题意得300tv=,是反比例函数.15、如图,点A在反比例函数6yx=图象第一象限的分支上,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,若△OAD与△BCD的面积相等,则点A的横坐标是()B.2 D.【答案】A【解析】连接OC,分别过点A、C作x、y轴的平行线交于E点,CE交x轴于F点,如图:由反比例的性质可知,A 、B 两点关于中心O 对称,即OA =OB ,又∵△ACB 为等腰直角三角形,∴CO ⊥AB ,且OC =OA .设直线AB 的解析式为y =ax (a >0),则OC 的解析式为1y x a=-,设点A (m ,am ),点C (an ,﹣n ),∵OA =OC ,即m 2+(am )2=(an )2+n 2,解得n =±m ,∵A 在第一象限,C 在第三象限,∴n =m >0,即C (am ,﹣m ).∵AE ∥x 轴,CE ∥y 轴,∴∠CDF =∠CAE ,∠CFD =∠CEA =90°,∴△CDF ∽△CAE ,∴CF CD CE CA=,又∵△OAD 与△BCD 的面积相等,△OAD 与△BOD 的面积相等,∴S △ABD =2S △BCD ,∴2AD CD=,∵AC =AD +CD ,∴13CF CD CE CA ==,∵点A (m ,am ),点C (am ,﹣m ),∴点E (am ,am ),点F (am ,0),∴0()11()13CF m CE am m a --===--+即a =2.∵点A (m ,am )在反比例函数6y x=的图象上,且a =2,∴2m 2=6,解得m =,∵m >0,∴m =,∴点A 所以选A .16、如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟,据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y 与x 之间的函数表达式,并写出x 的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?【答案】(1)y=9x+15(05x ≤≤),y=(x≥5);(2)对该材料进行特殊处理所用的时间为分钟.【解析】(1)设加热过程中一次函数表达式为y=kx+b (k ≠0),∵该函数图象经过点(0,15),(5,60),∴,解得,∴一次函数的表达式为y=9x+15(0≤x ≤5),设加热停止后反比例函数表达式为y=(a ≠0),∵该函数图象经过点(5,60),∴=60,解得:a=300,∴反比例函数表达式为y=(x ≥5);(2)∵y=9x+15,∴当y=30时,9x+15=30,解得x=,∵y=,∴当y=30时,=30,解得x=10,10﹣=,所以对该材料进行特殊处理所用的时间为分钟.第02讲_反比例函数的代几综合知识图谱反比例函数的代数综合知识精讲一.反比例函数与方程和不等式如图,双曲线与直线相交,则方程12k k x b x =+的解为交点的横坐标12x x 、;不等式12k k x b x+>的解为120x x x x ><<或.二.反比例函数与一次函数已知反比例函数与一次函数的一个交点,求函数解析式,只要把交点坐标分别代入到两个解析式即可.当反比例函数与正比例函数相交时,交点关于原点对称,即1212,x x y y =-=-.三点剖析一.考点:反比例函数与代数综合二.重难点:反比例函数与代数综合三.易错点:1.注意反比例函数解析式中0k ≠;2.反比例函数与一次函数结合经常会出现要解分式方程的情况,注意分式方程增根的情况;3.利用图像解反比例函数与不等式的问题.与方程,不等式综合例题1、如图,反比例函数y 1=的图象与正比例函数y 2=k 2x 的图象交于点(2,1),则使y 1>y 2的x 的取值范围是()A.0<x <2B.x >2C.x >2或﹣2<x <0D.x <﹣2或0<x <2【答案】D 【解析】∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵A (2,1),∴B (﹣2,﹣1),∵由函数图象可知,当0<x <2或x <﹣2时函数y 1的图象在y 2的上方,∴使y 1>y 2的x 的取值范围是x <﹣2或0<x <2.故选D .例题2、已知直线y=x ﹣3与函数2y x =的图象相交于点(a ,b ),则代数式a 2+b 2的值是()A.13B.11C.7D.5【答案】A【解析】根据题意得b=a ﹣3,b=2a,所以a ﹣b=3,ab=2,所以a 2+b 2=(a ﹣b )2+2ab=32+2×2=13.故选A .例题3、求一元二次方程x 2+3x ﹣1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即该方程的解.类似地,我们可以判断方程x 3﹣x ﹣1=0的解的个数有()A.0个B.1个C.2个D.3个【答案】B 【解析】由x 3﹣x ﹣1=0得:x 3﹣x=1方程两边同时除以x 得:x 2﹣1=,在同一坐标系中作出y=x 2﹣1和y=的图象为:观察图象有一个交点,∴可以判断方程x 3﹣x ﹣1=0的解的个数有1个,随练1、小兰画了一个函数y=1a x -的图像如图,那么关于x 的分式方程1a x -=2的解是()A.x=1B.x=2C.x=3D.x=4【答案】A【解析】由图可知当x=3时,y=0,即13a -=0,解得a=3,当31x-=2时,解得x=1.随练2、如图所示,已知A (12,y 1),B (2,y 2)为反比例函数y=1x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是()A.(12,0) B.(1,0) C.(32,0) D.(52,0)【答案】D 【解析】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12,∴A (12,2),B (2,12),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣1,b=52,∴直线AB 的解析式是y=﹣x+52,当y=0时,x=52,即P (52,0),1、反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是()A.t<B .t>C .t≤D .t≥【答案】【解析】将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x 2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t >.与一次函数综合例题1、已知反比例函数k y x=(k≠0)和一次函数y =x -6.(1)若一次函数与反比例函数的图象交于点P (2,m ),求m 和k 的值;(2)当k 满足什么条件时,两函数的图象没有交点.【答案】(1)m =-4;k =-8(2)k <-9【解析】(1)把点P (2,m )代入y =x -6,得m =-4,所以P (2,-4).将点P (2,-4)代入反比例函数k y x =,得k =-8;(2)根据,6,k y x y x ⎧=⎪⎨⎪=-⎩解得6k x x =-,∴260x x k --=,∵两图象没有交点,∴()()26410k --⨯⨯-<,即k <-9.例题2、如图,在直角坐标系中,直线y =mx 与曲线n y x =相交于A (-1,a ),B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1.(1)求m,n的值;(2)求直线AC的解析式.【答案】(1)m=-2;n=-2(2)y=-x+1【解析】(1)∵直线y=mx与曲线nyx=相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(-1,2),将A(-1,2)代入y=mx,nyx=可得m=-2,n=-2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(-1,2)、C(1,0)∴2k bk b-+=⎧⎨+=⎩,解得k=-1,b=1,∴直线AC的解析式为y=-x+1.例题3、已知反比例函数5myx-=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.【答案】(1)m<5(2)-1【解析】(1)∵在反比例函数5myx-=图象的每个分支上,y随x的增大而增大,∴m-5<0,解得:m<5;(2)将y=3代入y=-x+1中,得x=-2,∴反比例函数5myx-=图象与一次函数y=-x+1图象的交点坐标为(-2,3),将(-2,3)代入5myx-=得532m-=-,解得1m=-.随练1、已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=1x的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个【答案】B【解析】如图,设P(m,1m),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴12 AB ACAP AO==,∴P1,P3在y轴上,这样的点P 不存在,点P 4在AB 之间,不满足AP=2AB ,过P 2作P 2Q ⊥x 轴于Q ,∴P 2Q ∥B 1C ,∴1212AB AC AP AQ ==,∴1122m =--,∴m=﹣4,∴P (﹣4,﹣14),∴满足条件的点P 的个数是1,随练2、图中给出的直线1y k x b =+和反比例函数2k y x=的图像,判断下列结论正确的个数有()①2k >b >1k >0;②直线1y k x b =+与坐标轴围成的△ABO 的面积是4;③方程组12y k x b k y x =+⎧⎪⎨=⎪⎩的解为11x 6y 1=-⎧⎨=-⎩,22x 2y 3=⎧⎨=⎩;④当-6<x <2时,有21k k x b x +>A.1个B.2个C.3个D.4个【答案】C【解析】暂无解析随练3、如图,双曲线x m y =与直线b kx y +=相交于点M ,N ,且点M 的坐标为(1,3),点N 的纵坐标为-1.根据图象信息可得关于x 的方程x m =b kx +的解为()A.1=x B.1=x 或3-=x C.3=x D.1-=x 或3=x 【答案】B【解析】暂无解析随练4、如图,一次函数y=kx+b 的图象与反比例函数y=m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.【答案】(1)y=2x-;y=﹣x ﹣1(2)x <﹣2或0<x <1【解析】(1)∵A (﹣2,1)在反比例函数y=m x的图象上,∴1=2m -,解得m=﹣2.∴反比例函数解析式为y=2x-,∵B (1,n )在反比例函数h 上,∴n=﹣2,∴B 的坐标(1,﹣2),把A (﹣2,1),B (1,﹣2)代入y=kx+b ,得212k k b b -==-++⎧⎨⎩,解得:11b k =--=⎧⎨⎩,∴一次函数的解析式为y=﹣x ﹣1;(2)由图象知:当x <﹣2或0<x <1时,一次函数的值大于反比例函数.随练5、如图,在平面直角坐标系中,边长为2的正方形ABCD 关于y 轴对称,边AD 在x 轴上,点B 在第四象限,直线BD 与反比例函数y=m x的图象交于点B 、E .(1)求反比例函数及直线BD 的解析式;(2)求点E 的坐标.【答案】(1)y=﹣2x ;y=﹣x ﹣1(2)E (﹣2,1)【解析】(1)边长为2的正方形ABCD 关于y 轴对称,边在AD 在x 轴上,点B 在第四象限,∴A (1,0),D (﹣1,0),B (1,﹣2).∵反比例函数y=m x 的图象过点B ,∴1m =﹣2,m=﹣2,∴反比例函数解析式为y=﹣2x,设直线BD 的解析式为y=kx+b ,∵y=kx+b 的图象过B 、D 点,∴-2-k+b=0k b +=⎧⎨⎩,解得=-1b=-1k ⎧⎨⎩.直线BD 的解析式y=﹣x ﹣1;(2)解方程组2y=-x y=-x 1⎧⎪⎨⎪-⎩,解得-2y=1x =⎧⎨⎩或x=1y=-2⎧⎨⎩,∵B (1,﹣2),∴E (﹣2,1).随练6、定义运算max{a ,b}:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b}=b .如max{﹣3,2}=2.(1)max{,3}=____________;(2)已知y 1=1k x 和y 2=k 2x+b 在同一坐标系中的图象如图所示,若max{1k x ,k 2x+b}=1k x,结合图象,直接写出x 的取值范围;(3)用分类讨论的方法,求max{2x+1,x ﹣2}的值.【答案】(1)3(2)﹣3≤x <0或x≥2(3)当2x+1≥x ﹣2时,max{2x+1,x ﹣2}=2x+1,当2x+1<x ﹣2时,max{2x+1,x ﹣2}=x ﹣2.【解析】(1)3}=3.故答案为:3;(2)∵max{1k x ,k 2x+b}=1k x,∴1k x≥k 2x+b ,∴从图象可知:x 的取值范围为﹣3≤x <0或x≥2;(3)当2x+1≥x ﹣2时,max{2x+1,x ﹣2}=2x+1,当2x+1<x ﹣2时,max{2x+1,x ﹣2}=x ﹣2.反比例函数与几何综合知识精讲一.反比例函数与三角形综合一般为定点与动点构成特殊三角形情况,利用等腰三角形,直角三角形,等边三角形,等腰直角三角形等固有特殊性质,进行求解,并且注意考虑到多种结论的情况.二.反比例函数与四边形综合四边形与反比例函数的综合问题与三角形部分基本上相同,不同的是涉及到平行四边形等特殊四边形的时候经常会出现两个顶点两个动点的情况需要进行分类讨论.三.反比例函数与面积问题反比例函数涉及到的面积问题一般都为三角形面积和矩形面积问题,对于三角形面积我们可以对三角形进行分割再去求解,对于矩形面积问题,我们要注意k 值的几何意义和正负的讨论.三点剖析一.反比例函数与三角形综合一般为定点与动点构成特殊三角形情况,利用等腰三角形,直角三角形,等边三角形,等腰直角三角形等固有特殊性质,进行求解,并且注意考虑到多种结论的情况.二.反比例函数与四边形综合四边形与反比例函数的综合问题与三角形部分基本上相同,不同的是涉及到平行四边形等特殊四边形的时候经常会出现两个顶点两个动点的情况需要进行分类讨论.三.反比例函数与面积问题反比例函数涉及到的面积问题一般都为三角形面积和矩形面积问题,对于三角形面积我们可以对三角形进行分割再去求解,对于矩形面积问题,我们要注意k 值的几何意义和正负的讨论.四.易错点:1.涉及到特殊三角形与动点问题时,一般都为多个解,注意不要漏解2.在求三角形和四边形面积用坐标表示线段长度时,注意正负号的问题.与三角形综合例题1、在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数y=2x 的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为()A.2个B.4个C.5个D.6个【答案】D。
第六章 反比例函数第5讲 反比例函数图象、性质及应用一.知识梳理知识点1 反比例函数的定义与表达式: (1)一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数 (2)反比例函数有三种表达式: ①xk y =(0k ≠) ②1kx y -=(0k ≠) ③k y x =⋅(定值)(0k ≠) 知识点2 用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式. 知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x ≠0,函数值y ≠0,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线. 在作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交.知识点4 反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数xky =(0k ≠) k 的符号0k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小.②当0k <时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大.注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小,就会与事实不符的矛盾. ☆反比例函数x k y =(0k ≠)中,k 越大,双曲线xky =越远离坐标原点;k 越小,双曲线xky =越靠近坐标原点. ☆双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x. ☆反比例函数(y=xk)的图像与正比例函数(y=ax )的图像交于A(11y x ,),B(22y x ,)两点,那么这两点关于原点对称,即21-x x =,21-y y =.【补充】 中点坐标公式: 三点共线,且中间的点是中点,则:⎪⎪⎩⎪⎪⎨⎧==22两个端点的纵坐标相加中间点的纵坐标两个端点的横坐标相加中间点的横坐标即若A(1x ,1y ),B(2x ,2y ),M(x ,y)在一条直线上,且M 为线段AB 的中点,则有:⎪⎪⎩⎪⎪⎨⎧+=+=2y y y 2x x x 2121知识点5 反比例函数的应用(略)二.实战演练考点一反比例函数的概念及函数关系式的确定下列是反比例函数的有_____(填序号)①2xy-=;②xy21-=;③11-=xy;④21xy=⑤ xy=-3;⑥1--=xy考点二反比例函数的图像和性质1.反比例函数y=xa-1-2(a是常数)的图像分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.(1)若A(x1,y1),b(x2,y2)是双曲线y=x3上的两点,且x1>x2>0,则y1____y2.3.反比例函数y=xk的图像如右图所示,则k的值可能是()A.-1B.1C.2D.34.正方形的A1B1P1P2顶点P1、P2在反比例函数y=x2(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=x2(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.典例分析考点三 反比例函数的应用 1.已知点P(a ,b)在反比例函数xy 2=的图像上,若点P 关于y 轴对称的点在反比例函数xky =的图像上,则k 的值为_____. 2.李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y 元,x 月结清余款.y 与x 的函数关系如图所示,试根据图象提供的信息回答下列问题.(1)确定y 与x 的函数关系式,并求出首付款的数目;(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?考点四 一次函数与反比例函数综合问题 1.函数y=k(x-1)与xky -=在同一直角坐标系内的图象大致是( )2.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=-2x+6的图象无公共点,则这个反比例函数的表达式是_____(只写出符合条件的一个即可).3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y 与x 的函数关系式.4.如图所示,直线xy 34=与双曲线x k y =(x >0)交于点A ,将直线x y 34=向右平移29个单位后,与双曲线x k y =(x >0)交于点B ,与x 轴交于点C ,若BCAO=2,则k=____.1.已知函数|m |1xm y -=是y 关于x 的反比例函数,则m 的值是____. 2.在反比例函数xmy 21-=的图像上有A(11y x ,),B(22y x ,)两点,当021<<x x 时,21y y <,则m 的取值范围是( )A.m <0 B.m >21 C.m <21D.m >03.反比例函数的自变量x 满足-2≤x ≤-21时,函数值-1≤y ≤-41,则它的解析式是( )A.x y 21=B.xy 21-= C.x y 8= D.x y 81-=4.如图所示,等边三角形OAB 的边OA 在x 轴上,双曲线y=x3在第一象限内的图像经过边OB 的中点C,则点B 的坐标是( , ).5.双曲线y=xk经过点(-3,4),则下列点在双曲线上的是____. A.(-2,3) B.(4,3) C.(-2,-6) D.(6,-2) 6.已知一次函数b kx y +=1与反比例函数xky =2在同一直角坐标系中的图象如图所示,则当21y y <时,x 的取值范围是( )课堂训练A.x <-1或0<x <3B.-1<x <0或x >3C.-1<x <0D.x >37.如图,直线y=33-x+b 与y 轴交于点A ,与双曲线xky =在第一象限交于B 、C 两点,且AB.AC=8,则k=_____.8.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万立方米)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?9.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6) (1)求m 的值;(2)如图,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.1.已知一个反比例函数的图像位于第二、四象限内,点P(yx,)在这个反比例函数图像上,且yx>-4,请你写出这个反比例函数的表达式______.(只写出符合题意的一个即可)2.若点(-2,)1y,(-1,2y),(1,3y)在反比例函数)0(<kxky=图象上,则下列结论中,正确的是()A.3y>1y>2y B.2y>1y>3y C.1y>2y>3y D.3y>2y>1y3.如图所示,点P(2,1)是反比例函数xky=的图像上的一点,则当y<1时,自变量x的取值范围是()A.x<2 B.x>2 C.x<2且x≠0 D.x>2或x<04.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且211112+=yy,则这个反比例函数的表达式为______.5.如图所示,矩形ABCD的对角线经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=xkk122++的图象上,若点A的坐标为(-2,-2),则k的值为_____.6.已知A(2,m-2)和B(m,4)均在反比例函数图像上,则m=___.7.如果一个正比例函数的图象与反比例函数y=x6的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为_____.8.如图,直线y=2x与双曲线y=x2在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO 绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )A.(1,0)B.(1,0)或(﹣1,0)C.(2,0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)课后作业※9.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ) A .7:20 B .7:30 C .7:45 D .7:5010.某汽车油箱的容积为80升,小陈把油箱注满油后从县城载客到400千米外的省城,把客人送到目的地后马上按原路返回,请回答下列问题:(1)油箱注满后,汽车能够行驶的总路程a (单位:千米)与每千米平均耗油量b (单位:升)之间有怎样的函数关系?(2)小陈以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返回走了一半路程时下起了雨,小陈降低了速度,此时每行驶1千米的耗油量增加了一倍,如果小陈一直以此速度行驶,油箱里的油是否能回到县城?如果不够用,至少还需加多少油?11.如图,已知反比例函数y=x2k和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+1,b+k )两点,反比例函数和一次函数的图象交于A 、B 两点. (1)求反比例函数的解析式,和△AOB 的面积; (2)结合函数图象,直接写出不等式2x >76x 2k+-的解为_______;(3)在反比例函数图象上存在_____个点P ,使得OAB PAB S S △△2=.12.已知反比例函数x2ky =和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)若点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,直接写出符合条件的点P 的坐标;若不存在,请说明理由.第6讲 |k|的几何意义一.知识归纳☆反比例函数xky =(0k ≠)中k 的几何意义: 如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足,连接OP , 则:OEPF S PE PF y x 矩形=⋅=⋅=k【补充】|k|的几何意义常见模型: 模型一:一点一垂线模型分析:如过反比例函数图象上一点作坐标轴的垂线,该点、垂足与坐标轴上一点(含原点)构成的三角形面积等于21|k|.特别补充:反比例函数图象上的两点与原点构成的三角形面积等于由这两点向x 轴作垂线构成的梯形面积.模型二:一点两垂线模型分析:如过反比例函数图象上一点作两条坐标轴的垂线,垂线与坐标轴围成的矩形面积等于|k|.模型三:原点一垂线模型分析:过正比例函数与反比例函数的一个交点作坐标轴的垂线,两交点与垂足构成的三角形的面积等于|k|.模型四:两点两垂线模型分析:反比例函数与正比例函数的两个交点的连线及由交点向不同坐标轴所作两条垂线围成的图形(或两交点及由交点向同一坐标轴所作两条垂线的垂足构成的图形)的面积等于2|k|.模型五:两点和一点模型分析:反比例函数与一次函数的交点和原点(或坐标轴上一点)所构成的三角形的面积,若两交点在同一支上,用减法;若两交点分别在两支上,用加法.模型六:两曲一平行模型分析:两条双曲线上的两点的连线与一条坐标轴平行,求该两点与原点构成或坐标轴围成的图形面积,结合k的几何意义求解.模型七:与四边形组合模型分析:反比例函数图象与四边形结合,已知面积求值,或已知值求面积.通常会用到反比例函数图象上点的横纵坐标乘积相等.二.实战演练例1:下列图形中,阴影部分面积最大的是()例2:如图所示,反比例函数y=xk(x>0)的图像经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4例3:如图,A、B两点分别在反比例函数xy1-=和xky=的图像上,连接OA、OB,若OA ⊥OB,OB=2OA,则k的值为() A.-2 B.2 C.-4 D.4例4:如图,反比例函数y=xk(x>0)的图象经过平行四边形ABCO的顶点A和对角线的交点E,点A的横坐标为3,对角线AC所在的直线交y轴于(0,6)点,则函数y=xk的表达式为_____.典例分析例5:如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=xk1(x>0)的图象经过点C,反比例函数y=xk2(x<0)的图象分别与AD,CD交于点E,F,若BEFS∆=7,21k3k+=0,则1k等于_______.例6:已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数xky=(k>0)的图象与AC边交于点E.(1)用含k的代数式表示△AOE的面积是____,△BOF的面积是_____.(2)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,请直接写出点F的坐标,若不存在,请说明理由.1.如图所示是反比例函数xky1=和xky2=(k1<k2)在第一象限的图像,直线AB∥x轴,并分别交两条曲线于A,B两点,若2=AOBS△,则k2-k1的值是()A.1B.2C.4D.8课堂训练2.如图,P(x ,y)是反比例函数xy 3的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A , PB ⊥y 轴于点B , 随着自变量x 的增大,矩形OAPB 的面积( ) A .不变 B.增大 C.减小 D.无法确定3.如图,已知四边形ABCD 是平行四边形,BC=2AB ,A 、B 两点的坐标分别是(-1,0),(0,2),C 、D 两点在反比例函数y=xk(k <0)的图象上,则k=_____.4.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数y =xk(x >0)在第一象限内的图象经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为1,则k 的值为_____.5.如图,在△OAB 中,C 是AB 的中点,反比例函数y=xk(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为_____.6.如图,在△ABC中,∠ABC=90°,BC边在x轴正半轴上,中线BD的反向延长线交于y轴负半轴于点E.双曲线xk y=一条分支经过点A,若S△BEC=4,则k=_______.1.如图所示,直线l和双曲线y=xk(k>0)交于A,B两点,P是线段AB上的点(不与A、B 重合).过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,OP,设△AOC的面积为S1,△BOD的面积为S2,△POE的面积为S3,则有()A.S1<S2<S3B.S1>S2>S3C.S1=S2<S3D.S1=S2>S32.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数xy4=的图象交于A、B两点,则四边形MAOB的面积为______.3.某反比例函数xky=的图像上有三点A(1,4),B(2,m),C(4,n),则△ABC的面积为_____.课后作业4.(1)如左下图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y=xk(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OAD 的面积为1,则k 的值为_______.(2)如右上图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =xk的图象恰好经过斜边A ′B 的中点C ,S △ABO=4,tan ∠BAO=2,则k 的值为______.5.如图,A 、B 两点分别在反比例函数x y 1-=和xky =的图像上,连接OA 、OB ,若OA ⊥OB ,OB=2OA ,则k 的值为( ) A.-2 B.2 C.-4 D.46.如图,A ,B 两点在反比例函数y=x k 1的图象上,C ,D 两点在反比例函数y=xk2的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC=2,BD=1,EF=3,则k 1﹣k 2的值是________.7.如图,在□OADB 中,对角线AB 、OD 相交于点C ,反比例函数y=kx (k >0)在第一象限的图象经过A 、C 两点,若平行四边形OADB 面积为12,则k 的值为______.8.如图所示,双曲线y=x2(x <0)经过四边形OABC 的顶点A ,C ,∠ABC=90°,OC 平分OA 与x 负半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .9.如图矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_____.10.在平面直角坐标系中,点A (﹣3,4)关于y 轴的对称点为点B ,连接AB ,反比例函数y=(x >0)的图象经过点B ,过点B 作BC ⊥x 轴于点C ,点P 是该反比例函数图象上任意一点,过点P 作PD ⊥x 轴于点D ,点Q 是线段AB 上任意一点,连接OQ 、CQ . (1)求k 的值;(2)判断△QOC 与△POD 的面积是否相等,并说明理由.。
第 - 1 - 页 共 3 页 第六章 反比例函数
知识点1 反比例函数的定义 一般地,形如x
k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;
⑶比例系数0k ≠是反比例函数定义的一个重要组成部分;
⑷反比例函数有三种表达式: ①x
k y =(0k ≠), ②1kx y -=(0k ≠),
③k y x =⋅(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y
k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =
,就不是反比例函数了,由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式 由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
第 - 2 - 页 共 3 页 再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质
☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:
反比例函数 x
k y =(0k ≠) k 的
符号 0k >
0k <
图像
性质 ①x 的取值范围是0x ≠,y 的取值
范围是0y ≠
②当0k >时,函数图像的两个分
支分别在第一、第三象限,在每个
象限内,y 随x 的增大而减小。
①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k <时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大。
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。
如x
k y =
在第一、第三象限,则可知0k >。
第 - 3 - 页 共 3 页 ☆反比例函数x
k y =(0k ≠)中比例系数k 的绝对值k 的几何意义。
如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k
☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x k y =越远离坐标原点;k 越小,双曲线x
k y =越靠近坐标原点。
☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=
-x 。