数学建模-判别分析
- 格式:ppt
- 大小:661.00 KB
- 文档页数:27
判别分析1.判别分析的适用条件(1)自变量和因变量间的关系符合线性假设。
(2)因变量的取值是独立的,且必须是事先就己经确定。
(3)自变量服从多元正态分布。
(4)所有自变量在各组间方差齐,协方差矩阵也相等。
(5)自变量间不存在多重共线性。
2.违背条件时的处理方法(1)当样本的多元正态分布假设不能满足的时候采取的措施和方法如下:<>如果数据的超平面是若干分段结构的话,采用分段判别分析。
<>如果数据满足方差和协方差的齐次性可以采用距离判别分析、经典判别分析、贝叶斯判别分析中的任何一种,因为此时三者是等价的,建议使用经典判别分析。
<>如果数据不满足方差和协方差的齐次性,则采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。
<>进行变量变换。
(2)方差和协方差的齐次性不能满足的时候可以采取的措施如下:<>增加样本,这有时可以使其影响减小。
<>慎重的进行变量变换。
<>采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。
<>在合乎总体实际情况的前提下,保证各个分组的样本量一样,判别分析中分组之间样本量一样可以带来以下几个好处:使得结果与方差齐次性假设不会偏离得太大;F检验时第二类错误(实际上为虚假的条件下正确的拒绝了原假设的概率)得到减小;使得均值更加容易比较和检验。
<>要是样本服从多元正态分布,采用二次判别,但是应该注意到二次判别分析没有计算判错率和统计检验的公式。
(3)存在多重共线性时可以采取的措施如下:<>增加样本量。
<>使用逐步判别分析。
<>采用岭判别分析。
<>对自变量进行主成分分析,用因子代替自变量进行判别分析。
<>通过相关矩阵结合实际的理论知识删去某些产生共线性的自变量。
显然,上述措施和线性回归中对共线性的处理方式是非常类似的。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
用判别分析的方法判定DNA序列的类别摘要判别分析法是多元统计分析中的重要内容之一。
近年来,人们用判别分析的方法解决了不少在生产科研和日常生活中的实际问题。
本文用Fisher判别的思想,从变量检验入手,给出了对DNA序列进行不同分类的理论依据,并探讨错判概率与判别效率之间的关系。
通过对检验样本的回报情况分析可知,本文所建立的模型分辨率高(95%),错判率低(<1%),简单而易于运行,适合于各种长度的DNA序列的分类,因此实用性强,有较高的理论价值,为多元统计分析方法在生物信息学领域中应用的又一典型实例。
关键词:DNA序列、Fisher判别法、判别函数、错判率。
一、问题提出1.背景人类基因组计划中的DNA全序列图是一本记录着人类自生老病死及遗传进化的全部信息的“天书”。
这本大自然写成的“天书”是由4个字符A、C、G、T按一定的顺序排成的长约30亿的序列,其中没有断句,也没有标点符号,除了这4个字符表示4种碱基以外,人们对它包含的内容知之甚少,难以读懂,破译这部世界上最巨量信息的“天书”是二十世纪最重要的任务之一。
在这个目标中,研究DNA全序列具有什么结构,由这4个字符排成看似随机的序列中隐藏着什么规律,又是解读这部天书的基础,是生物信息学最重要的课题之一。
对DNA序列的逐步认识让人们相信DNA序列中存在着局部的和全局的结构,充分发掘序列的结构对理解DNA全序列是十分有意义的。
2.问题有20个已知类别的人工序列:A类,B类。
1. 从中提取特征,构造模型,找出合适的分类方法,并用该法对另20个给出的未知类别的人工序列进行分类,要求详述方法及给出计算程序。
2..对另给出的182个自然序列进行分类。
二.问题的分析本题重在从已知类别的DNA序列中提取某些特征,构造分类方法,提取的某些特征应满足以下条件:1)来源于已知样本。
2)具有给予未知类别的DNA序列分类的功能。
3)能较好的接受检验样本的检验。
全部地考虑各种因素(如碱基的排列组合,碱基间的键强及键长等等),无法得到分类方法。