配电线路如何进行防雷
- 格式:docx
- 大小:23.60 KB
- 文档页数:7
10kV配电线路防雷近年来,随着我国电力事业的蓬勃发展,电力设施得到了迅速的增长,尤其是各种高压配电线路的出现,为我们的生产生活带来了极大的便利。
然而,由于天气原因等一系列自然灾害的影响,高压配电线路极易遭受雷击,引起线路跳闸故障或火灾等严重事故。
因此,防雷作为电力设施运行的安全保障措施之一,尤其是对于10kV高压配电线路的防雷问题,必须得到重视。
本文将对10kV配电线路的防雷措施进行详细介绍。
1. 避雷针的设置避雷针是一种防雷安全设备,能有效地引导雷电流进入地下,起到了防止雷击的作用。
在10kV高压配电线路中,应该在距离线路5米以上的高空处设置避雷针,以保护线路免遭雷击。
同时,避雷针应该定期进行维护和检测,以确保正常工作。
2. 导线绝缘的加强导线是10kV配电线路的重要组成部分,其绝缘质量直接影响线路的运行安全性。
因此,在10kV配电线路中,应该采用高强度、高耐电压和耐热性好的导线,并对导线的绝缘进行加强处理,以提高绝缘的可靠性和耐久性。
3. 接地装置的设立在10kV配电线路中,为了保证人身安全和设备的正常运行,必须设置接地装置。
接地装置的作用是将线路的故障电流分流到地下,保护接近线路的人体免遭电击。
同时,接地装置还可以有效地降低雷电流的冲击,减小雷击对线路的损害。
避雷带是一种能够有效防止雷电流侵入房屋,避免雷击事故发生的安全装置。
在10kV 高压配电线路中,一般建议在与线路平行的屋顶上设置避雷带,以保护房屋内的人员和财产安全。
1. 采用多种防雷措施为了保证10kV配电线路的运行安全性,必须采用多种防雷措施,如避雷针、导线绝缘、接地装置和避雷带等,从多个方面对线路进行保护。
同时,在不同的防雷设施之间要形成有机的联系,提高防雷设施协同作用的效果。
2. 定期检查和维护10kV配电线路防雷设施的运行效果在很大程度上取决于其检查和维护的质量和频率。
因此,必须按照规定的检查和维护制度,对防雷设施进行定期检查和维护,及时排除各种潜在隐患,确保防雷设施正常运行。
10KV配电线路雷击事故分析及防雷对策一、事故分析10KV配电线路是城市和乡村供电的重要组成部分。
在雷电天气中,由于线路遭到雷击可能会导致线路短路、设备损坏,进而引发停电和安全事故。
对于10KV配电线路的雷击事故分析以及防雷措施显得尤为重要。
1.1 雷击事故原因分析10KV配电线路遭到雷击主要是因为雷电天气中,大气层中云与地面或物体之间会发生静电荷分离,在这种情况下产生静电场、电位差和大气放电现象,从而形成闪电。
当闪电击中10KV配电线路时,会造成线路短路、设备损坏,进而影响到供电安全。
1.2 雷击事故后果分析一旦10KV配电线路遭受雷击,可能会引发以下后果:1) 线路短路。
雷击会导致线路短路,影响供电正常运行。
2) 设备损坏。
雷击会损坏线路上的设备,提高运维成本。
3) 供电中断。
雷击事故可能导致配电线路供电中断,给用户带来不便。
4) 安全事故。
雷击引发的火灾、爆炸等安全事故可能造成人员伤亡和财产损失。
二、防雷对策为了避免10KV配电线路遭受雷击,减少雷击事故带来的不良影响,需要采取有效的防雷措施。
2.1 安装避雷设备在10KV配电线路上安装避雷设备是一种常见的防雷措施。
避雷设备能够吸收、分散和释放雷击能量,减少雷击对线路和设备的影响。
一般来说,主要包括避雷针、避雷带、避雷网等设备,通过这些设备将雷电引到地面,减少对线路的影响。
2.2 地面接地保护地面接地是防止雷击损害的重要措施。
良好的接地能够将雷电引到地面,减少雷电对设备和线路的影响。
对10KV配电线路进行定期的接地检查和维护显得尤为重要。
2.3 配电线路绝缘保护绝缘保护是为了防止雷击对设备和线路产生影响的重要手段。
通过对线路绝缘进行加强和保养,可以减少雷击对设备和线路的损害。
2.4 定期检查维护定期检查维护是保证10KV配电线路安全运行的保障。
通过对线路设备的定期检查和维护,能够及时发现潜在的雷击风险并进行相应的处理,减少雷击事故的发生。
2.5 安全管理及培训加强安全管理和员工培训是预防雷击事故的重要措施。
配电线路运行检修技术及防雷对策随着社会的发展和人们生活水平的提高,电力已经成为现代社会不可或缺的一部分。
而配电线路作为连接供电系统与用户的关键部分,其运行检修技术和防雷对策也越发凸显出其重要性。
本文将就配电线路运行检修技术和防雷对策进行探讨,希望能对读者有所帮助。
一、配电线路运行检修技术1.定期巡检配电线路定期巡检是保证线路安全可靠运行的关键。
定期巡检主要包括对线路的外观、支架、绝缘子、接头等进行全面检查,及时发现并解决线路存在的问题,确保线路运行的稳定性和安全性。
2.红外热成像检测红外热成像技术是目前应用较广泛的一种无损检测方法,通过红外相机拍摄线路设备,可清楚反映出设备和线路的热量分布情况,及时发现设备存在的隐患,提前预防事故的发生。
3.超声波检测超声波检测是利用超声波技术对设备进行故障检测的一种方法,能够精确地检测到设备内部的裂纹、磨损、松动等隐患,是一种非常准确的检测技术。
4.使用电力测试仪器电力测试仪器是配电线路检修中必不可少的设备,通过测试仪器可以对电气参数进行精确测量,包括电压、电流、电阻等参数,及时发现电气设备的运行情况,为后续的修理和维护工作提供数据支持。
5.防止过载和短路配电线路常常面临过载和短路的风险,因此需要采取措施防止这类情况的发生。
包括设置绝缘子、安装熔断器、合理设计线路载流量等措施,以确保线路正常运行。
6.设备维护保养定期对线路设备进行维护保养工作,包括设备清洁、润滑、紧固等工作,以延长设备的使用寿命,减少设备的故障率。
以上就是配电线路运行检修技术的一些常用方法,通过这些方法可以及时发现和解决线路存在的问题,确保线路的安全运行。
二、防雷对策天气的不可预测性使得雷电对配电线路造成的危害难以避免,因此防雷对策显得尤为重要。
以下是一些常见的防雷对策方法:1.设置避雷设施在配电线路的重要部位,如变电站、中心控制室等地方设置避雷器、避雷针等避雷装置,以迅速将雷电引向地下,减少对线路的影响。
低压配电线路的防雷技术措施1.站桩接地:在低压配电线路的终端和转角处设置站桩,将接地装置埋入地下,确保配电线路和其他设备与地面保持良好的接地连接。
接地电阻不应大于4欧姆,以确保及时将雷击电流导入地下,并将地下的电荷快速进行分散。
站桩的选择和设计应符合相关国家和行业标准。
2.绝缘保护:低压配电线路的绝缘保护应符合相关的国家和行业标准。
在线路中使用绝缘良好的电缆和导线,以减少雷击产生的电流通过绝缘体的破坏。
绝缘材料的选择和使用应符合相应的标准要求。
3.避雷针/避雷网:在低压配电线路的起始点和高风险区域,设置合适的避雷针或避雷网。
避雷针或避雷网能够吸引雷击电流,将其引导到地下,减少对线路和设备的直接损害。
避雷针和避雷网的选择和设置应满足相关标准的要求。
4.高抗冲击电压设备:在低压配电线路中使用抗冲击电压的设备和器件,如避雷器、过压保护器等。
这些设备能够吸收或分散雷电电流,保护线路和设备不受雷击损害。
在设备选择和安装时,应严格按照相关的标准和规范进行操作。
5.绕风线圈:在低压配电线路的架空段和高风险区域,适当设置绕风线圈。
绕风线圈能够分散雷击电流,减少雷击对线路和设备的影响。
绕风线圈的安装和参数应根据具体情况选择,并符合相关标准的要求。
6.定期巡检和维护:定期对低压配电线路进行巡检和维护,及时发现和处理可能存在的雷击隐患。
清除线路周围的积水、杂草等引起雷击的物体,并检查线路和设备的绝缘状况,确保其正常运行和安全使用。
综上所述,低压配电线路的防雷技术措施包括站桩接地、绝缘保护、避雷针/避雷网、高抗冲击电压设备、绕风线圈以及定期巡检和维护等。
通过合理选择和使用这些技术措施,可以有效减少雷击对低压配电线路的影响,保障线路和设备的安全运行。
10kV配电线路防雷雷电是一种自然天气现象,产生的电流和电压都非常大,因此对于电力设备和线路构成了巨大的威胁。
10kV配电线路是城市电网的重要组成部分,防雷工作对于确保电网正常运行和居民用电安全至关重要。
本文将介绍10kV配电线路的防雷措施。
一、设备接地设备接地是防止雷击电流通过设备或线路引起设备损坏的重要手段。
10kV配电线路的设备接地应符合国家相关标准和规范,并依据现场实际情况选择合适的接地方式,如土壤接地、接地网接地等。
设备接地电阻应符合要求,保证设备接地良好,为线路的防雷提供可靠的基础。
二、避雷器避雷器是防止雷电高压通过线路引起设备中毁灭性击穿的主要措施。
10kV配电线路中应设置避雷器,它是保护线路设备不被雷电击穿的第一道防线。
避雷器的额定击穿电压应适应线路电压等级,并应定期检测和维护,确保其正常工作状态。
避雷器的安装位置应根据电网的实际情况确定,一般选在10kV变压器的输入侧或母线柜附近。
三、接地引下保护器接地引下保护器是保护设备在雷电入侵时迅速放电到地,减少雷电对设备的危害的重要设备。
它通过与设备的地线连接,当雷电入侵时,引下保护器快速放电到地,将雷电瞬间释放。
接地引下保护器的选择和布置应根据线路的实际情况确定,以达到最佳的防雷效果。
四、防护屏蔽10kV配电线路通常会穿过建筑物、树木或其他高大物体附近,这些物体会成为雷电击中线路的潜在风险。
在这些区域应设置防护屏蔽,减小雷电击中线路的可能性。
防护屏蔽可以采用导线网或金属罩等形式,将线路包裹在以形成一个保护层,减少雷电的侵害。
五、定期巡视和检测定期巡视和检测是10kV配电线路防雷工作的重要内容。
通过定期巡视和检测,可以及时发现和排除设备接地不良、避雷器失效、接地引下保护器故障等问题,确保线路的防雷设施处于良好状态。
定期巡视和检测的频率应根据实际情况确定,一般为每年1-2次。
六、培训和宣传防雷工作涉及到多个方面的知识和技能,因此要加强对工作人员的培训和宣传。
10KV配电线路雷击事故分析及防雷对策一、背景介绍10KV配电线路是城市电网中的重要组成部分,而雷击事故是影响线路运行安全的重要因素之一。
雷击事故一旦发生,不仅会对电网设备造成损坏,还可能导致停电,给人们的生产生活带来不便。
针对10KV配电线路雷击事故,进行分析并制定防雷对策显得尤为重要。
二、雷击事故分析1. 雷击原因分析雷击事故是由气象条件和线路特性共同作用所致。
在气象条件方面,当气温升高、湿度增大时,雷雨天气较为频繁,雷电活动也会增多,是雷击事故发生的高发期。
而在线路特性方面,10KV配电线路通常布设在户外,长时间暴露在外界自然环境中,容易成为雷电活动的“靶子”。
2. 危害分析雷击事故对10KV配电线路的危害主要表现在两个方面:一是设备损坏,雷电击中线路设备会导致设备损坏甚至报废,需要进行更换或修复,增加了维护成本;二是停电,一旦线路被雷击损坏,可能导致周边区域的停电,给用户带来不便,也会影响城市的正常供电。
3. 典型案例分析根据历年来的统计数据,我们可以发现,10KV配电线路雷击事故多发生在雷雨天气之后。
典型的案例有:2018年某市一次雷击事件,导致大面积区域停电,损失惨重;2019年某县城一次雷击事件,导致变压器受损,需要进行紧急更换。
三、防雷对策1. 设备防护要想有效防止10KV配电线路的雷击事故,首先需要对线路设备进行有效的保护。
采用防雷器件对线路设备进行防护是一种比较有效的方法。
防雷器件可以分为避雷针、避雷带和避雷线等,其作用是引导和释放雷电,减小雷击对设备的破坏。
2. 地线设计在线路设计时,合理设置地线也是防止雷击事故的关键。
良好的地线设计能够降低雷击对线路设备的影响,减小损失。
地线的设置应符合国家相关规定,并在实际使用中进行定期检测,确保其出现故障时能够及时修复。
3. 检测监控使用雷电检测和监控系统是及时发现雷电活动并进行预警的重要手段。
雷电检测系统能够实时监测周围的雷电活动,一旦发现雷电活动较为频繁,就可以提前采取措施,减小雷击事故的发生可能性。
10kV配电架空线路避雷措施.docx
(一)、敷设雷电接地线
在10kV配电架空线上安装雷电接地线, 雷电接地线的设置从标准的地线室准则中可以看出,每300m设置1条雷电接地线,每条雷电接地线取得满足当地总接地电阻要求(less than 10Ω)。
每块晶闸管或隔离开关母线距离,安放附近应设置一条雷电接地线,也就是在高压架空线附近每1000m就要设置一条接地线。
无论是在RL/SL还是在自然环境中受接地资格安放应当满足:自然条件,机械条件,电气条件,防雷安全相关设施。
(二)、架空线布置
当架空线的起点或下沿选用的是单根桥架空线时,下线每1000m应设置一个拉线或拉绳子拉绳,每条架空线应有2条附加的拉线或拉绳子拉绳。
在高压架空线的上线段可以采用游离架空线布置。
假设高压架空线的上线段绕架安放。
每200m应设置一个绕架,如果有其他不能满足2m/s弯曲半径要求的情况,则每100m设置一个绕架。
绕架安装方位可以满足各路段的强度和曲率要求。
(三)、横断线的防雷措施
在任意横断线处,应大量采用6~10mm^2的接地导线,并设置合理的接地电阻,以保证雷电保护效能。
针对较大电气距离横断线处,建议安装漏电开关,同时设置合理的配电屏障设备,分段断开联接。
(四)、金具
金具也是防雷的一部分,一般应选用SPCC(热浸镀锌钢板)金具,并配有绝缘子,避免高压架空线出现端部接地或短路的情况,影响架空线的正常运行。
(五)、电力设备
架空线的防雷, 同时应重视动环路设备的防雷故障,动环路设备安全投入使用前,要进行严格的局部接地测试,以及网络电气间隙测试。
采用验电仪进行联动检测,确保动环路绝缘性和动环路路由的准确性。
架空配电线路雷击问题与防雷措施架空配电线路是城市及乡村电力供应的重要组成部分。
在雷电活跃的地区,架空配电线路往往面临雷击的问题。
一旦发生雷击,不仅会造成电力设备损坏,还可能对用户造成不便甚至危险。
加强对架空配电线路雷击问题的研究和防雷工作显得尤为重要。
本文将就架空配电线路雷击问题及防雷措施进行探讨。
一、架空配电线路雷击问题1.雷击造成的危害架空配电线路一旦受到雷击,可能造成以下几种危害:(1)设备损坏:雷电能够产生强大的电磁场,雷击时所产生的电流和电压往往会在瞬间迅速升高,造成电力设备的损坏,甚至烧毁。
这对供电系统的正常运行会造成严重影响。
(2)停电事故:雷击造成的设备损坏可能会导致停电事故,使用户无法正常使用电力,严重影响社会生产和生活秩序。
(3)安全隐患:雷击造成的设备损坏会带来安全隐患,如电力线路掉落、火灾等,对周围环境和人员造成威胁。
2.雷击发生的原因架空配电线路遭遇雷击的原因主要有两个方面:(1)地理环境:某些地区雷电活动频繁,如山区、高原等地形,容易受到雷击的侵袭。
(2)设备结构:配电线路设备的结构和绝缘材料的性能都会直接影响其防雷能力。
老化破损的绝缘子、接地装置不良等都是雷击发生的诱因。
为了有效预防和减轻架空配电线路雷击造成的危害,需要采取一系列针对性的防雷措施。
1.设备绝缘的提升绝缘子是架空配电线路防雷的重要部分。
绝缘子的良好性能能够提高线路的承受雷击的能力。
应定期对绝缘子进行检查维护,及时更换老化和损坏的绝缘子,确保其性能良好。
2.接地装置的维护良好的接地装置能够将雷击时产生的超电压迅速导向地面,避免对设备和人员造成伤害。
配电线路的接地系统应定期检查维护,确保接地装置的良好导电性能。
3.安装避雷针在雷电频繁的地区,适当增加配电线路上的避雷针,能够有效降低雷击的可能性。
避雷针通过良好接地,可以将雷击的危害转移到地面,保护设备和人员的安全。
4.定期巡检定期对架空配电线路进行雷电安全巡检,及时发现并处理存在的安全隐患,是预防雷击危害的重要手段。
10kV配电线路防雷10kV配电线路是城市和乡村电网的重要组成部分,它承担着将高压电能分配到不同的用电场所的重要任务。
而在电力系统中,防雷工作也显得尤为重要,特别是在雷电活跃的夏季,雷击给配电线路带来的损失不容忽视。
在10kV配电线路建设和维护中,防雷工作尤为重要。
10kV配电线路的防雷措施包括以下几个方面:1. 设计防雷:在设计阶段,可以采用合理的线路结构,避免穿越雷区和高危区域,减少雷击风险。
合理选址、线路架设、接地等设计工作可以有效地提高线路的防雷能力。
2. 地线设置:地线是10kV配电线路防雷的重要组成部分,它将雷电击中的电荷导入地下,减少了对线路本身和设备的影响。
合理设置地线可以有效地降低线路的雷击风险。
3. 避雷器安装:避雷器是10kV配电线路防雷的关键设备之一,通过合理设置避雷器,可以将雷击引入地线,保护线路和设备不受雷击的影响。
避雷器的选型和安装位置非常关键,需要根据具体情况进行合理的设计和安装。
4. 设备接地:10kV配电线路中的各种设备都需要接地,以确保在雷击时能够及时排除雷电,保护设备不受损坏。
合理的设备接地设计可以有效提高线路的抗雷击能力。
1. 施工中的防雷措施:在10kV配电线路的施工中,应该根据实际情况采取合理的防雷措施,避免在雷电活跃时进行高空作业和金属焊接等易受雷击的工作,确保施工人员的人身安全。
2. 定期巡检维护:10kV配电线路的防雷工作需要定期进行巡检和维护,及时发现并排除线路中的缺陷和故障,确保线路的正常运行和抗雷击能力。
3. 防雷设备的检测维护:对于避雷器、接地装置等防雷设备,需要定期进行检测和维护,以确保其正常工作并及时更换损坏的设备,保证线路的防雷性能。
10kV配电线路防雷工作的重要性不言而喻。
对于城市和乡村的电网来说,雷击对配电线路和设备的损坏往往是不可估量的,甚至可能带来电网瘫痪和事故。
加强10kV配电线路的防雷工作,提高线路的防雷能力,不仅可以保障电网的正常运行,还能有效避免损失和事故的发生。
10kV配电线路防雷保护措施研究结合地区10kV配电线路实际情况提出增强线路绝缘水平以降低线路闪络概率,架空绝缘导线雷击断线的防护措施,采用适宜的中性点运行方式降低配电线路雷击建弧率,采用带并联间隙绝缘子与避雷器联合对10kV配电线路进展保护,制定了在不同线路形式与网络构造下中性点运行方式和自动重合闸的投运准那么,完善10kV配电设备的防雷保护措施,结合河南地区土壤电阻率情况提出切实可行的接地降阻方法。
10kV配电线路运行数据说明,10kV配电线路雷害事故频繁发生,严重危害了配电网的供电可靠性和电网平安,影响人民群众的生产、生活用电。
因此,结合10kV配电线路运行与雷害发生情况,研究10kV配电线路的防雷保护措施具有相当重要的工程实际意义。
本文在广泛收集极具代表性的地区的10kV配电线路运行状况根底上,研究发现,河南地区10kV配电线路雷害事故主要由感应雷电过电压引起,10kV配电线路绝缘水平直接影响了配电线路的耐雷水平,架空绝缘导线雷击断线的问题也日益突出,现有的10kV配电线路的中性点运行方式无法有效的解决线路雷击建弧率问题,配电设备防雷保护措施不完善,上述问题造成了10kV配电线路较为严峻的防雷形势。
本文提出了完善10kV配电设备的防雷保护措施。
210kV配电线路防雷保护措施由于配电网绝缘水平低,当线路中因雷电活动而产生感应雷过电压时,极易造成线路绝缘子闪络等事故,且在配电线路中为了节约线路走廊而采用同塔多回路技术,某些杆塔架设回路到达了4回,虽然在这种情况下节约了线路走廊,减小了线路投资,但是由于同塔多回路中线路与线路间的电气距离不够,因此,一回线路遭受雷害后线路绝缘子对地击穿,如果击穿后工频续流比拟大,持续的接地电弧将使空气发生热游离和光游离,由于同杆架设的各回路之间的距离较小,那么电弧的游离会涉及到其他的回路,引起同杆架设的各回路发生接地事故,严重时将会造成多回线路同时跳闸,极大的影响了配电线路的供电可靠性,针对上述情况可采用增强线路绝缘的方法。
低压配电线路的防雷技术措施低压配电线路的防雷技术措施之相关制度和职责,为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。1、电力线路发生雷电过电压的频率在特别广地区的低压配电网络上...为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。 1、电力线路发生雷电过电压的频率在特别广地区的低压配电网络上发生雷电过电压受到该地区的地形、气象条件雷雨日数、雷云的移动路径、雷击电流峰值的颁高低压配电线路的架设密度和对地雷击密度等的影响。在这些因素中,对在低压配电线路上发生雷电过电压峰值的频率颁发问的清晰统计是重要的。依据观测结果,计算出低压配电线路上发生的概率值。在争辩耐雷设计中,要有最基本的雷电过电压的频率分布曲线。在这项观测中,从2kv以上的雷电过电压中,担忧在低压配电设备的端子板或者设备内部会发生火花放电的雷电过电压假定为10kv限值,在超过10kv以上所观测到的累计频率为10%左右,而在5kv以下所观测到的累计频率为70%左右。还有另一个观测结果,在一个特别狭窄的面积范围内,在同样的低压配电线路上装了电涌计数器进行了187次累计观测。将这两次观测结果的雷电过电压累积频率颁进行比较,它们各自的频率分布双对数曲线都近似于一条直线。但是两条直线不是完全一致的。这是由于在电涌计数器上设定的雷电过电压的下限值有区分。2、雷电过电压的状况分析从配电线路上始终彩的防雷措施进行的争辩来看,已考虑到在低压配电线路上发生雷电过电压的因素有:①直击雷(挺直雷击到低压配电线路上);②感应雷(雷击到低压配电线路附近的地区时,对配电线路感应生成的感应雷);③高压侧的雷电过电压是侵入低压侧的雷电过电压的缘由,由于避雷器动作使大地(接地)电位上升,从柱上变压器的高压侧过渡到低压侧的雷电过电压。事实上,除了在低压配电线路上发生雷电过电压之外,还有雷击电流挺直侵入配电线路附近的建筑物上设置的避雷针,使得大地电位上升影响到配电设备的接地系统的场合应考虑这些是产生雷电过电压的合成缘由。2.1从高压侧过渡到低压侧的雷电过电压压配电线路上发生雷电过电压各种状况进行一般的争辩,将高压配电线路上的雷电过电压侵入低压配电线路上发生雷电过电压所产生的各种状况,进行一些试验性的争辩。这些争辩中,应在实际规模的高压配电线路上施加了雷电脉冲电压。由于配电用避雷器的放电使大地电位上升,通过柱上变压器的过渡电压,使低压配电线路上发生雷电过电压。 2.2感应雷过电压作为对象,对有关低压配电线路上发生雷电过电压的状况的试验进行争辩。为了模拟在近处有雷击时的配电线路和雷电通道,架设一条按现行配电线的1/4比例大小的模型线路,还从气球上吊下电线。这根电线有脉冲电流渡过,这时,测定在配电线路的导体上感应的电压波形。感应的电压波形,就有下列两种状况:①抑制低压配电线的架空地线和共用架空地线的雷电过电压效果,在接地电阻值是小的显著的。②由于高压配电线路的避雷器消逝适中动作,高压配电线处于接地状态,也同时有抑制低压电线的架空地线的雷电过电压的效果。3、配电设备的耐雷特性分析了雷电过电压烧坏低压配电设备的状况。作为雷电过电压烧坏对象的低压配电设备,连接到低压配电系统的电源端子之间的距离为5-10mm的空气间隙,是没有用耐雷元件疼惜的设备。①雷电过电压会击穿端子之间的空气间隙(产生火花放电)。火花放电时有大电流流过端子之间空气层,流过的时间特别短,约1μs~1ms左右,由于其电能量很小,这时设备端子上的火花放电处只有特别小的放电痕迹,不至于烧坏端子。②上述第①点的火花放电路径由于与低压配电系统的线间电压(100v或200v)有关,这时满意以后叙述的条件的场合会连续过渡为电弧放电。这个放电是工频电压下的适中电流。③在上述第(2)点时为线间短路状态。如有大电流(2000~3000a)流过时会烧坏低压配电设备。通常在数周波~10周波左右之后,熔断器等疼惜装置会动作,断开短路电流。但是,在烧坏配电设备或者熔断器熔断之前的电弧放电,许多场合会自然消弧,这时,可能认为配电设备不会受到雷击损害。3.1低压配电设备用材料的v-t特性从续流电弧的触发到达火花放电的性能,通过试验来调查低压配电线路上用的各种设备材料的v-t特性。再断时间为1~3μs左右的再断电压峰值为一亲热协作一的范围内,低压干线和dv进线大约为50kv,变压器二次测大约为30kv,低压配电设备上约为10kv。从这些结果值来看,电度表、低压进线箱等低压配电设备很简洁是受到雷电过电压损坏的设备。3.2其所长低压配电设备的电弧特性在模拟低压配电设备的电源端子的电极之间要施加工频电压,用设定可能的雷电脉冲电压重叠在任意的接通相位上的方法,对再现电弧我的试验进行调查。在单相供电系统中,侵入到模拟电极的雷电脉冲接通相位与电弧电流峰值的关系图。雷电过电压的接通相位对供电电源电压影响是大的。三相3线式供电系统,在三个线间电压之中至少有一个线间电压经常在其低压配电设备固有的最低电弧电压以上的场合,在任何相位时,雷电过电压的侵入会发生电弧续流的状况。4、防雷措施配电线路的防雷措施,到目前为止,还没有进行一般性的争辩。但是,在有关的配电线路的耐雷设计指南,由于在柱上变压器安装地点,低压配电线路的中性线进行了b种接地,由于有了这个合适的接地,就能防止危急的雷电过电压。作为低压配电线路的防雷措施,低压配电设备要有高的绝缘强度,在个别配电设备年安装耐雷元件,除此之外,进行多重接地系统也能抑制雷电过电压。如配电线路的架空地线的接地线,避雷器接地线柱上变压器的b种接地线的单独连接或者共用连接在一起的场合由于直击雷或者感应雷而产生的架空地线接地电流和避雷器放电电流使接地电位上升,由于雷电过电压会侵入那样的低压配电线路,务必要有抑制雷电过电压的防雷措施。架空共用地线的感应雷的效果,架空地线同样也能抑制由于相互的电磁感应在配电线路上发生的感应雷电过电压,就能解释架空共用地线可抑制低压配电线路的感应雷电过电压。当设计多重接地系统时,接地间隔、单独接地阻抗和合成接地阻抗等应当有所规定。假如考虑了这些规定值而设计好的接地系统,高压配电线路的耐雷效果是更高的,同时抑制在低压配电线路上发生的雷电过电压也是有贡献的。据上述方法已抑制的雷电过电压是在架空共用地线(接地用)与照明线路和电线路(电压相)之间发生的雷电过电压的对地电压成分关于线间电压成分是不成问题的。为用连接到这根接地相和各个电压相的进入线供电,不仅有雷电过电压的对地电压成分,而且其线间电压成分可能威逼低压配电系统和室内配线等点处还有务必抑制线间电位差的雷电过电压。压配电线路的防雷措施时,有必要充分考虑到目前为止已知道的发生雷击损害的机理、抑制低压配电线路的雷电过电压和限制续流电弧等,以及低压配电线路的主要防雷措施。配电设备的损坏进行完全防护是一项特别困难的技术。但是,配电设备的供电牢靠性,防雷措施要求的配电设备的性能增加,以及诊断设备才华的技术进步等方面均有提高。要连续面对今后的电气化生活和高度信息化的越来越多的进展,低压配电线路不用说在有关配电网络的整体可行性而且费用很低的耐雷设计和防雷措施等方面,有必要进行综合性的争辩。应急预案演练方案幼儿园平安责任书钳工平安操作规程车床平安操作规程电工平安操作规程粉尘防爆平安规程。
10kV配电线路防雷在现代社会中,电力已经成为人们生活不可或缺的一部分。
而为了确保电力供应的稳定和可靠,配电线路的防雷工作显得尤为重要。
本文将介绍10kV配电线路的防雷措施及应注意的问题。
在设计和建设10kV配电线路时,需要考虑到雷电对线路及设备的影响,采取相应的防雷措施。
具体来说,可以采取以下几个方面的措施:1.选择合适的材料:在线路的材料选择上,应优先选择具有良好的防雷性能的材料,如电力杆、绝缘子等。
这样可以有效地减少雷击风险。
2.合理布置接地系统:良好的接地系统是防止雷电危害的重要保障。
在设计和建设过程中,应合理布置接地系统,确保其接地电阻达到要求。
3.安装避雷针:避雷针是防雷工作中常见的一种措施。
根据需要,可以在配电线路的高架设备上安装避雷针,以提高线路的防雷能力。
4.加装避雷器:在10kV配电线路中,加装避雷器也是一种有效的防雷措施。
避雷器可以将雷电引至地下,减少对线路的冲击。
除了以上的防雷措施之外,还需要注意以下几个问题:1.定期检查:定期检查配电线路及设备的防雷措施是否完好,如避雷针的针尖是否锈蚀、接地系统是否正常运作等。
及时发现问题,并进行修复和更换。
2.维护和保养:配电线路及设备的维护和保养工作也要做好。
定期清理绝缘子、清除线路上的树木和杂物等,以保证线路正常供电。
3.注意天气情况:不同的天气情况对雷击的风险也有影响,如雷雨天气会增加雷电发生的概率。
在这种天气条件下,应增强防雷措施,确保配电线路的安全运行。
10kV配电线路的防雷工作是电力供应的重要环节。
通过采取合适的防雷措施,并注意线路的维护和保养,可以降低雷击风险,确保电力供应的稳定和可靠。
架空配电线路雷击问题与防雷措施雷击是指大气中产生的雷电在接近或直接影响人类生活或设备设施等进行传播和放电。
架空配电线路处于室外环境,容易受到雷击的影响,给人类生活和电网运行带来威胁。
本文将探讨架空配电线路雷击问题及其防雷措施。
架空配电线路的雷击问题主要表现在以下几个方面:1. 直接击中:雷电直接与架空线路接触,形成强电流,造成线路设备受损甚至烧毁。
2. 感应击中:雷电附近产生强电流,通过感应作用传递给架空线路,导致线路设备受损。
3. 导热击中:雷电通过大气中的导体(如金属杆、树木)传导到架空线路上,造成线路设备受损。
为了保障架空配电线路的安全运行,需要采取一系列的防雷措施:1. 架设避雷针:在架空配电线路附近设置避雷针,能够吸引雷电,并通过导线将雷电引入地下,减少雷击的危害。
2. 设置避雷装置:在架空线路中适当的位置设置避雷器,能够在雷击时释放过电压,保护线路设备不受损坏。
3. 加装过电压保护装置:在主要设备和重要线路上加装过电压保护装置,能够快速将过电压流入地下,保护线路设备。
4. 绝缘保护:在架空线路中使用合适的绝缘材料,保障线路的绝缘性能,减少雷电对线路的影响。
5. 定期检测维护:定期对架空配电线路进行检测和维护,及时发现问题并加以修复,确保线路的正常运行。
6. 电网接地:建立良好的接地系统,将过电压导入地下,减少雷电对架空线路的影响。
7. 加强抗干扰能力:在线路设备中加入抗干扰元件,提高设备对雷电的抵抗能力。
架空配电线路雷击问题是一项需要高度重视的安全隐患。
通过有效的防雷措施,可以减少雷击对线路设备的破坏,保障电网运行的安全和稳定。
配电线路防雷措施
在低压配电网中,杆塔的平均高度要比送电线路的杆塔低,线路的周围可能受到建筑物和树木的遮蔽,因此遭受直击雷的机会相对少一些。
但由于配电网绝缘水平相对较低,线间距离小,一旦遭受直击雷,就很容易跳闸。
因此,必须加强配电网的防雷保护,才能提高供电可靠性。
配电线路防雷,应采取的基本技术措施是:
防直击雷。
为提高配电网防直击雷水平,要从提高线路的耐雷水平入手,采用瓷横担或高一级的绝缘子。
因配电线路点多、面宽、线长,采用避雷线或避雷针作直击保护是不经济的。
而配电线路由于采用中性点不接地系统,档距也很小,因而导线容易形成三角形排列,此时,最上面的导线可起到避雷线的作用。
所以,最好的办法是在最上方导线的绝缘子上,每隔一定距离装设一个接地的保护间隙。
防感应雷。
针对配电线路的绝缘弱点,如个别金属杆塔、特别高的杆塔、个别铁横担、带拉线的杆塔和终端杆,应装设避雷器进行保护。
对配电线路上的所有电气设备,如配电变压器、断路器和隔离开关等,应根据其重要性分别采用不同的保护设备,如避雷器或保护间隙,力求做到台台设备有防雷保护,不存在遗漏点。
1、降低绝缘子的爆炸和闪络的概率,提高配电线路的绝缘水平。
如果电压的变化幅度过大,将会对配电线路的运行造成不利的影响。
为了提高10千伏配电线路的防雷效果,应该使用U50%的放电电压绝缘子。
由于同一根杆子上回路之间的距离很小,一旦被雷过电压击穿,就很容易出现回路接地的现象,大大影响了10千伏配电线路的供电可靠性。
因此,所有的导线必须加上绝缘层,绝缘子与导线之间必须设置绝缘皮,提高配电线路的可靠性。
2、有选择性地投运自动重合闸10千伏配电线路只要发生了雷击故障,就很难对其进行完全的修复。
为了避免雷击故障进一步扩大,应在在线路中的某些位置安装自动重合闸。
如果配电线路采用的全都是电缆,这种情况可以不安装自动重合闸。
如[果配电线路都是架空的,这种情况建议使用自动重合闸来提高线路的安全性能。
如果是电缆和架空绝缘导线的混合线路,而且电缆占整个线路百分之四十以上时,这时候可以不考虑安装自动重合闸。
如果是电缆和架空的裸线混合线路,且电缆的长度达到整个线路的百分之五十以上,也可以不考虑采用自动重合闸。
3、安装专门的避雷器避雷器是10千伏配电线路当中重要的防雷装置,能够对整个线路起到良好的保护作用。
避雷器有很多种,常见的有无间隙避雷器和氧化锌避雷器。
无间隙避雷器在工频电压、续流以及雷过电压的共同作用下,很容易发生老化的现象,从而使防雷作用失效,大大影响了配电线路的供电可靠性。
氧化锌避雷器是不用进行维修的,能够对配电线路中的薄弱环节进行专门的保护安装,如果在柱上开关和刀闸出也进行避雷器安装,就可以对配电线路进行全面的保护。
因此,在10千伏的配电线路当中最好安装氧化锌避雷器。
4、安装并联间隙绝缘子当绝缘子发生闪络的情况时,不要让电弧与绝缘子的表面接触。
如果间隙不能承受操作过电压,就会将配电线路故障扩大。
如果在线路中安装并联间隙,并联间隙就可以对绝缘子串起到保护作用。
除此之外,并联间隙的运行维修都极为方便,可以用肉眼直接观察。
配电线路的防雷措施
配电架空线路受到需击时,需电冲击波就向导线两端流动。
这种流动的冲击波称为进行波。
为了保护与线路连接的电气设备不受进行波的冲击,在10kV及以下的配电系统中,主要依靠阀型避雷器作为防雷保护。
10kV配电线路是三相三线制中性点不接地的供电方式,因此,发生单相接地时往往不会造成开关掉闸。
所以在防雷保护中,主要是防止相间短路,常采用的保护措施有:
(1)10kV架空线路,大多使用混疑土杆,铁质横担对于雷电冲击波相当于自然接地状态。
为了防止雷击引起绝缘子击穿,造成导线相间短路,烧断导线,可采取提高瓷绝缘等级的办法,并定期进行清扫维护保持其耐压水平,防止和减少绝缘子击穿事故。
(2)配电线路上的柱上油路器和荷开关,由于绝缘水平不高,相间距离较小,应防正受雷击时引起闪络,造成短路。
通常在设备的一侧或两侧装设阀型避雷器进行保护。
其接地线要与被保护设备的金属外壳相连接,接地电阻值不大于10Ω。
(3)10kV配电线路相互交叉或与低压线路、通信线路等交叉时,其垂直距离应不小于2mo交叉档两端杆塔的瓷绝缘铁脚应可靠接地。
(4)低压配电线路绝缘水平较低,当遭受雷击时,雷电冲击波可能沿线路侵入室内,引起人身和设备事故。
为了降低雷电波的幅值,可以把引入线上的绝缘子螺杆接地,接地电阻不超过300。
为保护直人式电度表,特装设低压阀型避雷器作为防雷保护。
配电线路防雷接地技术规程一、引言配电线路的防雷接地技术是确保电力系统运行安全和稳定的重要环节之一。
为了有效防止雷击对电力设备造成损害,并保障电力供应可靠性,制定配电线路防雷接地技术规程是必要的。
本文将介绍配电线路防雷接地技术的相关要点和规范,供工程师、电力从业人员和相关人士参考。
二、配电线路防雷接地技术规程要求1. 防雷接地系统的设计防雷接地系统的设计应根据所在地区的地质、气候条件、雷电频率和设备性质等因素进行充分考虑。
接地系统的总体设计应满足以下要求:(1)合理布置:根据地形、设备布置和电力线路的特点等因素,合理布置接地装置。
(2)有效接地电阻:接地装置的电阻应在规定范围内,确保瞬态过电压能通过接地装置迅速分散。
(3)可靠性:接地装置应具有稳定的性能和可靠的工作寿命。
2. 接地装置的选择和安装根据现场情况选择合适的接地装置,包括接地电极、接地网和接地体。
选择和安装时应注意以下要点:(1)接地电极:选择合适的接地电极类型,如水平接地电极或垂直接地电极,以确保接地电极的有效接地。
(2)接地网:根据设备容量和雷电活动频率,合理配置接地网,保证接地电阻低于规定值。
(3)接地体:根据土质条件和工程要求选择合适的接地体材料和尺寸,确保接地效果。
3. 现场施工及验收在进行配电线路防雷接地工程施工时,应遵循以下程序:(1)施工前准备:组织施工队伍,确认施工计划和材料准备。
(2)定位和测量:根据设计要求,在现场确定接地装置的位置,并进行精确测量。
(3)施工过程控制:按照规范,进行接地电极、接地网和接地体的安装。
(4)完工验收:对施工完成的接地工程进行全面检查和测试,确保接地电阻符合规定范围。
4. 运维管理和检修配电线路防雷接地系统的正常运行需要定期的检修和维护。
相关管理和维护措施包括:(1)巡检:定期巡视接地装置,检查接地电阻、接地导体的连接情况。
(2)维护:保持接地装置的清洁,确保接地装置表面与土壤之间的良好接触。
配电线路如何进行防雷
配电线路如何进行防雷
民勤县供电公司曹晓燕
摘要:雷电灾害是一种目前人类还无法抗拒的严重自然灾害,雷电造成电力设备及电力线路损坏的事件屡有发生。
雷击断线是绝缘导线特有的问题,应引起足够重视并采取相应措施。
通过加强绝缘和加装防雷支柱绝缘子或保护型绝缘间隙横担等新产品的应用并采用“疏导”和“堵塞”相结合的防雷措施的综合应用,能有效地减少雷击闪络概率,避免雷击断线发生。
雷电是一个古老而又复杂的自然现象,单纯依靠某项保护措施难以解决配电线路的防雷问题,必须采取综合防雷措施才能有效的防止雷击事故发生。
关键词:雷电灾害绝缘子闪络雷击断线供电可靠性防范措施
雷电灾害是一种目前人类还无法抗拒的严重自然灾害,雷电造成电力设备及电力线路损坏的事件屡有发生。
雷电引起的过电压,叫做大气过电压,其机械效应会击毁杆塔和建筑,伤害人畜;其热效应将烧毁导线、烧毁设备、甚至是大范围的火灾;其电磁效应造成击穿电气绝缘、绝缘子闪络、开关跳闸、
线路停电或人身伤亡等。
无论国内或国外,在配电线路上,现在都已广泛地应用了绝缘导线。
可以说,配电网的绝缘化,已是一项成熟的技术。
但是,绝缘导线在应用过程中,也出现了一些新的问题。
其中,最为突出的问题,是遭受雷击时,容易发生断线事故。
资料表明:雷击断线事故,是应用绝缘导线中最突出的一个严重问题,这引起国内外防雷工作者们的广泛注意,并积极开展有针对的试验研究工作,也找到了许多有效的防范措施。
线路防雷的基本任务是采用技术上与经济上合理的措施,将雷击事故减少到可以接受的程度,以保证供电的可靠性与经济性。
为此,一般设有四道防线:不绕击、绝缘子不闪络、不建立稳定工频电弧、不中断电力供应。
在配电线路防雷中,允许有一小部分雷击引起线路绝缘子闪络,然后用减少建弧率以及自动重合闸的办法,把雷电灾害引起的停电事故数减少到可以接受的程度。
以前采用裸导线时,当受到雷击后,会引起线路闪络。
此时,工频续流引起的电弧由于受到电磁力的作用,使电弧向导线落雷点的两侧迅速流动,雷电流经过开关、变压器等设备处的避雷器迅速流入大地或在工频电流烧断导线之前,引起跳闸,因而很少发生断线事故。
但是,当绝缘导线遭受雷击时,情况就完全不同,雷电过电压引起绝缘子闪络,并击穿导线的绝缘层。
而击穿点附近的绝缘物,阻碍了电弧沿着导线表面向两侧移动。
因而,电弧只能在击穿点燃烧。
高达数千安培的工频电
弧电流集中在绝缘击穿点上,并在断路器跳闸之前很快就把导线熔断。
国内外对防止绝缘导线雷击断线进行了许多实验研究工作,介绍防止措施的。
一、主要措施
1、架设架空避雷线:利用架空避雷线的屏蔽作用来保护输电线路,是一种传统的有效方法。
2、安装氧化锌避雷器:采用氧化锌避雷器,可以有效地截断工频续流,限制雷过电压和配电线路的感应过电压。
3、安装线路过电压保护器:这种线路过电压保护器,相当于带有外间隙的氧化锌避雷器。
安装时,绝缘层不需剥开,在运行中,平时是不承受运行淡雅的,因而使用寿命较长,也可免维护。
4、使用钳位绝缘子:这是一种日本的方法。
在绝缘导线固定处剥开绝缘层,架装引弧放电间隙与特别设计的金属线夹。
当雷击闪络时,引发的工频续流在该金属线夹与绝缘子下金属脚间燃弧,直至被线路开关跳闸切断,从而避免烧伤绝缘子和熔断绝缘导线。
该方法的效果较好,成本也不太高。
5、使用穿刺式防弧金具:其原理为将该金具安装在线路绝缘子附近负荷一侧的绝缘导线上,当雷电过电压超过一定数值时,在防弧金具的穿刺电极和接地电极之间引起闪絡,形成短
路通道,接续的工频电弧便在防弧金具上燃烧,以保护导线免于烧伤。
在单向供电的老线路上采用此产品效果较好,安装方便,造价相对低一些,而环网供电的线路则需二侧安装造成工程及费用增加和线路不简洁,鸟类较多地区易受侵袭接地。
6、采用长闪络避雷器(LFA):研究表明,对于中性点非直接接地的配电系统,当线路的工作电压与闪络路径长度的比值减小时,由雷电闪络发展为工频续流的可能性将大为减小。
7、加局部绝缘层的厚度:从许多绝缘导线遭雷击后断线的事故调研,发现了一个十分明显的规律:断线的部位,几乎全部都处于离开绝缘子(100~300)mm范围之内,如果在这局部范围内增加绝缘厚度,也可以防止击穿。
通过分析对比,还开发了一些防雷新产品。
这些产品运用于绝缘配网的综合防雷,已取得了良好效果。
现简单介绍几种如下:
二、新产品种类
1、FEG型防雷支柱绝缘子(穿刺式/非穿刺式)
上述介绍的各项措施都能在一定程度上防止雷击跳闸和减少雷击断线事故,但不能从根本上避免雷击断线事故。
FEG型防雷支柱绝缘子是新型组合式结构的二合一防雷支柱绝缘子,其绝缘子有很好的绝缘性能和防污秽水平,由于把支柱绝缘子和防弧金具合二为一,不受环网供电负荷侧影响,更使线路简洁美观并极大地降低了造价,为电力部门防止架空绝缘导线雷
击断线提供了一条经济有效的途径。
2、防雷支柱绝缘子(保护型)
防雷支柱绝缘子(保护型)是为了防止10kv架空绝缘导线雷击断线而开发的新产品之一。
防雷支柱绝缘子(保护型)防雷击断线的主要作用在于:提高绝缘子的放电距离来减少线路雷击闪络率;通过保护型金具将导线围绕起形成厚实的保护部件,以防止短路电弧根部的燃烧效应。
闪络时,电弧在保护型金具的厚实部位之间燃烧,从而使导线免受损伤。
3、玻璃钢绝缘横担
雷击闪络取决于过电压值和线路绝缘水平,研究表明雷击引起的电弧严重程度是随着沿闪络路径的电场梯度的降低而降低,若将传统采用的铁横担由具有机械性能好,绝缘强度高的玻璃钢取代用作支柱绝缘子横担,则可显著增加闪络路径,从而大幅度提高线路的耐雷水平,减低线路的建弧率而避免了雷击断线事故的发生。
4、保护型绝缘间隙横担
为使线路在遭受高强度雷击时雷电流有一个释放通道,我们在线路中采用了保护型绝缘间隙横担。
保护型绝缘间隙横担由火花放电间隙、非线性电阻限流元件、玻璃钢绝缘横担所造成火花放电间隙限制了雷电过电压幅值,通过放电间隙的调整可控制架空线绝缘闪络的局部限流元件能够在瞬间截断工频续流,有效的保护了架空绝缘导线。
雷击断线是绝缘导线特有的问题,应引起足够重视并采取相应措施。
通过加强绝缘和加装防雷支柱绝缘子或保护型绝缘间隙横担等新产品的应用并采用“疏导“和“堵塞“相结合的防雷措施的综合应用,能有效地减少雷击闪络概率,避免雷击断线发生。
雷电是一个古老而又复杂的自然现象,单纯依靠某项保护措施难以解决配电线路的防雷问题,必须采取综合防雷措施才能有效的防止雷击事故发生。
参考文献:
电力线路的运行与维护策略
电力系统输电线路防雷技术
新型电力线路故障检测方法。