大学物理第13章 量子物理习题解答(1)
- 格式:doc
- 大小:857.50 KB
- 文档页数:16
习题13-1设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。
如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。
已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。
【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位时间得到的辐射能为1E 。
()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失的质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。
【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。
第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。
2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。
3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。
以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。
4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0eU hcλ≥。
二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。
2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。
3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第十三章 振动#13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。
解:周期T = 2π/ ω= 0.25 s振幅A = 0.1m初相位φ= 2π/ 3V may = ωA = 0.8πm / s ( = 2.5 m / s )a may = ω2 A = 6.4π2m / s ( = 63 m / s 2)13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。
求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。
解:(1) )( )25sin(0.3 SI t dt dx v π--==0.3 20x m ma x ω-== (2) 2x m ma F ω-==5.13.052.0,2/ 2N F A x -=⨯⨯-==时13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。
解:设物体的运动方程为:x = A c o s (ωt +φ)恒外力所做的功即为弹簧振子的能量:F ⨯ 0.05 = 0.5 J当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J ,即:1 /2 kA 2 = 0.5 J ∴A = 0.204 mA 即振幅ω2 = k / m = 4 ( r a d / s )2ω= 2 r a d / s按题目所述时刻计时,初相为φ= π∴ 物体运动方程为x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。
已知球经平衡位置向右运动时,v =100cm ⋅s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。
第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。
2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。
3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。
以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。
4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hceU λ≥; (C) 0eU hc λ≤; (D) 0eU hc λ≥。
二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。
2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。
3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。
(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ D]1. 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)解题要点:)()(1212λλccehvvehUa-=-=∆∴[ C]2. 下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1.解题要点:斯特藩-玻耳兹曼定律:黑体的辐射出射度M0(T)与黑体温度T的四次方成正比,即.M0 (T)随温度的增高而迅速增加维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长mλ向短波方向移动。
[ D]3. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.解题要点:(B)因散射使电子获得的能量:202c m mc K -=ε 静止能量:20c m[ C ]4. 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.解题要点:L = m e v r = n 第一激发态n =2[ B ]5. 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为 (A) 7/9. (B) 5/9. (C) 4/9. (D) 2/9.解题要点:从较高能级回到n=2的能级的跃迁发出的光形成巴耳末系l h E E h -=νc =λν23max E E ch-=λ2min E E ch-=∞λ[ B ]6. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV .解题要点:26.13n eV E n -=l h E E h -=ν=⎪⎭⎫⎝⎛---2226.136.13eV n eV[ D ]7. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍. (B) 增大2D 倍. (C) 增大D 倍. . (D) 不变.解题要点:注意与各点的概率密度区分开来.二. 填空题姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章1. 康普顿散射中,当散射光子与入射光子方向成夹角φ =___π___时,散射光子的频率小得最多;当φ = ___0___ 时,散射光子的频率与入射光子相同.解题要点:频率小得最多即波长改变量最大2. 氢原子基态的电离能是 __13.6__eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =__5__ 的轨道上运动.解题要点:电离能是指电子从基态激发到自由状态所需的能量. ∴氢原子基态的电离能E =1E E -∞=⎪⎭⎫⎝⎛--∞-2216.136.13eV eV E =n E E -∞ 即 +0.544 eV=26.13neV3. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =___7:11___.解题要点:由维恩位移定律: T m λ=b∴m λ∝T1 即21T T =12m m λλ 4. 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ =___33___λc .解题要点:电子的动能:22c m mc e K -=ε 静止能量:2c m e22c m mc e K -=ε=2c m e221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ 5. 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的__64__倍.解题要点:由斯特藩-玻耳兹曼定律:太阳的总辐射功率:024M R M ⋅=π424T R σπ⋅=6. 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量∆λ / λ =10-6,则光子动量数值的不确定量 ∆p x =___s m kg /1066.133⋅⨯-_ _,而光子坐标的最小不确定量∆x =___0.03m___.解题要点:λh p =λλλλλ∆⋅=∆=∆h h p 2三. 计算题1. 图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同.(2) 由图上数据求出普朗克恒量h .解:(1)由得A h U e a -=ν e A e h U a /-=ν 常量==e h d U d a ν/ ∴对不同金属,曲线的斜率相同 (2)s J eetg h ⋅⨯=⨯--==-3414104.610)0.50.10(00.2θ |14Hz)姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章 2. 用波长λ0 =1 Å的光子做康普顿实验. (1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:(1)λλλ∆+=0m 1010024.1-⨯=(2)根据能量守恒:∴反冲电子获得动能:202c m mc K -=εννh h -=0λλchch-=0)(00λλλλ∆+∆=hceV J 2911066.417=⨯=-3. 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.解:(1)l h E E h -=ν=⎪⎭⎫⎝⎛---2216.136.13eV n eV =12.75 n=4(2)可以发出41λ、31λ、21λ、43λ、42λ、32λ六条谱线4. 质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)n=1n=2n=3n=4解:考虑相对论效应:22c m mc e K -=ε=12eU221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:221u m e =12eU u m h p h e =='λ=122eU m he =3.88m 1210-⨯ 相对误差:λλλ-'=4.6﹪5. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式≥∆E t∆2 =5.276J 2710-⨯=3.297eV 810-⨯ 根据光子能量与波长的关系==νh E λchEc h=λ=3.67m 710-⨯ 波长的最小不确定量为2EE hc∆=∆λ=7.13m 1510-⨯ [选做题]1. 动量为p的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.解:由不确定关系式 2≥∆∆y p y姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章而 a y =∆,θsin p p y =∆ 则有 pa2sin ≥θ 由图可知,屏上痕迹宽带不小于 paD a D a y+=+=θsin 2 由0=da dy可得 pD a= 且这时 022>dayd 所以狭缝的宽度调到p D a =时屏上痕迹的宽度达到最小。
量子物理答案【篇一:量子物理作业答案】ile2~file5?mt?b表示,其中b?2.8978?10?3m?k。
求人体热辐射的峰值波长(设体温为37?)。
解:由定律?mt?b可得:bb2.8978?10?3?m???m?9.35?10?6mtt?to37?273即,人体热辐射的峰值波长为9350nm。
2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于t=2.726k黑体辐射。
此辐射的峰值波长是多少?在什么波段?解:根据维恩位移定律?mt?b,得:b2.8978?10?3?m??m?1.06?10?3mt2.726即该辐射峰值波长为1.06mm,属于红外波段。
3. 波长?=0.01nm的x射线光子与静止的电子发生碰撞。
在与入射方向垂直的方向上观察时,散射x射线的波长为多大?碰撞后电子获得的能量是多少ev?解:依题意,在垂直方向观察时散射角,??90?由波长改变量公式??????0?h?1?cos??,得散射后x射线波长: m0c6.63?10?34???0????0.01?10?(1?cos90?)?0.0124?10?9m ?3189.1?10?3?10?9?x射线损失的能量等于电子增加的动能?ee??ex?hchc111??6.63?10?34?3?108??9?(?) ?0?100.010.0124?ee?3.85?10?15j?2.4?104ev所以,散射x射线波长为0.0124nm,电子获得能量为2.4?104ev 4. 在一束电子束中,单电子的动能为e=20ev,求此电子的德布罗意波长。
解:电子动能较小,固忽略其相对论效应,所以由e?1mv2,得电子速率v?22emh p又?p?mv,由德布罗意公式??h????mv6.63?10?34?192?20?1.6?109.1?10?31?9.1?10?31m?2.75?10?10m即电子德布罗意波长为2.75?10?10m。
file61.设归一化波函数:??x??ae化常数a。
量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。
它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。
b) 什么是波函数?波函数是描述量子体系的数学函数。
它包含了关于粒子的位置、动量、能量等信息。
波函数通常用符号ψ表示,并且可用于计算概率分布。
c) 什么是量子态?量子态是描述量子系统的状态。
它包含了有关系统性质的完整信息,并且根据量子力学规则演化。
量子系统可以处于多个量子态的叠加态。
d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。
例如,一个量子比特可以处于0态和1态的叠加态。
2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。
基态能级对应的主量子数为n=1。
基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。
实验装置包括一道光源、两个狭缝和一个光屏。
当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。
实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。
这种实验结果说明了光具有波动性,同时也具有粒子性。
一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。
写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。
解:()⎰Ω=adrr r d P 022,,ϕθψ。
2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。
解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q t Q。
4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。
),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。
5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。
6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
习题13-1设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。
如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。
已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。
【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位时间得到的辐射能为1E 。
()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失的质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。
【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。
今用单色γ射线照射时,发现有电子被击出。
放出的电子在垂直于磁场的平面内作半径为0.10R = m 的圆周运动。
假定γ光子的能量全部被电子吸收,试求该γ射线的能量、波长和频率。
【解】电子逸出功hcA λ=34814116.6310 3.010 1.98910 J 10---⨯⨯⨯==⨯ 电子运动半径mv R qB=光子能量212RqB h m A m ν⎛⎫=+ ⎪⎝⎭()219414310.1 1.610 1.510 1.9891029.110----⨯⨯⨯⨯=+⨯⨯⨯141.98910 J -≈⨯1419341.98910 3.010 Hz 6.6310ν--⨯==⨯⨯ 1110m=0.01 nmcλν-==13-5以钠作为光电管阴极,把它与电源的正极相联,而把光电管阳极与电源负极相联,这反向电压会降低以至消除电路中的光电流。
当入射光波长为433.9 nm 时,测得截止电压为0.81 V ,当入射光波长为312 nm 时,测得截止电压为1.93 V ,试计算普朗克常数h 并与公认值比较。
【解】11hcA eU λ-= (1)22hcA eU λ-= (2)解得()212111e U U hc λλ⎛⎫-=- ⎪⎝⎭()()211221e U U h c λλλλ-=- ()()1918891.610 1.930.81433.9312103.010433.931210---⨯⨯-⨯⨯⨯=⨯-⨯ 346.6310 J s -⨯⋅13-6若有波长为0.10λ= nm 的X 射线束和波长为31.8810λ-=⨯ nm 的γ射线,分别和自由电子碰撞,问散射角为π/2时,(1)波长的改变量为多少?(2)反冲电子的动能是多少?(3)入射光在碰撞时失去的能量占总能量的百分比。
【解】 24.810sin2θλ-∆=⨯(1) π2θ=2224.810 2.410 m λ--∆=⨯=⨯⎝⎭(2) 00011k E h h hc ννλλλ⎛⎫=-=-⎪+∆⎝⎭34891116.63103.010100.1000.1024k E -⎛⎫=⨯⨯⨯⨯-⨯ ⎪⎝⎭()174.6610J 291 eV -=⨯=348122116.63103.010101.88 1.88 2.4k E -⎛⎫=⨯⨯⨯⨯-⨯ ⎪+⎝⎭()1455.9310J3.710 e V-=⨯=⨯(3)110101k k E E E hcλ= 1793484.66100.1102.34%6.6310310---⨯⨯⨯==⨯⨯⨯ 220202k k E E E hcλ= 14123485.9310 1.881056%6.6310310---⨯⨯⨯==⨯⨯⨯ 13-7 在康普顿实验中,当能量为0.50 MeV 的X 射线射中一个电子时,该电子会获得0.10 MeV 的动能,若电子原来是静止的。
试求:(1)散射光子的波长;(2)散射光子与入射方向的夹角。
【解】 00.50.10.4 MeV k hch E E νλ==-=-=(1) 3486196.6310 3.0100.410 1.610hc h λν--⨯⨯⨯==⨯⨯⨯ 123.110m -=⨯(2) 3486190 6.6310 3.0100.510 1.610hc E λ--⨯⨯⨯==⨯⨯⨯ 122.4810m -=⨯1200.6210 m λλλ-∆=-=⨯()122.4101cos λθ-∆=⨯-cos 0.74θ= 42.27θ= 13-8一个波长λ=5 Å的光子与原子中电子碰撞,碰撞后光子以与入射方向成150º角方向反射,求碰撞后光子的波长与电子的速率。
【解】 ()122.4101cos150λ-∆=⨯-()124.4810nm -=⨯9120510 4.4810λλλ--=+∆=⨯+⨯5.0048 n m=k hchcE λλ=-=3489116.63103.010105 5.0048-⎛⎫⨯⨯⨯⨯-⨯ ⎪⎝⎭203.810J =0.238 e V-⨯ 由于0.51 MeV kE (电子的静电能)因此,采用非相对论方式v == 52.910 m /s=⨯ 13-9设0λ和λ分别为康普顿散射中入射与散射光子的波长,k E 为反冲电子动能,ϕ为反冲电子与入射光子运动方向夹角,θ为散射光子与入射光子运动方向的夹角,试证明: (1)00k E hcλλλλ-=; (2) 当π2θ=时,ϕ=【证】(1) 00k hchcE h h ννλλ=-=-hcλλλλ-= (2) 由动量定理cos cos90e ex hhp p ϕλλ+==sin sin 90e ey hp p ϕλ==cosϕ==ϕ= 证毕13-10 根据玻尔理论计算氢原子中的电子在第一至第四轨道上运动的速度以及这些轨道的半径。
【解】 ()260112.1810 m/s 2n e v h n nε=⋅=⨯⋅()220200.0529 nm n h r n n m e επ=⋅=62 1.0910 m/s v =⨯ 537.2710 m /sv =⨯ 54 5.4510 m/s v =⨯20.2116 nm r = 30.4761 n m r = 40.8464 nm r =13-11 在氢原子被外来单色光激发后发出的巴耳末系中,仅观察到三条光谱线,试求这三条谱线的波长以及外来光的频率。
【解】 43220111()8me h c m n λε=-巴耳末系的三条谱线为2m =;3,4,5n =711111.09737310()49λ=⨯⨯- 1656 nm λ=721111.09737310()416λ=⨯⨯- 2486 nm λ=731111.09737310()425λ=⨯⨯- 3434 nm λ=13-12 动能为20 eV 的电子与处于基态的氢原子相碰,并使氢原子激发,当氢原子返回基态时,辐射出波长为121.6 nm 的光子,求碰撞后电子的速度。
【解】 200.51 MeV kE m c =,可以用非相对论近似212k hc mv E λ=-v =3481923192 6.6310 3.010[20 1.6109.110121.610⨯⨯⨯=⨯⨯⨯⨯⨯1----(-)] 61.85410 m /s ⨯13-13 具有能量为15 eV 的光子,被氢原子中处于第一玻尔轨道上的电子所吸收,然后电子被释放出来,试求放出来电子的速度。
【解】 200.51 MeV kE m c =,可以用非相对论近似211||2mv E E =-光 1513.581.42=-=v =57.0710 m /s=⨯ 13-14 原则上讲,玻尔理论也适用于太阳系,地球相当于电子,太阳相当于核,而万有引力相当于库仑力。
(1)求地球绕太阳运动的允许半径公式;(2)地球运行实际半径为1.5×1011 m ,与此半径对应的量子数n 多大? (3)地球实际轨道和它的下一个较大可能轨道半径差值多大? (M 地=5.98×1024 kg ,M 日=1.99×1030 kg ,G =6.67×10-11 N·m 2/kg 2)【解】(1) 22M M v G M r r⋅=日地地 2M v r GM M =⋅日地地 (1)由角动量守恒条件2πhL M vr n ==⋅地 (2) ()()12消去r :21nGM M v h n π⋅=⋅日地()()221消去v :2224πn h r r n GM M ==⋅日地(3)(2) ()()2341221130246.63104π 6.67101.9910 5.9810r --⨯=⨯⨯⨯⨯⨯⨯1382.310 m -=⨯21n r n r =742.5510n ==⨯ (3) 由(3)式:12r r n n ∆=⋅∆令1n ∆=138742.3102 2.5510r -∆=⨯⨯⨯⨯631.17310m -=⨯13-15 一质子经206 V 的电压加速后,德布罗意波长为12100.2-⨯m 。
试求:(1)质子的质量?=p m(2)如果质子的位置不确定量等于其波长,则其速度的不确定量必不小于多少? 【解】(1)h p λ===()2342219246.631022 1.610206410p hm eV λ---⨯==⨯⨯⨯⨯⨯ ()271.66710kg -⨯(2) 因为质子的位置不确定量等于其波长,即x λ∆=由不确定关系x p x x p x m v ∆⋅∆=∆⋅∆≥,取等号计算,可得3427121.05101.667102.010x p p v m x m λ---⨯∆===∆⨯⨯⨯()43.1510 m /s =⨯ 13-16 若已知运动电子的质量比其静止质量大1%,试确定其德布罗意波长。