当前位置:文档之家› 定积分的计算方法总结

定积分的计算方法总结

定积分的计算方法总结
定积分的计算方法总结

定积分的计算方法总结

定积分是高数中的一个重点内容,以下是收集的相关总结,仅供大家阅读参考!

定积分

1、定积分解决的典型问题

(1)曲边梯形的面积(2)变速直线运动的路程

2、函数可积的充分条件

●定理设f(x)在区间上连续,则f(x)在区间上可积,即连续=>可积。

●定理设f(x)在区间上有界,且只有有限个间断点,则f(x)在区间上可积。

3、定积分的若干重要性质

●性质如果在区间上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间上连续,则在积分区间上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、关于广义积分

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分论文

§ 1 定积分概念 教学要求: 知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1. 曲边梯形的面积; 2. 变力所作的功 二、定积分的定义 从上面两个例子看出,不管是求曲边梯形的面积或是计算变力作的功,它们都归结为对问题的某些量进行“分割、近似求和、取极限”,或者说都归结为形如 ∑=?n i i i x f 1 )(ξ 的和式极限问题。我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。由此我们可以给定积分下一个定义 定义 设 )(x f 是定义在区间],[b a 上的一个函数,在闭区间],[b a 上任取 n-1个分b x x x x a n i i =<<<<<<-ΛΛ11 把 [a,b] 分成 n 个小闭区间,我们称这些分点和小区间构成的一个分割,用T 表示, 分割的细度用}max {||||i x T ?=表示,在分割T 所属的各个小区间内各取一点],[1i i i x x -∈ξ称为介点,作和式 ∑=?n i i i x f 1 )(ξ 以后简记为 ∑)(T f

此和式称为)(x f 在],[b a 上属于分割T 的积分和(或黎曼和,设J 是一个确定的数,若对任意0>ε总存在某个0>δ,使得 ],[b a 上的任何分割T ,只要它的细度δ<||||T ,属于分割T 的所有积分和 ∑)(T f 都有 ε<-∑|)(|J T f 则称)(x f 在],[b a 上可积,称J 为函数)(x f 在区间],[b a 上的定积分(或黎曼积 分),记作 ?b a f(x)dx 其中)(x f 称为积分函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分 的上限和下限。 利用积分的定义,前面提到曲边梯形面积可简洁的表示为 ?=b a dx x f S )( 变力作功问题可表示为 ?=b a dx x F W )( 三.理解定积分定义要注意以下三点: 1)定积分定义与我们前面讲的函数极限的“δε-”定义形式上非常相似,但是两者之间还是有很大差别的。对于定积分来说,给定了细度||||T 以后,积分和并不唯一确定,同一细度分割由无穷多种,即使分割确定,介点i ξ仍可以任意选取,所以积分和的极限比前面讲的函数极限要复杂的多。 2)定积分是积分和的极限,积分值与积分变量的符号无关 ???==b a b a b a du u f dx x f dt t f )()()(

定积分的数值计算方法[含论文、综述、开题-可编辑]

设计 (20 届) 定积分的数值计算方法 所在学院 专业班级信息与计算科学学生姓名学号 指导教师职称 完成日期年月

摘要:数值计算是许多科学与工程计算的核心.定积分的数值计算方法有很多,其中一些常用的计算方法有牛顿-科茨求积公式,梯形求积公式,辛普森求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等.本篇论文主要介绍定积分数值计算的多种方法,并对其中几种做了比较评述,最后给出了梯形求积公式,龙贝格积分法在Matlab环境中的编程实现. 关键词:牛顿-科茨求积公式;复合求积公式;高斯求积公式

Some numerical methods of definite integral Abstract: Numerical calculation is the core of many science and engineering calculation. There are many numerical calculation methods, including some commonly used numerical methods are Newton – Cotes Quadrature formula, Trapezoidal Quadrature formula, Simpson formula,Composite Quadrature formula, Romberg Quadrature method, Gaussian Quadrature formula, chebyshev Quadrature formula, and so on. This theies mainly introduces Some numerical methods of definite integral and compare several of these methods, finally gives the Trapezoidal Quadrature formula, Romberg Quadrature method in the Matlab environment for programming realize. Key words:Newton – Cotes Quadrature formula; Composite Quadrature formula; Gaussian Quadrature formula

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

定积分心得范文

【一】:定积分总结 定积分讲义总结内容一定积分概念 一般地,设函数f(x)在区间[a,b]上连续,用分点ax0x1x2将区间[a,b]等分成n个小区间,每个小区间长度为x(x xi1xixnb ba ),在每个小区间xi1,xi上取一点n ii1,2,,n,作和式Snf(i)x i1 i1 nn ba f(i) n 如果x无限接近于0(亦即n)时,上述和式Sn无限趋近于常数S,那么称该常数S为函数f(x)在区间[a,b]上的定积分。记为S b a f(x)dx 其中f(x)成为被积函数,x叫做积分变量,[a,b]为积分区间,b积分上限,a积分下限。说明(1)定积分 b

a f(x)dx是一个常数,即Sn无限趋近的常数S(n时)称为f(x)dx,而不是Sn. a b (2)用定义求定积分的一般方法是①分割n等分区间a,b;②近似代替取点ixi1,xi; ③求和 nbbaba ;④取极限 f()f(x)dxlimfiiannni1i1n 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力Fxkx(k为常数,x是伸长量),求弹簧从平衡位置拉长b所作的功. 分析利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.解将物体用常力F沿力的方向移动距离x,则所作的功为WFx. 1.分割 在区间0,b上等间隔地插入n1个点,将区间0,1等分成n个小区间 0, n1bbb2b ,,,,b ,nnnn ,n),其长度为x ibi1bb nnn 记第i个区间为 i1bib ,(i1,2,nn 把在分段0,

n1bbb2b ,,,,b上所作的功分别记作W1,W2,,Wn ,nnnn (2)近似代替定积分心得。 i1bbi1b有条件知WiF (i1,2,n, )xk nnn (3)求和 n n WnWi i1 i1 i1bbkb2k=012 n定积分心得。 n n2 kb2nn1kb21 n11 n2 22n kb21 从而得到W的近似值 WWn1

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分近似计算方法论文开题报告

本计划研究目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 提纲 1引言 2一元函数常见数值积分方法 2.1插值型积分 2.2高斯积分 4 一维数值积分方法应用以及误差分析 5高维数值积分方法应用以及误差分析 研究计划 1.指导教师与学生见面,指导教师填写纸质毕业论文(设计)任务书,并下达给学生。 2011年10月19日210月23日(第8—第8周) 2.学生撰写毕业论文(设计)开题报告并提交第一次周志,交指导教师审阅。2011 年10月24日至12月26日(第9—17周) 3.学生完成毕业论文(设计)初稿并提交第二次周志交指导教师审阅。2012年3月 5日前(第1—3周) 4.学生完成毕业论文(设计)初稿,二稿直至最终定稿,指导教师审阅二稿,三稿。 2012年4月10日前(第4—10周) 5.指导教师:评定教师分别评定论文(设计)成绩2012年4月30 日前(第11—11 周) 6.毕业论文设计答辩2012年5月11日前(第12—13周) 7.教师通过教务管理系统登录学生毕业论文(设计)成绩。2012年5月15日前(第 14周——) 主要文献资料 (1)华东师范大学数学系编《数学分析》上册

(2)李庆扬关治白峰杉《数值计算原理》 (3)肖筱南《现代数值计算方法》 (4)菲赫金哥尔茨《微积分学教程》 (5)裴礼文《数学分析中的典型问题和方法》 (6)LU J T.Is the comos ite function integrable? [J]Amer Math Monthy,1999(106):763--766

定积分的计算方法研究毕业论文

编号2013110110研究类型理论研究分类号O17 学士学位论文 Bachelor’s Thesis 论文题目定积分的计算方法研究 作者姓名施莉 学号2009111010110 所在院系数学与统计学院 学科专业名称数学与应用数学 导师及职称许绍元教授 论文答辩时间2013年5月25日

湖北师范学院学士学位论文诚信承诺书

目录 1.定积分的产生背景及定义 (3) 1.1曲边梯形面积 (3) 1.2定义1 (3) 1.3定义2 (3) 2.定积分的几种计算方法 (4) 2.1定义法 (4) 2.2换元法求定积分 (4) 2.3牛顿莱布尼兹公式 (8) 2.4利用对称原理求定积分 (10) 2.5利用奇偶性求函数积分 (13) 2.6利用分部积分法计算定积分 (15) 2.7欧拉积分在求解定积分中的应用 (16) 3.结论 (20) 4.参考文献 (20)

定积分的计算技巧研究 施莉(指导老师:许绍元) (湖北师范学院数学与统计学院中国黄石435002) 内容摘要:定积分在微积分中占有极为重要的位置,它与微分相比,难度大、方法灵活﹒ 如果单纯的按照积分的定义来计算定积分,那将是十分困难的﹒因此,我们 要研究定积分的计算方法﹒常用的方法有定义法、莱布尼兹公式法、分步积 分法、换元法以及其他的特殊方法﹒下面我们将探讨一下定积分的计算技巧﹒ 本文主要根据定积分的定义、性质、被积函数的奇偶性和对称性、以及某些 具有特征的函数总结了牛顿莱布尼兹公式、换元法、分部积分、凑微分﹒目 前,对于定积分的求法和应用的研究是比较全面和完善的﹒我们要学会总结 归纳定积分的一般性求法以及具有特殊特征的函数的求法﹒同时,将定积分 应用于数学问题的求解中以及物理学和经济学的实际问题中是非常必要的﹒关键词:定积分;求法;应用

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 0sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法 矩形法就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值.若 取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n i i x f n a b A 1 ).(

定积分的计算方法

定积分的计算方法 摘要 定积分是积分学中的一个基本问题,计算方法有很多,常用的计算方法有四种:(1) 定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分 法。以及其他特殊方法和技巧。本论文通过经典例题分析探讨定积分计算方法,并在系 统总结中简化计算方法!并注重在解题中用的方法和技巧。 关键字:定积分,定义法,莱布尼茨公式,换元法 Calculation method of definite integral Abstract the integral is the integral calculus is a fundamental problem, its calculation method is a lot of, (1)definition method, (2)Newton - Leibniz formula, (3)integral subsection integral method, (4) substitute method.This paper, by classic examples definite integral analysis method, and in the system of simplified, summarized the approximate calculation method! And pay attention to problem in using the methods and skills. Key words:definite integral ,definition method, Newton - Leibniz, substitute method

定积分计算公式和性质~定积分计算公式大全

第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为 图 5-10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图5-11

另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例2 求曲线和直线x=0、x= 及y=0所围成图形面积A(5-12)

相关主题
文本预览