高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
- 格式:doc
- 大小:458.50 KB
- 文档页数:19
高考数学一轮复习 第九章 平面解析几何9.11 圆锥曲线中定点与定值问题题型一 定点问题例1 已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点.(1)解 圆A 的圆心为A (-3,0),半径r 1=4.设动圆M 的半径为r 2,依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A ,故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,其方程为x 24+y 2=1. (2)证明 设直线l 的方程为y =kx +b (k ≠0),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2=4, 消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x 1+x 2=-8kb 1+4k 2,x 1x 2=4b 2-41+4k 2, 于是k PN +k QN =kx 1+b x 1-4+kx 2+b x 2-4=2kx 1x 2-4k -bx 1+x 2-8b x 1-4x 2-4, 由∠ONP =∠ONQ 知k PN +k QN =0.即2kx 1x 2-(4k -b )(x 1+x 2)-8b =2k ·4b 2-41+4k 2-(4k -b )-8kb 1+4k 2-8b =8kb 2-8k 1+4k 2+32k 2b -8kb 21+4k 2-8b =0, 得b =-k ,Δ=16(3k 2+1)>0.故动直线l 的方程为y =kx -k ,过定点(1,0).教师备选在平面直角坐标系中,已知动点M (x ,y )(y ≥0)到定点F (0,1)的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点N (4,4)作斜率为k 1,k 2的直线分别交曲线C 于不同于N 的A ,B 两点,且1k 1+1k 2=1.证明:直线AB 恒过定点.(1)解 由题意可知x 2+y -12=y +1,化简可得曲线C :x 2=4y .(2)证明 由题意可知,N (4,4)是曲线C :x 2=4y 上的点,设A (x 1,y 1),B (x 2,y 2),则l NA :y =k 1(x -4)+4,l NB :y =k 2(x -4)+4,联立直线NA 的方程与抛物线C 的方程,⎩⎪⎨⎪⎧ y =k 1x -4+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0,解得x 1=4(k 1-1),①同理可得x 2=4(k 2-1),②而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④ 由①②③④整理可得l AB :y =(k 1+k 2-2)x -4,故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1 (2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎫3,12. (1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N .(1)解 椭圆过点⎝⎛⎭⎫3,12,即3a 2+14b2=1, 又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1. (2)证明 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 1+4k 2,设AB 的中点M 为(x 0,y 0),得x 0=-4km 1+4k 2=12, 即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k. 所以AB 的中垂线方程为y +18k =-1k ⎝⎛⎭⎫x -12, 即y =-1k ⎝⎛⎭⎫x -38, 故AB 的中垂线恒过点N ⎝⎛⎭⎫38,0.题型二 定值问题例2 (2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12. (1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQ k PQ为定值. (1)解 由题意可知抛物线E 的准线方程为x =-12, 所以-p 2=-12,即p =1, 故抛物线E 的标准方程为y 2=2x .(2)证明 设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1.联立⎩⎪⎨⎪⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02. 又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1 =y 1-y 0x 2+1+y 2-y 0x 1+1x 1+1x 2+1=y 1-y 0ty 2+2+y 2-y 0ty 1+2ty 1+2ty 2+2=2ty 1y 2+2-ty 0y 1+y 2-4y 0t 2y 1y 2+2t y 1+y 2+4 =2t ·-2+2-ty 0·2t -4y 0t 2·-2+2t ·2t +4=-y 0t 2+2t 2+2=-y 0. 所以k AQ +k BQ k PQ =-y 0-y 02=2(定值). 教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解 (1)因为△ABF 2的周长为8,所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2,所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,x 24+y 23=1, 整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1),则λ=x 1x 1+1. 同理可得MB →=(x 2,y 2-k ),F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1. 所以λ+μ=x 1x 1+1+x 2x 2+1=x 1x 2+1+x 2x 1+1x 1+1x 2+1=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1=8k 2-24-8k 24k 2-12-8k 2+3+4k 2=-24-9=83, 所以λ+μ为定值83. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB的斜率为k 1,点P 的坐标为⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)求证:k 1k 为定值.(1)解 由题意知⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1. (2)证明 设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1, 两式相减得x 1+x 2x 1-x 24=-y 1+y 2y 1-y 23, 所以k 1=y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=-3x 04y 0. 又k =y 0x 0, 故k 1k =-34,为定值. 课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解 将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x .(2)证明 设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k P A =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2,由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,故-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5. (1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题设可知⎩⎪⎨⎪⎧c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0, 得(k 2+1)9m 2-459k 2+5+km ⎝⎛⎭⎫-18km 9k 2+5+m 2=0, 整理得45k 2+45=14m 2,则原点到该直线的距离d =|m |k 2+1=4514=37014, 故存在定点P (0,0),使得P 到直线MN 的距离为定值.3.已知双曲线C 的渐近线方程为y =±3x ,右焦点F (c ,0)到渐近线的距离为 3.(1)求双曲线C 的方程;(2)过F 作斜率为k 的直线l 交双曲线于A ,B 两点,线段AB 的中垂线交x 轴于D ,求证:|AB ||FD |为定值.(1)解 设双曲线方程为3x 2-y 2=λ(λ>0),由题意知c =2,所以λ3+λ=4⇒λ=3, 所以双曲线C 的方程为x 2-y 23=1. (2)证明 设直线l 的方程为y =k (x -2)(k ≠0)代入x 2-y 23=1, 整理得(3-k 2)x 2+4k 2x -4k 2-3=0,Δ=36(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得|AB |=1+k 2·x 1+x 22-4x 1x 2=6k 2+1|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝⎛⎭⎫x +2k 23-k 2-6k 3-k 2,令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=61+k 2|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解 (1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎪⎨⎪⎧x =ny -1,x 24+y 23=1, 得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4, 又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n 23n 2+4-6n 23n 2+4+1 =-12n 2-43n 2+4, x 1+x 2=n (y 1+y 2)-2=6n 23n 2+4-2 =-83n 2+4. 直线ME ,MD 的斜率分别为k ME =y 1x 1-m,k MD =y 2x 2-m , 所以k ME ·k MD =y 1x 1-m ·y 2x 2-m=y 1y 2x 1-m x 2-m=y 1y 2x 1x 2-m x 1+x 2+m 2=-93n 2+4-12n 2-43n 2+4-m ⎝ ⎛⎭⎪⎫-83n 2+4+m 2 =-9-12n 2+4+8m +3m 2n 2+4m 2=-93m 2-12n 2+4m +12, 要使直线ME ,MD 的斜率之积恒为定值,3m 2-12=0,解得m =±2,当m =2时,存在点M (2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-936=-14, 当m =-2时,存在点M (-2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-94, 综上,在x 轴上存在点M ,使得ME ,MD 的斜率之积恒为定值,当点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14, 当点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.。
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文1.如图,抛物线W:y2=4x与圆C:(x-1)2+y2=25交于A,B两点,点P为劣弧AB上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是( )A.(10,14)B.(12,14)C.(10,12)D.(9,11)2.(xx湖南湘中名校联考)已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++= .3.已知椭圆+=1(a>0,b>0)过点(0,1),其长轴长、焦距和短轴长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足=λ1,=λ2.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点,并求此定点.4.已知椭圆+=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为 4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,·=0,求||+||的取值范围.B组提升题组1.(xx湖南长沙模拟)如图,P是直线x=4上一动点,以P为圆心的圆Γ过定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|·|FQ|=|FB|·|EQ|.2.(xx山东,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为 2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.答案精解精析A组基础题组1.C 作出抛物线的准线:x=-1.过点Q向准线引垂线,垂足为H.故|QC|=|QH|.∵PC为圆的半径,∴|PC|=5.∴△PCQ的周长=|PQ|+|QC|+|PC|=|PQ|+|QH|+5.又∵PQ与x轴平行,∴△PCQ的周长=|PH|+5.∵点P为劣弧AB上不同于A,B的动点,A(4,4),B(4,-4),∴5<|PH|<7,∴10<|PH|+5<12.∴△PCQ的周长的取值范围为(10,12).2.答案0解析设A(x1,y1),B(x2,y2),C(x3,y3),F,由++=0,得y1+y2+y3=0.易得k AB==,同理k AC=,k BC=,所以++=++=0.3.解析(1)设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,所以a2=3.所以椭圆的标准方程为+y2=1.(2)证明:由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),直线l的方程为x=t(y-m),由=λ1知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意得y1≠0,∴λ1=-1.同理由=λ2知λ2=-1.∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①由得(t2+3)y2-2mt2y+t2m2-3=0,由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②且有y1+y2=③,y1y2=,④将③④代入①,得t2m2-3+2m2t2=0,∴(mt)2=1,由题意得mt<0,∴mt=-1,满足②,∴直线l的方程为x=ty+1,则直线l过定点(1,0).4.解析(1)由题意得,当点P是椭圆的上、下顶点时,△PF1F2的面积取得最大值, 此时=|F1F2|·|OP|=bc,∴b c=4,因为e=,所以b=2,a=4,所以椭圆的方程为+=1.(2)由(1)得,F1的坐标为(-2,0),因为·=0,所以AC⊥BD,①当直线AC与BD中有一条直线的斜率不存在时,易得||+||=6+8=14.②当直线AC的斜率k存在且k≠0时,设其方程为y=k(x+2),A(x1,y1),C(x2,y2),由得(3+4k2)x2+16k2x+16k2-48=0,x1+x2=,x1x2=,||=|x1-x2|=,此时直线BD的方程为y=-(x+2).同理由可得||=,||+||=+=,令t=k2+1,则||+||=(t>1),因为t>1,0<≤,所以|+||=∈,综上,||+||的取值范围是.B组提升题组1.证明(1)设AE切圆Γ于点M,直线x=4与x轴的交点为N,故|EM|=|EB|.从而|EA|+|EB|=|AM|======4.所以|EA|+|EB|为定值 4.(2)由(1)同理可知|FA|+|FB|=4,故E,F均在椭圆+=1上.设直线EF的方程为x=my+1(m≠0).令x=4,求得y=,即Q点的纵坐标y Q=.由得(3m2+4)y2+6my-9=0.设E(x1,y1),F(x2,y2),则有y1+y2=-,y1y2=-.因为E,B,F,Q在同一条直线上,所以|EB|·|FQ|=|FB|·|EQ|等价于(y B-y1)(y Q-y2)=(y2-y B)(y Q-y1), 即-y1·+y1y2=y2·-y1y2,即2y1y2=(y1+y2)·.将y1+y2=-,y1y2=-代入,知上式成立.所以|EB|·|FQ|=|FB|·|EQ|.2.解析(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立方程得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,当且仅当t=3时等号成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述:当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.。
2018版高考数学大一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、范围、最值问题试题 理 新人教版基础巩固题组 (建议用时:40分钟)一、选择题1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 答案 C2.(2017·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM→=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.答案 B3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( ) A.2B.2 2C.8D.2 3解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m22m 2=1,可得m =2 2.答案 B4.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b ax ,与抛物线方程联立消去y 得x 2±b ax +2=0.∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =c a≥3. 答案 A5.(2016·丽水一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A.2B.455C.4105D.8105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105.答案 C 二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________. 解析 由条件知双曲线的焦点为(4,0),所以⎩⎪⎨⎪⎧a 2+b 2=16,b a=3,解得a =2,b =23,故双曲线方程为x 24-y 212=1.答案x 24-y 212=1 7.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________. 解析 ∵PM →·AM →=0,∴AM →⊥PM →. ∴|PM →|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,∴|PM →|min = 3. 答案38.(2017·平顶山模拟)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________. 解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2. 答案 (1,2]三、解答题9.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB→+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 方程为x 24+y 22=1.(2)当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以,x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2 +λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3, 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.10.(2016·浙江卷)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0.故x 1=0,x 2=-2a 2k1+a 2k2,因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a 得,所求离心率的取值范围是⎝⎛⎭⎪⎫0,22.能力提升题组 (建议用时:25分钟)11.(2016·湖南师大附中月考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,62 B.(2,+∞) C.(1,2)D.⎝⎛⎭⎪⎫62,+∞ 解析 不妨联立y =b a x 与y 2=x 的方程,消去y 得b 2a 2x 2=x ,由x 0>1知b 2a 2<1,即c 2-a 2a2<1,故e 2<2,又e >1,所以1<e <2,故选C. 答案 C12.(2017·河南省八市质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为3,则抛物线的准线方程为( ) A.x =-2 B.x =2 C.x =1D.x =-1解析 因为e =c a=2,所以c =2a ,b =3a ,双曲线的渐近线方程为y =±3x ,又抛物线的准线方程为x =-p 2,联立双曲线的渐近线方程和抛物线的准线方程得A ⎝ ⎛⎭⎪⎫-p2,3p 2,B ⎝ ⎛⎭⎪⎫-p2,-3p 2,在△AOB 中,|AB |=3p ,点O 到AB 的距离为p 2,所以12·3p ·p 2=3,所以p =2,所以抛物线的准线方程为x =-1,故选D. 答案 D13.(2017·绵阳诊断)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12,故最小值为6.答案 614.(2017·衡水中学高三联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标; (3)在(2)的条件下求△AMN 面积的最大值.解 (1)由题意,得⎩⎪⎨⎪⎧a =2b ,|4b +6|5=a ,∴⎩⎪⎨⎪⎧a =2,b =1,即C :x 24+y 2=1.(2)由题意得直线l 1,l 2的斜率存在且不为0. ∵A (-2,0),设l 1:x =my -2,l 2:x =-1my -2,由⎩⎪⎨⎪⎧x =my -2,x 2+4y 2-4=0,得(m 2+4)y 2-4my =0, ∴M ⎝ ⎛⎭⎪⎫2m 2-8m 2+4,4m m 2+4.同理,N ⎝ ⎛⎭⎪⎫2-8m 24m 2+1,-4m 4m 2+1. ①m ≠±1时,k MN =5m 4(m 2-1), l MN :y =5m 4(m 2-1)⎝ ⎛⎭⎪⎫x +65.此时过定点⎝ ⎛⎭⎪⎫-65,0.②m =±1时,l MN :x =-65,过点⎝ ⎛⎭⎪⎫-65,0.∴l MN 恒过定点⎝ ⎛⎭⎪⎫-65,0.(3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪⎪⎪m +1m 4⎝⎛⎭⎪⎫m +1m 2+9=84⎪⎪⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪⎪⎪m +1m .令t =⎪⎪⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号,∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.。
第九节圆锥曲线的综合问题A组基础题组1.(2015课标Ⅱ,20,12分)已知椭圆点在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.2.(2016山西太原模拟)已知椭圆的一个焦点为F(-1,0),左,右顶点分别为A,B.经过点F 的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.3.(2016吉林长春模拟)设F1、F2分别是椭圆的左、右焦点,若P是该椭圆上的一个动点,1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且∠AOB为锐角(O为坐标原点),求k的取值范围.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.已知椭圆的右焦点为F2(2,0),点C上.(1)求椭圆C的标准方程;(2)是否存在斜率为-1的直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.答案全解全析A组基础题组1.解析(1)解得a2=8,b2=4.所以C(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b得(2k2+1)x2+4kbx+2b2-8=0.故x M M=k·x M于是直线OM的斜率k OM即k OM·k=所以直线OM的斜率与直线l的斜率的乘积为定值.2.解析(1)由题意知c=1,b2=3,所以a2=4,所以椭圆M易求得直线方程为y=x+1,联立方程,消去y,得7x2+8x-8=0,Δ=288>0,设C(x1,y1),D(x2,y2),所以x1+x21x2所以1-x2(2)当直线l的斜率不存在时,直线方程为x=-1,此时△ABD与△ABC的面积相等,|S1-S2|=0;当直线l的斜率存在时,设直线方程为y=k(x+1)(k≠0),联立方程,消去y,得(3+4k2)x2+8k2x+4k2-12=0,Δ=(8k2)2-4(3+4k2)(4k2-12)=144k2+144>0,故x1+x21x2此时|S1-S2|=2||y2|-|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)|=2|k(x2+x1因为k≠0,所以|S1-S2,所以|S1-S2|.3.解析(1)解法一:易知2<4,所以F12设P(x,y),则2+y2-4+b2=x2+b222+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时1,即2-4,解得b2=1.故所求椭圆E的方程为2=1.解法二:由题意知a=2,c=2<4,所以F12设P(x,y),则2+1PF2y22+y2-16+4b22+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时有最大值1,即2-4,解得b2=1.故所求椭圆E的方程为2=1.(2)设A(x1,y1),B(x2,y2),(k2+4)y2-2ky-3=0,Δ=(-2k)2+12(4+k2)=16k2+48>0,故y1+y21·y2.又∠AOB为锐角,·=x1x2+y1y2>0,又x1x2=(ky1-1)(ky2-1)=k2y1y2-k(y1+y2)+1,所以x1x2+y1y2=(1+k2)y1y2-k(y1+y2)+1=(1+k2所以k2解得故kB组提升题组4.解析(1)由题意知设D(t,0)(t>0),则FD又|FA|=|FD|,则由抛物线的定义知,当点A的横坐标为3时,有解得t=3+p或t=-3(舍去).此时,可得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0),。
第9讲 圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知 识 梳 理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k 2·|y 1-y 2|=1+1k2·(y 1+y 2)2-4y 1y 2.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( ) (3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( ) (4)如果直线x =ty +a 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |=1+t 2|y 1-y 2|.( )(5)若抛物线C 上存在关于直线l 对称的两点,则需满足直线l 与抛物线C 的方程联立消元后得到的一元二次方程的判别式Δ>0.( )解析 (2)因为直线l 与双曲线C 的渐近线平行时,也只有一个公共点,是相交,但并不相切. (3)因为直线l 与抛物线C 的对称轴平行或重合时,也只有一个公共点,是相交,但不相切. (5)应是以l 为垂直平分线的线段AB 所在的直线l ′与抛物线方程联立,消元后所得一元二次方程的判别式Δ>0.答案 (1)√ (2)× (3)× (4)√ (5)×2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A.相交B.相切C.相离D.不确定解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 答案 A3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23D.⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫23,+∞ 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23. 答案 C4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A.1条B.2条C.3条D.4条解析 过(0,1)与抛物线y 2=4x 相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点. 答案 C5.已知F 1,F 2是椭圆16x 2+25y 2=1 600的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.解析 由题意可得|PF 1|+|PF 2|=2a =20,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=144=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=202-2|PF 1|·|PF 2|,解得|PF 1|·|PF 2|=128,所以△F 1PF 2的面积为12|PF 1|·|PF 2|=12×128=64.答案 646.(2017·嘉兴七校联考)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当m=________时,△FAB 的周长最大,此时△FAB 的面积是________.解析 设椭圆x 24+y 23=1的右焦点为F ′,则F (-1,0),F ′(1,0).由椭圆的定义和性质易知,当直线x =m 过F ′(1,0)时△FAB 的周长最大,此时m =1,把x =1代入x 24+y 23=1得y 2=94,y =±32,S △FAB =12|F 1F 2||AB |=12×2×3=3.答案 1 3第1课时 直线与圆锥曲线考点一 直线与圆锥曲线的位置关系【例1】 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 解 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b2=1,得b =1,则a 2=b 2+c 2=2,所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0.整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m 消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.② 综合①②,解得⎩⎪⎨⎪⎧k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2. 规律方法 研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择、填空题要充分利用几何条件,用数形结合的方法求解.【训练1】 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解 (1)设点M (x ,y ),依题意|MF |=|x |+1, ∴(x -1)2+y 2=|x |+1,化简得y 2=2(|x |+x ),故轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x (x ≥0),0(x <0).(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0);C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2). 由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. ②当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(ⅰ)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1,或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点.考点二 弦长问题【例2】 (2016·四川卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值. (1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎪⎨⎪⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝ ⎛⎭⎪⎫2-2m 3,1+2m 3.|PT |2=89m 2.设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m 3,x 1x 2=4m 2-123.所以|PA |=⎝ ⎛⎭⎪⎫2-2m 3-x 12+⎝ ⎛⎭⎪⎫1+2m 3-y 12=52⎪⎪⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪⎪⎪2-2m 3-x 2. 所以|PA |·|PB |=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 3-x 1⎝ ⎛⎭⎪⎫2-2m 3-x 2=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3⎝ ⎛⎭⎪⎫-4m 3+4m 2-123 =109m 2. 故存在常数λ=45,使得|PT |2=λ|PA |·|PB |.规律方法 有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.【训练2】 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,得|m |<52.(*)∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.考点三 中点弦问题【例3】 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y2=18x 上,则实数m 的值为________.解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1, ①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3, ∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合. 答案 (1)D (2)0或-8规律方法 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.【训练3】 设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点,可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式得k =-y 02. 又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P ⎝ ⎛⎭⎪⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.[思想方法] 1.有关弦的三个问题(1)涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;(2)涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;(3)涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.2.求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. [易错防范]判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行或重合时也相交于一点.第2课时 定点、定值、范围、最值问题考点一 定点问题【例1】 (2017·枣庄模拟)已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,所以a 2=3.所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1.由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 规律方法 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】 (2017·杭州七校联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝⎛⎭⎪⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169;当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎨⎧x 2+⎝ ⎛⎭⎪⎫y +132=169,x 2+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0,Δ=144k 2+64(9+18k 2)>0, x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).考点二 定值问题【例2】 (2016·山东卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k为定值.②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3m x 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线PA 的方程为y =kx +m .则直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0, 所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m . 同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m . 所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0 =-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m =-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.故此时2m -m4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 规律方法 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【训练2】 (2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2.直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值. 考点三 范围问题【例3】 (2016·天津卷)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c ,0),由1|OF |+1|OA |=3e|FA |,即1c +1a=3c a (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x=2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ), 有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1). 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64或⎣⎢⎡⎭⎪⎫64,+∞. 规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练3】 (2017·威海模拟)已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B两点.记λ=OA →·OB →,且23≤λ≤34.(1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解 (1)由题意知2c =2,所以c =1. 因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k2=1,即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k2.λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2,由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23.即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23. 考点四 最值问题【例4】 (2015·浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 规律方法 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练4】 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2, 从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.[思想方法]1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b、k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[易错防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.3.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.4.解决定值、定点问题,不要忘记特值法.。
课时2 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,FM =433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由FM =c +c2+⎝⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立.⎩⎪⎨⎪⎧y =t x +1,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6,又由已知,得t =6-2x23x +12>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =- 2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2, 又a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)联立⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0. ∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12m 2+1-3k 2>0,可得m 2>3k 2-1且k 2≠13,①设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0), 则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km1-3k 2,∴y 0=kx 0+m =m1-3k 2.由题意,AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0).整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),即m >-14.∴m 的取值范围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞). 题型二 最值问题命题点1 利用三角函数有界性求最值例2 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则AF ·BF的最小值是________. 答案 4解析 设直线AB 的倾斜角为θ,可得AF =21-cos θ,BF =21+cos θ,则AF ·BF =21-cos θ·21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为_________________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 设椭圆M :y 2a 2+x 2b2=1 (a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4. (1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 面积的最大值.解 (1)双曲线的离心率为2, 则椭圆的离心率e =ca =22, 由⎩⎪⎨⎪⎧ 2a =4,c a =22,b 2=a 2-c2⇒⎩⎨⎧a =2,c =2,b =2,故椭圆M 的方程为y 24+x 22=1.(2)由⎩⎪⎨⎪⎧y =2x +m ,x 22+y 24=1,得4x 2+22mx +m 2-4=0,由Δ=(22m )2-16(m 2-4)>0,得-22<m <2 2.∵x 1+x 2=-22m ,x 1x 2=m 2-44,∴AB =1+2|x 1-x 2|=3·x 1+x 22-4x 1x 2=3·12m 2-m 2+4=3·4-m 22.又P 到直线AB 的距离d =|m |3,则S △PAB =12·AB ·d =12·3·4-m 22·|m |3=12 m 2⎝ ⎛⎭⎪⎫4-m 22=122m 28-m 2≤122·m 2+8-m 22=2,当且仅当m =±2∈(-22,22)时取等号, ∴(S △PAB )max = 2.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(1)已知焦点为F 的抛物线y 2=4x 的弦AB的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6. (2)(2014·北京)已知椭圆C :x 2+2y 2=4. ①求椭圆C 的离心率;②设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 ①由题意,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. ②设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以AB 2=(x 0-t )2+(y 0-2)2=⎝ ⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 2x 20+4=x 2+4-x 202+24-x 2x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以AB 2≥8.故线段AB 长度的最小值为2 2.[方法与技巧]1.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.2.圆锥曲线中常见最值问题及解题方法(1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相关的一些问题.(2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[失误与防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.A 组 专项基础训练 (时间:40分钟)1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 答案 [-1,1]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为________. 答案125解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求MP 的最小值可以转化为求OP 的最小值,当OP 取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.3.若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是________. 答案 [3,+∞)解析 依题意可知双曲线渐近线方程为y =±bax ,与抛物线方程联立消去y 得x 2±b ax +2=0.∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =ca≥3.4.若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x+72-8x 29=19·⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254,∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19·⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6.5.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2.∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件有m +2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1,∴22<e 1<1. 6.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上相异两点,且满足x 1+x 2=2. (1)若AB 的中垂线经过点P (0,2),求直线AB 的方程;(2)若AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程. 解 (1)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y =kx +b ,代入方程y 2=4x ,得:k 2x 2+(2kb -4)x +b 2=0,∴x 1+x 2=4-2kb k 2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k,∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎪⎫1,2k ,∴AB 的中垂线方程为y =-1k (x -1)+2k =-1k x +3k.∵AB 的中垂线经过点P (0,2),故3k =2,得k =32,∴直线AB 的方程为y =32x -16.(2)由(1)可知AB 的中垂线方程为y =-1k x +3k,∴点M 的坐标为(3,0),∵直线AB 的方程为k 2x -ky +2-k 2=0,∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k2=2k 2+1|k |, 由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x 得k 24y 2-ky +2-k 2=0,y 1+y 2=4k ,y 1·y 2=8-4k2k2,AB =1+1k 2|y 1-y 2|=41+k 2k 2-1k2. ∴S △MAB =4⎝⎛⎭⎪⎫1+1k21-1k2,设1-1k2=t ,则0<t <1,S △MAB =4t (2-t 2)=-4t 3+8t ,S ′△MAB =-12t 2+8,由S ′△MAB =0,得t =63, 即k =±3时,(S △MAB )max =1669,此时直线AB 的方程为3x ±3y -1=0.7.如图,已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率e =12.(1)求椭圆的标准方程;(2)与圆(x -1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM→+ON →=λOC →,求实数λ的取值范围.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 由已知得:⎩⎪⎨⎪⎧4a 2+3b 2=1,c a =12,c 2=a 2-b 2,解得⎩⎪⎨⎪⎧ a 2=8,b 2=6, 所以椭圆的标准方程为x 28+y 26=1. (2)因为直线l :y =kx +t 与圆(x -1)2+y 2=1相切, 所以|t +k |1+k 2=1⇒2k =1-t 2t(t ≠0), 把y =kx +t 代入x 28+y 26=1并整理得: (3+4k 2)x 2+8ktx +(4t 2-24)=0,设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=-8kt 3+4k 2, y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t 3+4k2, 因为λOC →=(x 1+x 2,y 1+y 2),所以C ⎝ ⎛⎭⎪⎫-8kt 3+4k 2λ,6t 3+4k 2λ, 又因为点C 在椭圆上,所以,8k 2t 23+4k22λ2+6t 23+4k 22λ2=1 ⇒λ2=2t 23+4k 2=2⎝ ⎛⎭⎪⎫1t 22+1t2+1, 因为t 2>0,所以⎝ ⎛⎭⎪⎫1t 22+1t2+1>1, 所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).B 组 专项能力提升(时间:30分钟) 8.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e . (1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值范围. 解 (1)由焦点F 2(3,0),知c =3,又e =32=c a ,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3.所以椭圆的方程为x 212+y 23=1. (2)由⎩⎪⎨⎪⎧ y =kx ,x 2a 2+y2b 2=1,得(b 2+a 2k 2)x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k2. 又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2),所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0,即-a 2a 2-91+k 2a 2k 2+a 2-9+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3, 知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0),所以k 2≥18,则k ≥24或k ≤-24, 因此实数k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞. 9.如图所示,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上.(1)求曲线C 的方程及t 的值;(2)记d =AB 1+4m 2,求d 的最大值. 解 (1)y 2=2px (p >0)的准线为x =-p2, ∴1-(-p 2)=54,p =12, ∴抛物线C 的方程为y 2=x .又点M (t,1)在曲线C 上,∴t =1.(2)由(1)知,点M (1,1),从而n =m ,即点Q (m ,m ),依题意,直线AB 的斜率存在,且不为0,设直线AB 的斜率为k (k ≠0),且A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ·2m =1,∴直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0. 由⎩⎪⎨⎪⎧ x -2my +2m 2-m =0,y 2=x 消去x , 整理得y 2-2my +2m 2-m =0, ∴Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m .从而AB = 1+1k 2·|y 1-y 2|=1+4m 2·4m -4m 2=21+4m 2m -m 2. ∴d =AB1+4m 2=2m 1-m ≤m +(1-m )=1,当且仅当m =1-m ,即m =12时,上式等号成立,又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.。
§9.8 圆锥曲线的综合问题考纲解读分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.五年高考考点一 定值与最值及范围问题1.(2017浙江,21,15分)如图,已知抛物线x 2=y,点A,B,抛物线上的点P(x,y).过点B 作直线AP 的垂线,垂足为Q.(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.解析 (1)设直线AP 的斜率为k,k==x-,因为-<x<,所以直线AP 斜率的取值范围是(-1,1). (2)解法一:联立直线AP 与BQ 的方程 解得点Q 的横坐标是x Q =. 因为|PA|==(k+1), |PQ|=(x Q -x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.2.(2017山东,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.解析(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率k1=±.3.(2016课标全国Ⅱ,20,12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.解析(1)设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为+=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.(2分)将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.(4分)因此△AMN的面积S△AMN=2×××=.(5分)(2)由题意,t>3,k>0,A(-,0).将直线AM的方程y=k(x+) 代入+=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.(7分)由x1·(-)=得x1=,故|AM|=|x1+ |=.(8分)由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.(9分)由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.(10分)t>3等价于=<0,即<0.(11分)由此得或解得<k<2.因此k的取值范围是(,2).(12分)教师用书专用(4—15)4.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案 B5.(2015江苏,12,5分)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.答案6.(2016山东,21,14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2.求的最大值及取得最大值时点P的坐标.解析(1)由题意知=,可得a2=4b2.因为抛物线E的焦点F的坐标为,所以b=,所以a=1.所以椭圆C的方程为x2+4y2=1.(2)(i)设P(m>0).由x2=2y,可得y'=x,所以直线l的斜率为m.因此直线l方程为y-=m(x-m),即y=mx-.设A(x1,y1),B(x2,y2),D(x0,y0).联立得(4m2+1)x2-4m3x+m4-1=0.由Δ>0,得0<m<(或0<m2<2+),(*)且x1+x2=,因此x0=.将其代入y=mx-,得y0=.因为=-,所以直线OD方程为y=-x.联立得点M的纵坐标y M=-,所以点M在定直线y=-上.(ii)由(i)知直线l方程为y=mx-.令x=0,得y=-,所以G.又P,F,D,所以S1=·|GF|·m=,S2=·|PM|·|m-x0|=××=.所以=.设t=2m2+1.则===-++2,当=,即t=2时,取到最大值,此时m=,满足(*)式,所以P点坐标为.因此的最大值为,此时点P的坐标为.7.(2015课标全国Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.解析(1)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将点的坐标代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.8.(2015浙江,19,15分)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解析(1)由题意知m≠0,可设直线AB的方程为y=-x+b.由消去y,得x2-x+b2-1=0.因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0,①将AB中点M代入直线方程y=mx+,解得b=-.②由①②得m<-或m>.(2)令t=∈∪,则|AB|=·,且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.9.(2015天津,19,14分)已知椭圆+=1(a>b>0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.解析(1)由已知有=,又由a2=b2+c2,可得a2=3c2,b2=2c2.设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c).由已知,有+=,解得k=.(2)由(1)得椭圆方程为+=1,直线FM的方程为y=(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-c或x=c.因为点M在第一象限,可得M的坐标为.由|FM|==,解得c=1,所以椭圆的方程为+=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=,即y=t(x+1)(x≠-1),与椭圆方程联立得消去y,整理得2x2+3t2(x+1)2=6.又由已知,得t=>,解得-<x<-1,或-1<x<0.设直线OP的斜率为m,得m=,即y=mx(x≠0),与椭圆方程联立,整理可得m2=-.①当x∈时,有y=t(x+1)<0,因此m>0,于是m=,得m∈.②当x∈(-1,0)时,有y=t(x+1)>0,因此m<0,于是m=-,得m∈.综上,直线OP的斜率的取值范围是∪.10.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.11.(2014湖北,21,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0),依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.①(i)当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.(ii)当k≠0时,方程①的判别式为Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),由y-1=k(x+2),令y=0,得x0=-.③1°若由②③解得k<-1或k>.即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.2°若或则由②③解得k∈或-≤k<0.即当k∈时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈时,直线l与C1有两个公共点,与C2没有公共点.故当k∈∪时,直线l与轨迹C恰好有两个公共点.3°若则由②③解得-1<k<-或0<k<.即当k∈∪时,直线l与C1有两个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综合(i)(ii)可知,当k∈(-∞,-1)∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈∪时,直线l与轨迹C恰好有两个公共点;当k∈∪时,直线l与轨迹C恰好有三个公共点.12.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.13.(2013陕西,20,13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ 的角平分线,证明直线l过定点.解析(1)如图,设动圆圆心为O1(x,y),由题意,知|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点,∴|O1M|=,又|O1A|=,∴=,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0.其中Δ=-32kb+64>0.由根与系数的关系得,x1+x2=,①x1x2=,②因为x轴平分∠PBQ,所以=-,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,③将①,②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ>0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).14.(2013安徽,18,12分)设椭圆E:+=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左,右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.解析(1)因为焦距为1,所以2a2-1=,解得a2=.故椭圆E的方程为+=1.(2)证明:设P(x0,y0),F1(-c,0),F2(c,0),其中c=.由题设知x0≠c,则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为y=(x-c).当x=0时,y=,即点Q的坐标为.因此,直线F1Q的斜率为=.由于F1P⊥F1Q,所以·=·=-1.化简得=-(2a2-1).①将①代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.15.(2013山东,22,13分)椭圆C:+=1(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2.设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明+为定值,并求出这个定值.解析(1)由于c2=a2-b2,将x=-c代入椭圆方程+=1,得y=±,由题意知=1,即a=2b2.又e==,所以a=2,b=1.所以椭圆C的方程为+y2=1.(2)解法一:设P(x0,y0)(y0≠0).又F1(-,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x-(x0+)y+y0=0,:y0x-(x0-)y-y0=0.由题意知= .由于点P在椭圆上,所以+=1.所以= .因为-<m<,-2<x0<2,所以=.所以m=x0.因此-<m<.解法二:设P(x0,y0).当0≤x0<2时,①当x0=时,直线PF2的斜率不存在,易知P或P.若P,则直线PF1的方程为x-4y+=0.由题意得=-m,因为-<m<,所以m=.若P,同理可得m=.②当x0≠时,设直线PF1,PF2的方程分别为y=k1(x+),y=k2(x-).由题意知=,所以=.因为+=1,并且k1=,k2=,所以===,即=.因为-<m<,0≤x0<2且x0≠,所以=.整理得m=,故0≤m<且m≠.综合①②可得0≤m<.当-2<x0<0时,同理可得-<m<0.综上所述,m的取值范围是.(3)设P(x0,y0)(y0≠0),则直线l的方程为y-y0=k(x-x0).联立得整理得(1+4k2)x2+8(ky0-k2x0)x+4(-2kx0y0+k2-1)=0.由题意知Δ=0,即(4-)k2+2x0y0k+1-=0.又+=1,所以16k2+8x0y0k+=0,故k=-.由(2)知+=+=,所以+==·=-8,因此+为定值,这个定值为-8.考点二存在性问题1.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|. 因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ.点Q的坐标为(0,)或(0,-).2.(2014山东,21,14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,(i)证明直线AE过定点,并求出定点坐标;(ii)△ABE的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+=,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)(i)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1,由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,所以设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0,由题意得Δ=+=0,得b=-.设E(x E,y E),则y E=-,x E=,当≠4时,k AE==-=,可得直线AE的方程为y-y0=(x-x0),由=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0),所以直线AE过定点F(1,0).(ii)由(i)知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=,设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4,所以点B到直线AE的距离为d===4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.教师用书专用(3)3.(2013湖北,21,13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.解析依题意可设椭圆C1和C2的方程分别为C1:+=1,C2:+=1.其中a>m>n>0,λ=>1.(1)解法一:如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|,所以=.在C1和C2的方程中,分别令x=0,可得y A=m,y B=n,y D=-m,于是===.若=λ,则=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=+1.故当直线l与y轴重合时,若S1=λS2,则λ=+1.解法二:如图1,若直线l与y轴重合,则|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|.所以===.若=λ,则=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=+1.故当直线l与y轴重合时,若S1=λS2,则λ=+1.(2)解法一:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1==,d2==,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以==λ,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)·|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|, 于是=.①将l的方程分别与C1,C2的方程联立,可求得x A=,x B=.根据对称性可知x C=-x B,x D=-x A,于是===.②从而由①式和②式可得=.③令t=,则由m>n,可得t≠1,于是由③式可解得k2=.因为k≠0,所以k2>0.于是③式关于k有解,当且仅当>0,等价于(t2-1)<0.由λ>1,可解得<t<1,即<<1,由λ>1,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l,使得S1=λS2.解法二:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1==,d2==,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以==λ.因为===λ,所以=.由点A(x A,kx A),B(x B,kx B)分别在C1,C2上,可得+=1,+=1,两式相减可得+=0,依题意得x A>x B>0,所以>.所以由上式解得k2=.因为k2>0,所以由>0,可解得1<<λ.从而1<<λ,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l,使得S1=λS2.三年模拟A组2016—2018年模拟·基础题组考点一定值与最值及范围问题1.(人教A选2—1,二A,5,变式)若双曲线-=1(a>0,b>0)与直线y=2x无交点,则其离心率e的取值范围是( )A.(1,2)B.(1,2]C.(1,)D.(1,]答案 D2.(2017湖南长沙模拟,11)P是双曲线C:-y2=1右支上一点,直线l是双曲线C的一条渐近线,P 在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为( )A.1B.2+C.4+D.2+1答案 D3.(2018河北五校12月联考,20)已知椭圆C:+=1(a>b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O是坐标原点).(1)求椭圆C的方程;(2)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.解析(1)设椭圆的半焦距为c,由已知得⇒∴椭圆的方程为+y2=1.(2)证明:以短轴为直径的圆的方程为x2+y2=1,F(1,0),设P(x0,y0),则+=1(0<x0≤).∴|PF|=====(2-x0).又l与圆x2+y2=1相切于M,∴|PM|=====x0,∴|PF|+|PM|=(2-x0)+x0=,为定值.考点二存在性问题4.(2018四川乐山模拟,20)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=0,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(1)求椭圆C的方程;(2)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.解析(1)因为2+=0,所以F1为F2Q的中点.由F1(-c,0),F2(c,0)及已知得Q的坐标为(-3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,且过A,Q,F2三点的圆的圆心为F1(-c,0),半径为2c,所以2c=2,解得c=1,所以a=2,b=,所以所求椭圆方程为+=1.(2)假设存在点P满足题意,由已知得l的方程为y=kx+2(k>0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.设G(x1,y1),H(x2,y2),则x1+x2=-,Δ=(16k)2-16(3+4k2)>0,又k>0,∴k>.+=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2)=(x1+x2-2m,k(x1+x2)+4),=(x2-x1,y2-y1)=(x2-x1,k(x2-x1)).由于菱形的对角线互相垂直,故(+)·=0,所以(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0,即(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0.因为k>0,所以x2-x1≠0.所以(x1+x2)-2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k-2m=0.所以(1+k2)+4k-2m=0.解得m=-,即m=-.因为k>,所以+4k≥2=4当且仅当k=时,“=”成立,所以-≤m<0,故存在满足题意的点P,且m的取值范围是.5.(2017河北唐山模拟,20)已知椭圆+=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k使得以CD 为直径的圆过E点?请说明理由.解析(1)直线AB的方程为bx-ay-ab=0,依题意可得解得∴椭圆的方程为+y2=1.(2)存在.理由:假设存在这样的k.联立得(1+3k2)x2+12kx+9=0,由题意知Δ=(12k)2-36(1+3k2)>0,①设C(x1,y1),D(x2,y2),则x1+x2=-,②x1·x2=,③而y1·y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时成立,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0,④将②③代入④整理得k=,经验证,k=时①成立.综上可知,存在k=使得以CD为直径的圆过点E.B组2016—2018年模拟·提升题组(满分:35分时间:30分钟)一、选择题(共5分)1.(2017河南郑州一模,11)已知直线l与双曲线-y2=1相切于点P,l与双曲线的两条渐近线交于M,N两点,则·的值为( )A.3B.4C.5D.与P的位置有关答案 A二、解答题(共30分)2.(2018湖南长沙模拟)已知动圆M在圆F1:(x+1)2+y2=外部且与圆F1相切,同时还在圆F2:(x-1)2+y2=内部与圆F2相切.(1)求动圆圆心M的轨迹方程;(2)记(1)中求出的轨迹为C,C与x轴的两个交点分别为A1、A2,P是C上异于A1、A2的动点,直线l:x=与x轴交于点D,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|·|DF|为定值. 解析(1)设动圆M的半径为r,由已知得|MF1|=+r,|MF2|=-r,|MF1|+|MF2|=4>|F1F2|,∴M点的轨迹是以F1,F2为焦点的椭圆,设椭圆方程为+=1(a>b>0),则a=2,c=1,则b2=a2-c2=3, 故圆心M的轨迹方程为+=1.(2)设P(x0,y0),由已知得A1(-2,0),A2(2,0),则=,直线PA1的方程为:y=(x+2),=,直线PA2的方程为:y=(x-2),当x=时,E,F,∴|DE|·|DF|=(+2)×(-2)=×2,又∵(x0,y0)满足+=1,∴=-,∴|DE|·|DF|=-×2=,为定值.3.(2017广东汕头二模,20)已知O为坐标原点,圆M:(x+1)2+y2=16,定点F(1,0),点N是圆M上一动点,线段NF的垂直平分线交圆M的半径MN于点Q,点Q的轨迹为E.(1)求曲线E的方程;(2)已知点P是曲线E上但不在坐标轴上的任意一点,曲线E与y轴的交点分别为B1、B2,直线B1P和B2P分别与x轴相交于C、D两点,请问线段长之积|OC|·|OD|是否为定值?如果是,请求出定值;如果不是,请说明理由;(3)在(2)的条件下,若点C的坐标为(-1,0),过点C的直线l与E相交于A、B两点,求△ABD 面积的最大值.解析(1)连接FQ,则|FQ|=|NQ|,∴|MQ|+|FQ|=|MQ|+|QN|=|MN|=4>|MF|,根据椭圆的定义得,E是以M(-1,0),F(1,0)为焦点,4为长轴长的椭圆,∴2a=4,即a=2,又∵焦点为(1,0),即c=1,∴b2=a2-c2=4-1=3.故点Q的轨迹E的方程为+=1.(2)是定值.设P(x0,y0)(x0≠±2,y0≠±3),不妨设B1在y轴负半轴上,则直线B1P的方程为y=x-.令y=0,得x C=,同理得x D=,∴|OC|·|OD|=|x C|·|x D|=.∵点P是曲线E上但不在坐标轴上的任意一点,∴+=1,即3=4(3-),∴|OC|·|OD|==4,因此|OC|·|OD|是定值,且定值为4.(3)当点C的坐标为(-1,0)时,点D(-4,0),|CD|=3,设直线l的方程为x=my-1,A(x1,y1),B(x2,y2),由得(3m2+4)y2-6my-9=0,Δ=36(4m2+4),y1,2=,∴|y1-y2|=,△ABD的面积S=×|y1-y2|×3=·==.∵m2≥0,∴≥1,又函数y=3x+在[1,+∞)上为增函数,∴3+≥4,∴S≤,∴当m=0,即直线AB的方程为x=-1时,△ABD的面积最大,且最大值为.C组2016—2018年模拟·方法题组方法1 与圆锥曲线相关的最值、范围问题的解题方法1.(2017江西南昌NCS项目模拟,11)抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|AB|,则∠AFB的最大值为( )A. B. C. D.答案 D2.(2018天津模拟,20)已知椭圆C:+=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(1)求椭圆C的离心率;(2)若点M在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.解析(1)由题意得a-c=b,则(a-c)2=b2,结合b2=a2-c2,得(a-c)2=(a2-c2),即2c2-3ac+a2=0,亦即2e2-3e+1=0,结合0<e<1,解得e=.所以椭圆C的离心率为.(2)由(1)得a=2c,则b2=3c2.将代入椭圆方程+=1,解得c2=1.所以椭圆方程为+=1.易得直线OM的方程为y=x.当直线l的斜率不存在时,线段AB的中点不在直线y=x上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与+=1联立消去y得(3+4k2)x2+8kmx+4m2-12=0,所以Δ=64k2m2-4(3+4k2)(4m2-12)=48(3+4k2-m2)>0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.由y1+y2=k(x1+x2)+2m=,得线段AB的中点坐标为N,因为N在直线y=x上,所以-=2×,解得k=-.所以Δ=48(12-m2)>0,得-2<m<2,且m≠0,|AB|=|x2-x1|=·=·=.又原点O到直线l的距离d=,所以S△OAB=××=≤·=.当且仅当12-m2=m2,即m=±时等号成立,符合-2<m<2,且m≠0.所以△OAB面积的最大值为.3.(2017河南新乡调研,21)设O为坐标原点,已知椭圆C1:+=1(a>b>0)的离心率为,抛物线C2:x2=-ay的准线方程为y=.(1)求椭圆C1和抛物线C2的方程;(2)设过定点M(0,2)的直线与椭圆C1交于不同的两点P,Q,若O在以PQ为直径的圆的外部,求直线的斜率的取值范围.解析(1)由题意得=,∴a=2,故抛物线C2的方程为x2=-2y,又e=,∴c=,∴b=1,从而椭圆C1`的方程为+y2=1.(2)显然直线x=0不满足题设条件,可设直线l:y=kx+2,P(x1,y1),Q(x2,y2).由得(1+4k2)x2+16kx+12=0,∵Δ=(16k)2-4×12×(1+4k2)>0,∴k∈∪,x1+x2=,x1x2=,根据题意,得0<∠POQ<⇔·>0,∴·=x1x2+y1y2=x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4=+2k×+4=>0,∴-2<k<2,综上得k∈∪.方法2 圆锥曲线中的定值、定点问题的解题方法4.(2018江苏启东模拟,20)设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为k PA,k PB.(1)求抛物线的方程;(2)若k PA+k PB=0,求证直线AB的斜率为定值,并求出其值;(3)若k PA·k PB=1,求证直线AB恒过定点,并求出其坐标.解析(1)依题意,可设所求抛物线的方程为y2=2px(p>0),因抛物线过点(2,4),故42=4p,解得p=4,故抛物线的方程为y2=8x.(2)设A(x1,y1),B(x2,y2),则k PA===,同理,k PB=,k AB=.∵k PA+k PB=0,∴+=0,∴=,∴y1+4=-y2-4,∴y1+y2=-8,∴k AB=-1.∴直线AB的斜率恒为定值-1.(3)∵k PA k PB=1,∴·=1,∴y1y2+4(y1+y2)-48=0.直线AB的方程为y-y1=,即(y1+y2)y-y1y2=8x.将y1y2=-4(y1+y2)+48代入上式得(y1+y2)(y+4)=8(x+6),该直线恒过定点(-6,-4),命题得证.5.(2018河南新乡模拟,20)已知右焦点为F的椭圆M:+=1(a>)与直线y=相交于P,Q两点,且PF⊥QF.(1)求椭圆M的方程:(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,说明理由.解析(1)设F(c,0),P,Q,将点P的坐标代入椭圆方程可得+=1,即t2=a2,①由PF⊥QF,可得·=-1,即c2-t2=-,②由①②可得c2=a2-.又a2-c2=3,解得a=2,c=1,故椭圆方程为+=1.(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2-12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=-,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=-(+)=,由C在椭圆上,得3+4=12,化简可得4m2=3+4k2,|AB|=·=·=·,C到直线AB的距离d==,S△ABC=|AB|·d=·=·=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|·d=.综上可得,△ABC的面积为定值.6.(2017福建福州模拟,20)已知点P是直线l:y=x+2与椭圆+y2=1(a>1)的一个公共点,F1,F2分别为该椭圆的左,右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.(1)求椭圆C的标准方程及离心率;(2)已知A,B为椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB 分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值,如果为定值,求出该定值;如果不是,请说明理由.解析(1)联立得(a2+1)x2+4a2x+3a2=0.∵直线y=x+2与椭圆有公共点,∴Δ=16a4-4(a2+1)×3a2≥0,得a2≥3,又a>1,∴a≥,由椭圆的定义知|PF1|+|PF2|=2a,故当a=时,|PF1|+|PF2|取得最小值,此时椭圆C的标准方程为+y2=1,离心率为=.(2)mn为定值.设A(x1,y1),B(-x1,y1),Q(x0,y0)(y0≠y1),且已知M(0,m),N(0,n),由题意知k QA=k QM,∴=,即m=y0-=,同理,得n=,∴mn=·=,又+=1,+=1,∴=1-,=1-,∴mn===1,∴mn为定值1.方法3 存在性问题的解题策略7.(2016吉林长春外国语学校第一次质量检测,21)已知椭圆C:+=1(a>b>0)的离心率为,且过点.(1)求椭圆C的方程;(2)设不过原点O的直线l:y=kx+m(k≠0)与椭圆C交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,若4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值并证明你的结论;若不是,请说明理由.解析(1)依题意可得又a2=b2+c2,∴a=2,b=1.∴椭圆C的方程是+y2=1.(2)当k变化时,m2为定值,证明如下:由得(1+4k2)x2+8kmx+4(m2-1)=0.设P(x1,y1)、Q(x2,y2),则x1+x2=-,x1x2=,∵直线OP、OQ的斜率依次为k1、k2,且4k=k1+k2,∴4k=+=+,得2kx1x2=m(x1+x2),∴m2=,经检验满足Δ>0.。
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。