纯水设计计算书
- 格式:xls
- 大小:233.00 KB
- 文档页数:2
净水厂设计计算书设计计算书:净水厂设计一、引言净水厂是为了提供清洁、安全、可靠的饮用水供应服务而建立的设施。
本设计计算书旨在对净水厂的设计进行全面的计算和说明,以确保其设计符合相关标准和要求。
二、设计流程1.确定供水规模和水质要求:根据用户需求确定净水厂的设计处理量,并确定水质要求,包括对悬浮物、有机物、微生物和化学成分的要求。
2.水源调查和选择:对供水水源进行调查和评估,确定其水质和水量,并选择最适合的水源。
3.工艺流程选择:选择适当的净水工艺流程,包括预处理、混凝、絮凝、过滤、消毒等环节,并根据水源水质和水量要求进行计算。
4.工艺设备选择:根据工艺流程选择适当的设备,并进行设备数量和尺寸的计算。
常用设备包括澄清池、絮凝池、滤池、曝气池、消毒装置等。
5.设备布置和管道设计:根据工艺设备的尺寸和数量,进行设备布置和管道设计,以确保净水效果和流程的顺畅。
6.水源保护措施:根据供水水源的特点,设计并实施相应的水源保护措施,确保供水水源的安全和可靠性。
7.操作和维护方案:制定净水厂的操作和维护方案,包括设备的日常操作、维护保养和定期检查等,以确保净水厂的正常运行。
三、设计计算1.净水流程计算:根据设计处理量和工艺流程,计算净水的流程和时间,并确定各个环节的处理效果。
2.设备尺寸计算:针对各种设备,进行尺寸计算,包括澄清池的容积、滤池的面积、消毒装置的处理量等,以确保设备能够满足设计要求。
3.管道设计计算:根据净水厂的布置和管道的长度、直径等参数,进行管道设计计算,并确定管道的材料和压力等级。
4.水力计算:针对净水流程、设备和管道,进行水力计算,包括管道的流速、压力损失、泵的扬程和功率等。
5.投资和运行成本计算:根据设备和材料的价格以及净水厂的运行成本,进行投资和运行成本的计算,并进行经济效益评估。
四、设计结果与讨论根据以上计算,得到净水厂的设计结果,并对其进行讨论,包括工艺流程的合理性、设备的选择和尺寸、管道的布局以及经济效益等方面。
超纯水方案计算书全文共四篇示例,供读者参考第一篇示例:超纯水是指水中的杂质被去除得到的纯净水,通常通过多重纯化工艺来实现。
在实际生产和实验中,超纯水是必不可少的物质,因为它具有极高的纯净度和化学稳定性,适用于各种高精密度和高灵敏度的应用场合。
超纯水的生产通常采用离子交换技术、反渗透、电渗析等多种方法。
本文将以某实验室需要制备1000升超纯水为例,详细阐述超纯水的生产过程及相关计算。
我们需要了解实验室的水质情况。
假设原水的电导率为100μS/cm,而目标要求的电导率为18.2 MΩ/cm。
两者之间存在较大差距,需要通过合适的纯化方法来达到目标要求。
第一步是采用反渗透膜对原水进行处理。
反渗透是一种通过半透膜将溶质从水中分离的物理过程,适用于去除大部分难以去除的杂质和溶质。
根据实验室需要制备1000升水的要求,我们选择了一套反渗透设备,其回收率为70%。
根据实验室的水质情况和目标电导率要求,预计需要处理的水量为1500升。
经过反渗透设备处理后,得到的水的电导率为1μS/c m。
第二步是采用电离交换树脂对反渗透处理后的水进行二次处理。
电离交换树脂是一种高效去离子材料,能够将水中的离子完全去除,从而提高水的纯度。
根据实验室的要求和水质情况,选择了合适的电离交换树脂,并配置了一套离子交换设备。
通过离子交换设备的处理,水的电导率降至0.1μS/cm,满足了实验室对超纯水的需求。
综合以上步骤,我们成功制备出1000升电导率为18.2 MΩ/cm的超纯水,满足了实验室高精密度实验的需求。
在实际生产中,超纯水的计算和生产是一个复杂的过程,需要考虑多种因素如水质情况、设备选型、处理方法等。
只有通过科学的计算和合理的操作,才能够确保超纯水的质量达到标准,并满足实验室实验的需要。
通过本文的介绍,希望读者能够更深入地了解超纯水的生产过程和相关计算,为实验室和生产实践提供参考和帮助。
超纯水的制备虽然复杂,但只要遵循科学的原理和方法,就能够顺利完成。
直饮水设计计算书一、用水量计算用水定额取3L/人.d,总用水人数3000人,取时变化系数Kh=2.5,用水时间T=10小时。
最大日用水量为:Qdmax=3×3000=9000L/d=9m3/d最大时用水量为:Qhmax=2.5×9/10=2.25m3/h二、设备选型计算1、制水量Qh净水站设计制水能力按最高日平均时流量考虑。
因Qh=9/10 m3/h=0.9 m3/h,净水站制水能力按1.0 m3/h设计。
2、水处理流程自来水→原水箱→原水泵→砂滤罐→炭滤罐→软水器→精滤器→↑回水高压泵→一级反渗透→高压泵→二级反渗透→臭氧混合塔→成品水箱→供水泵→稳压罐→用户。
3、设备选型计算假设反渗透装置的水回收率为50%,则前处理阶段净水设备设计净水能力应为2.0 m3/h。
(1)原水箱取调节时间T=1.5h,则水箱容积V=2×1.5=3.0 m选用不锈钢水箱一个,水箱尺寸为φ1400×H2000mm。
(2)原水泵水量Q2.0 m3/h,扬程H按砂滤罐所需进水压力及管路水损考虑,选择丹麦格兰富不锈钢立式多级离心泵CR2-30型一台,流量Q2.0 m3/h,扬程H30m,功率P0.37KW。
(3)砂滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
砂滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(4)炭滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。
炭滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。
(5)软水器由于没有详细的水质资料,无法进行计算,根据经验选择OSMONICS型软水器一台(带多路阀),外形尺寸为φ350×H1650mm。
滤池计算一、已知条件:(1)、设计水量规模:Q=100000万立方米/日(分两个系统)100000立方米/日考虑水厂自用水量,滤池为8% 1.08设计水量为:108000立方米/日Q= 1.25立方米/秒 1.25立方米/秒(2)、设计滤速7米/时7米/时(3)、采用气、水冲洗(反冲洗历时)12分钟表面扫洗强度 1.5升/秒*平方米第一阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时2分钟2分钟第二阶段气冲洗强度15升/秒*平方米15升/秒*平方米反冲洗历时4分钟4分钟水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时4分钟4分钟第三阶段水冲洗强度5升/秒*平方米5升/秒*平方米反冲洗历时6分钟6分钟(4)、冲洗周期12小时12小时二、设计计算1、滤池工作时间:滤池24小时连续工作,其有效工作时间为:T=24-t*2/60=23.6小时23.5小时2、滤池面积滤池总面积F=Q/(V*T)=656.5349544平方米656.535平方米滤池采用10格对称布置,单格面积:8格f'=82.0668693平方米82.0669平方米3、单池平面尺寸:L=12米B=7米84平方米4、校核强制滤速:V实际= 6.869951413米/小时一格反冲洗时V强制=7.851373043米/小时一格检修,一格反冲洗时:V强制=9.159935217米/小时5、滤池高度底部反冲洗室高度为750毫米0.75米滤板厚100毫米(混凝土)0.1米承托层厚度0.1米粒径0.9~1.3毫米 1.3米砂层上水深1200毫米 1.2米超高400毫米0.8米进水渠到滤池内的水头损失取0.35米滤池底到水面的高度 3.45米滤池总高度H=4.6米 4.6米6、配水系统配水系统采用小阻力配水系统(滤头),每平方米滤板配滤头55个共计36960个冲洗水通过滤头水头损失为0.23米。
滤板平面尺寸:L=790B=790予埋d=25mm ABS管7、洗砂排水槽单槽排水量q0=546升/秒0.546米3/秒洗砂排水槽顶距滤料顶的距离定位0.5m。
纯水设计方案范文(Max每小时120T反渗透水加60T去离子水)1.1设计总则严格遵循贵司在招标文件内提出的具体的参数要求,并结合我公司多年来反渗透、离子交换及线路板行业超纯水的设计经验,总结我司在开平地区施工过程中所得到的经验,专为某某某某某某有限公司RO水/DI水供给系统及生产工艺用纯水处理系统而设计,同时,本方案书涵盖满足贵司所要求的水处理系统设备的功能、结构、性能、安装和试验等方面的技术要求。
1.2乙方保证提供符合本投标书和相关的国际、国内工业标准的优质产品,并严格响应贵司招标文件及补充说明的要求。
1.3本次设计严格遵循甲方招标文件。
包括备货期及施工期,产水质量及产水量及相关补充说明等。
1.4本投标书所引用的标准若与乙方所执行的标准发生矛盾时,按较严格的或最新的标准执行。
1.5乙方对水处理成套设备(如预处理设备,砂滤器,碳滤器,反渗透设备,离子交换器、阀门、泵、仪表、电控等),包括配套外购的产品负有全责。
所有配套产品的型号及制造商均满足贵司招标书及具体使用要求,甲方设备除外。
1.6在合同签订后,甲方有权因规范、标准、规程等发生变化而提出补充要求,乙方根据实际情况进行方案的修订或统一按照甲方要求重新设计。
1.71.8本投标书中对提出的技术方案、工艺流程、设备参数及运行方式等进行详细描述说明。
对水处理系统的每项设备及其控制系统、电气设备等进行详细的分项报价并标注厂商。
1.9报价单严格按照贵司招标文件内之要求进行设计及安装一切有关工程项目,并提交一2工程概况第1页共83页2.1工程概况本工程为某某某某某某某有限公司RO水/DI水处理系统设计及安装项目,设计及安装预处理系统,RO,DI系统位于单独水处理间内,整套系统分两期设计,一期设计达到连续运行的需要,二期增加后保证连续运行。
负责制备RO,DI水相关的预处理系统,RO,DI水相关之配套设备,如多介质过滤器、活性炭过滤器设备,反渗透装置,混床,MB再生系统,水箱,加药及电器电控,阀门管道等,各RO水,DI水我司保证水量及质量,确保产水质量及水量,所提供设备必须满足生产RO水,DI水的需要,各主管出水口安装用水流量及总用水量计,以便监控用水量。
净水工程设计计算书一、双阀滤池1) 设计数据(1)设计规模:10万吨/日,分两期实施,水厂的用水系数1.05;(2)设计流量:Q =1.05×5×104m 3/d =2187.5 m 3/h =0.6076m 3/s ;(3)设计滤速:按规模要求,单层石英砂滤料的滤速V =8~10m/h ,这里取8.1 m/h ;(4)冲洗强度:12~15L /s·m 2,取13 L /s·m 2;(5)冲洗时间:t =6min ; 2) 主要计算(1)滤池面积及尺寸滤池工作时间为24h ,冲洗周期按12h 计;滤池实际工作时间T =24-(0.1×1224)=23.8(h );(注:式中只考虑反冲洗时间,未考虑初滤水的排放时间);滤池面积:2433.2728.231.805.1100.5m VT Q F ===;采用滤池格数:N =8,布置成对称双行;则单格滤池面积:204.34833.2728m F f ===;采用滤池长宽比3.1=BL,规范要求:1.25:1~1.5:1;每格滤池尺寸:L=6.6m ,B =5.1m ;复核:因此,每格滤池实际过滤面积f =B ×L =6.6×5.1=33.66m 2;滤池实际的正常滤速h m F Q V h /12.866.3385.2187=?==校核强制滤速h m N NV V /28.912.81881=?-=-=' (2)滤池高度支承层高度 H 1采用0.58m (d10~d32的支承层顶面应高于配水系统孔眼100mm );滤料层高度 H 2采用0.7m ;砂面以上水深 H 3采用1.90m ;超高(干管) H 4采用0.27m ;故滤料总高度 H =H 1+H 2+H 3+H 4=3.45m ;(3)配水系统(每格滤池)Ⅰ、干管干管流量 =?=q f q g 13.5 L /s·m 2×33.66 m 2=0.454m 3/s; 采用管径 d g =700mm (干管应埋入池底,顶部开孔接配水支管,详大样水施1-5-5);因此,干管起端流速V g =1.18m/s ;(注:若采用d g =800mm ,则V g =0.91m/s <1.0 m/s =;Ⅱ、支管支管中心间距采用 a j =0.25m ;每格滤池支管数 n j =5225.06.622=?=?j a L 根;每根支管入口流量 s L n q q jg j /73.852454===;采用管径 d j =80mm (公称外径90mm ,查《塑料给水管水力计算表》P86);支管始端流速 V j =1.56m/s ;Ⅲ、孔眼布置支管孔眼总面积与滤池面积之比K 采用0.25%;则孔眼总面积 F k =K f =0.25%×33.66=0.08415m 2=84150mm 2;采用孔眼直径 d k =9mm ;每个孔眼面积 f k =2225.639785.041mm d k =?=π;孔眼总数 13255.6384150===k k k f F N 个;每根支管孔眼数 26521325===j k k n N n 个;支管孔眼布置:设两排,与垂线成45°夹角,向下交错排列;每根支管长度 L j =0.5B =2.55m (注:两端除去间隙,L j =2.31m );每排孔眼中心距:m n L a k j k 178.0262131.221=?==Ⅳ、孔眼水头损失支管壁厚δ=5mm ;孔眼直径与壁厚之比8.159==δkd ,查《流量系数μ值表》得流量系数μ=0.68;水头损失 m g k q g h k 2.325.068.0105.1321102122=??=???? ??=μ;Ⅴ、复核配水系统支管长度与直径之比不大于60,60875.28080.031.2<==jj d L ;孔眼总面积与支管总横截面积之比小于0.5,()5.0322.008.0785.05208415.02<=??=j j k f n F ;干管横截面积与支管横截面积之比为1.75~2.0,()()47.108.0785.0527.0785.022==j j gf n f ;孔眼中心距应小于0.2m ,a k =0.178m<0.2m ;(4)洗砂排水槽洗砂排水槽中心距采用a 0=1.70m ;排水槽根数n 0=7.11.5=3根;排水槽长度m L l 6.60==;每根排水槽排水量s L a ql q /47.1517.16.65.13000=??==;采用三角形标准断面槽中流速采用V 0=0.6m/s ;横断面尺寸m V q x 251.06.0100047.1512110002100=?==,取0.25m ;排水槽槽底厚度采用δ=0.005m ;砂层最大膨胀率e =45%;砂层厚度H 2=0.70m ;洗砂、排水槽顶距砂面厚度H e =eH 2+2.5x +δ+0.075 =0.45×0.70+2.5×0.25+0.08 =1.02m ;洗砂、排水槽总平面面积00002n l x F ==2×0.25×6.6×3=9.9m 2;复核:排水槽总平面面积与滤池面积之比,一般小于25%,%25%4.29%10066.339.90≈=?=f F ;排水槽底高出集水槽底的高度2.0100081.03 2+??=b fg H=0.56+0.2=0.76m ;槽底距集水槽起端水面的高度不小于0.05~0.20m ;(5)滤池各种管渠计算Ⅰ 进水进水总流量 Q 1=52500m 3/d =0.6076m 3/s ;采用进水渠断面:渠宽B 1=0.8m ,水深为0.6m (两根进水管);渠中流速V 1=0.66m/s ,水力坡降2.7‰;进水总管管径(每5万吨设两根进水管)Q 2=h m /75.109324205.1100.534=,则进水管采用DN700,管中流速V 2=0.79m/s ;Ⅱ 冲洗水冲洗水流量Q 3=qf =13.5×33.66=0.454m 3/s ;采用管径D 3=500mm ;管中流速V 3=2.26m/s ;Ⅲ 清水清水总流量Q 4=Q 1=0.6076m 3/s ;清水总管管径采用D 4=800mm ,则V 4=1.21m/s ;每格滤池清水管流量Q 5=Q 2=86076.0=0.076m 3/s ;采用管径D 5=300mm ,则V 5=1.04m/s ;强制滤速下,5V '=1.19m/s ;Ⅳ 排水排水流量Q 6=Q 3=0.454m 3/s ;排水渠断面:渠宽B 6=0.8m ,水深为0.6m ;渠中流速V1=0.66m/s ;(6)进水虹吸管虹吸管进水量()s m Q /0868.01824360005.1100.534=-=进;事故冲洗进水量()s m Q /101.028********.1100.534=-=事;断面面积20.217m0.40.0868===进进进V Q ω;取用断面尺寸进ω=B ×L =0.4×0.5=0.2m 2;进水虹吸管局部水头损失∑?1.22gV 2进事局=ξf h0.505m/s 0.21.01Q V ===进事进事ω ∑?=++=出口弯头进口ξξξξ290 0.5+0.8×2+1.0=3.10.048m 1.29.8120.5053.12==局f h进水虹吸管的沿程水头损失L RC V 22?进事沿=f hm 111.0)5.04.0(22.0R =+?==进χω 32.63)111.0(012.0116161===R n CL 取2m0.00115m20.11163.322=??=沿f h 则局沿+f f f h h h ==0.048+0.00115=0.049m 取f h =0.1m;(7)进水槽及配水槽进水虹吸管出口至槽底h 1取0.25m ;进水虹吸管淹没水深h 2取0.25m ;配水槽出水堰宽b 1取1.2m ;配水堰堰顶水头0.128m 1.21.840.101)b 1.84(32323=)=(进事??=Q h ;进水堰超高C 取0.35m ;则H 进=h 1+h 2+h 3+h f +C =0.25+0.25+0.128+0.1+0.35 =1.078m ,取1.05m ;(8)排水虹吸管冲洗排水量Q 排=qf =13.5×33.66=0.454m 3/s ;排水虹吸管滤速V 排=1.4~1.6m/s ,取V 排=1.5m/s ;则220.303m1.50.454===排V qf ω;采用矩形断面,其尺寸为B 2×L 2=0.45×0.675=0.3015m 2;排水虹吸管管长L=10m ;∑2g V 2排局=ξf h 0.36m 9.8121.513.12==?? L RC V 22排沿=f hm 134.0)675.054.0(23015.0R 2=+?==χω 61.59)134.0(012.0116161===R n C0.05m 100.13459.612=??=沿f h则局沿+f f f h h h ==0.36+0.05=0.41m (9)反冲洗水泵计算水泵所需的供水量Q =qf =13.5×33.66=0.454m 3/s =1634.4m 3/h ;水泵所需扬程H=H 0+h 1+h 2+h 3+h 4+h 5H 0—排水槽顶与清水池最低水位之差;(5.45m )1h —从清水池至滤池间冲洗管道中的总水头损失,计算可得h 1=1.82m ;2h —滤池配水系统的水头损失;(3.2m )3h —承托层的水头损失;(0.13m ) 4h —滤料层膨胀时水头损失m h 68.07.0)41.01)(1165.2(4=?--=; 5h —富裕水头损失;(1.5m )则H=5.45+1.82+3.2+0.13+0.68+1.5=12.78m ;选冲洗水泵两台,一用一备。