2011高考概率统计(三)
- 格式:doc
- 大小:400.25 KB
- 文档页数:10
概率与统计(理)江苏 5 .从 1, 2, 3,4 这四个数中一次随机取两个数,则此中一个数是另一个的两倍的概率为 ______1答案:3安徽理( 20)(本小题满分13 分)工作人员需进入核电站达成某项拥有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超出10 分钟,假如有一个人10 分钟内不可以达成任务则撤出,再派下一个人。
此刻一共只有甲、乙、丙三个人可派,他们各自能达成任务的概率分别p , p , p ,假定 p , p , p 互不相等,且假定各人可否达成任务的事件互相独立.(Ⅰ)假如按甲最初,乙次之,丙最后的次序派人,求任务能被达成的概率。
若改变三个人被派出的先后次序,任务能被达成的概率能否发生变化?(Ⅱ)若按某指定次序派人,这三个人各自能达成任务的概率挨次为q , q , q ,此中q , q , q 是 p , p , p 的一个摆列,求所需派出人员数目X 的散布列和均值(数字希望) EX ;(Ⅲ)假定p p p ,试剖析以如何的先后次序派出人员,可使所需派出的人员数目的均值(数字希望)达到最小。
(20)(本小题满分13 分)此题考察互相独立事件的概率计算,考察失散型随机变量及其分布列、均值等基本知识,考察在复杂情境下办理问题的能力以及抽象归纳能力、合情推理与演绎推理,分类读者论论思想,应意图识与创新意识.解:( I)不论以如何的次序派出人员,任务不可以被达成的概率都是(1 p1 )(1 p2 )(1p3 ) ,所以任务能被达成的概率与三个被派出的先后次序没关,并等于1 (1 p1 )(1 p2 )(1 p3 ) p1p2p3p1 p2p2 p3p3 p1p1 p2 p3 .( II)当挨次派出的三个人各自达成任务的概率分别为q1 , q2 , q3时,随机变量X的散布列为X123P q1(1 q1 )q2(1 q1 )(1q2 )所需派出的人员数目的均值(数学希望)EX 是EX q12(1 q1 ) q23(1 q1 )(1 q2 ) 3 2q1q2q1q2 .( III)(方法一)由(II)的结论知,当以甲最初、乙次之、丙最后的次序派人时,EX 3 2 p1p2p1 p2 .依据常理, 先派出达成任 概率大的人,可减少所需派出的人 数目的均.下边 明: 于 p 1 , p 2 , p 3 的随意摆列 q 1 , q 2 , q 3 ,都有3 2q 1q 2 q 1q 2 3 2 p 1 p 2 p 1 p 2 , ⋯⋯⋯⋯⋯⋯⋯⋯(*)事 上,(3 2q 1 q 2 q 1 q 2 )(3 2 p 1p 2 p 1 p 2 )2( p 1 q 1 ) ( p 2 q 2 ) p 1 p 2q 1q 22( p 1 q 1 ) ( p 2 q 2 ) ( p 1 q 1 ) p 2 q 1 ( p 2q 2 )(2 p 2 )( p 1 q 1 ) (1 q 1 )(( p 2 q 2 )(1 q 1 )[( p 1 p 2 ) ( q 1q 2 )]0.即( *)建立 .(方法二)( i )可将( II )中所求的EX 改写 3(q 1 q 2 ) q 1 q 2 q 1 , 若交 前两人的派出 序,3 (q 1 q 2 ) q 1 q 2 q 1, .由此可 ,当q 2q 1 ,交 前两人的派出 序可减小均.( ii )也可将( II )中所求的EX 改写 32q 1 q 2 q 1q 2 ,或交 后两人的派出 序,32q 1 q 3 q 1q 3 .由此可 ,若保持第一个派出的人 不 ,当q 3q 2 ,交后两人的派出 序也可减小均.合( i )( ii )可知,当 (q 1 ,q 2 ,q 3 )( p 1 , p 2 , p 3 ) , EX 达到最小 . 即达成任 概率大的人 先派出,可减小所需派出人 数目的均 , 一 是符合常理的 .北京理 17.本小 共13 分以下茎叶 了甲、 乙两 个四名同学的植 棵 。
2011年统计概率高考题精选(文科)(11江苏)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s(11新课标6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B . 12C .23D .34(11辽宁14)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. (11江西7)为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m m x <<(11江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为A .1y x =-B .1y x =+C .1882y x =+D .176y =(11上海10)课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8。
若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。
(11四川2)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占(A )211(B )13(C )12(D )23(11湖南10)已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是.(11湖南15)已知圆22:12,C x y+=直线:4325.l x y+=(1)圆C的圆心到直线l的距离为.(2) 圆C上任意一点A到直线l的距离小于2的概率为.(11湖北)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为A.18 B.36C.54 D.72(11湖北11)某市有大型超市200家、中型超市400家、小型超市1400家。
2011年概率统计部分复习概率统计是高考的重点内容之一,高考常常以一道小题和一道大题的形式出现,该部分的考查难度适中,是学生比较容易的得分点。
一、近三年某某省高考试题特点及知识分布1、试题考点、分值分布统计表2、考查的知识点的分布情况二、试题特点:1、新增内容的考查力度不断增强.试题的题量大致为一大一小且为中低档题,约占全卷的10%左右.试题的难度不大。
2、重点内容重点考查。
试题主要考查基本概念和基本公式.对等可能性事件的概率、互斥事件的概率、相互独立事件的概率、事件在n次独立重复试验中恰好发生k次的概率、离散型随机变量分布列和数学期望及抽样方法等内容都进行了考查。
3、密切联系教材.试题通常是通过对课本原题的改编,通过对基础知识重新组合、拓广,从而成为立意高、情境新、设问巧,并赋予时代气息的问题.三、近几年来主要涉及三类题型:类型1:是从生活与生产实际中概括出来的(某某理17)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克),重量的分组区间为(490,495),(495,500),…,(510,515),由此得到样本的频率分布直方图,如图所示。
(1)根据频率分布直方图,求重量超过505克的产品数量。
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列。
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率。
(某某文12)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年份2005 2006 2007 2008 2009收入x11.5 12.1 13 13.3 15支出Y 6.8 8.8 9.8 10 12根据统计资料,居民家庭年平均收入的中位数是,家庭年平均收入与年平均支出有关系.(某某文14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户。
2011年高考试题数学(理科)概率一、选择题:1.(2011年高考浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率(A)15(B)25(C)35(D )45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=AAAAAAAP.2. (2011年高考辽宁卷理科5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=(A)18(B)14(C)25(D)123. (2011年高考全国新课标卷理科4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有933=⨯种方法;所以,甲乙两位同学参加同一个小组的概率为3193=点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。
【解析】D.由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率.43212121=⨯+=P所以选D.5.(2011年高考湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C⨯⨯⨯-+⨯⨯=,所以选B. 6.(2011年高考陕西卷理科10)甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A)136(B)19(C)536(D)16【答案】D【解析】:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C CpC C C C C C C C==,故选D7. (2011年高考四川卷理科12)在集合{}1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过...4的平行四边形的个数为m,则mn=( )(A)415(B)13(C)25(D)23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 8.(2011年高考福建卷理科4)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C .12D .23【答案】C 二、填空题:1.(2011年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率为p ,且三个公司是否让其面试是相互独立的。
第十一讲 概率与统计★★★高考在考什么 【考题回放】1.(重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A .41 B .12079 C .43 D .2423解:可从对立面考虑,即三张价格均不相同,11153231031.4C C C P C⇒=-=选C2.(辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球 是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码 是偶数的概率是( ) A .122B .111C .322D .211解: 从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D.3.(广东卷) 甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取一个球,则取出的两球是红球的概率为______(答案用分数表示)解:P=64⨯61=914.(上海卷) 在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).解: 212335310C C C==3.05. 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.(用数值作答)解:由题意知所求概率37310111522128p C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭6.(全国II) 在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .解:在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。
概率统计 2011(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A ) 13 (B ) 12 (C )23 (D )34(8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )—40 (B )—20 (C )20 (D )40(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率). 20122.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种6.如果执行右边和程序框图,输入正整数N (2N ≥)和 实数1a ,2a ,…,N a ,输出A ,B ,则( ) A .A B +为1a ,2a ,…,N a 的和B .2A B+为1a ,2a ,…,N a 的算术平均数 C .A 和B 分别是1a ,2a ,…,N a 中最大的数和最小的数 D .A 和B 分别是1a ,2a ,…,N a 中最小的数和最大的数15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。
概率统计与排列组合二项式定理安徽理 (12)设()x a a x a x a x 2122101221-1=+++L ,则 .(12)1120C 【命题意图】本题考查二项展开式.难度中等. 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C C C C C 1110101110111011212120202120+=-=+-=.(20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ;(Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321p p p ---,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于(II )当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是 (III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时, 根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于321,,p p p 的任意排列321,,q q q ,都有≥+--212123q q q q ,232121p p p p +--……………………(*)事实上,)23()23(21212121p p p p q q q q +---+--=∆ 即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为,)(312121q q q q q -++-若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为212123q q q q +--,或交换后两人的派出顺序,则变为313123q q q q +--.由此可见,若保持第一个派出的人选不变,当23q q >时,交换后两人的派出顺序也可减小均值.综合(i )(ii )可知,当),,(),,(321321p p p q q q =时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D. (20)(本小题满分10分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y bx a =+;(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
2011高考概率统计(三)一.选择填空1.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示)2.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为A .18B .36C .54D .723.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 .4.设1122(,),(,)x y x y ,…,33(,)x y 是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是 ( ) (A )x 和y 的相关系数为直线l 的斜率 (B )x 和y 的相关系数在0到1之间(C )当n 为偶数时,分布在l 两侧的样本点的个数一定相同 (D )直线l 过点(,)x y5.马老师从课本上抄录一个随机变量ξ的概率分布律如下表:x1 2 3 ()P x ξ=?!?请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E ξ= . 6..随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 (默认每个月的天数相同,结果精确到0.001).7.如图,用四种不同的颜色给图中的,,,,,A B C D E F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有( ).A.288种 B.264种 C.240种 D.168种8..甲、乙两人在10天中每天加工的零件的个数用茎叶图表 示如下图.中间一列的数字表示零件个数的十位数,两边 的数字零件个数的个位数,则这10天中甲、乙两人日加工 零件的平均数分别为 和 .9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A .15B .25C .35 D 4510.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。
记X 为该毕业生得到面试得公司个数。
若1(0)12P X ==,则随机变量X 的数学期望()E X =11.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种。
(以数字作答)12.(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 ___________种(用数字作答)B CF E DA2 1 534二.解答题 1.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表: 品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 2.(本小题满分13分)如图,A 地到火车站共有两条路径1L 和2L ,据统计,通过 两条路径所用的时间互不影响,所用时间落在个时间段 内的频率如下表:时间(分钟) 10~20 20~30 30~40 40~50 50~601L 的频率 0.10.2 0.3 0.2 0.2 2L 的频率0.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望 .3.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时.(Ⅰ)求甲、乙两人所付的租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列和数学期望Eξ.4.(本小题满分12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中的概率.(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率.(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.1.【答案】145282.B3.答案:40或60(只填一个也正确)解析:有区间长度为80,可以将其等分8段,利用分数法选取试点:1510(9010)60 8x=+⨯-=,210906040x=+-=,由对称性可知,第二次试点可以是40或60。
4【分析】根据最小二乘法的有关概念:样本点的中心,相关系数线,性回归方程的意义等进行判断.【解】选D选项具体分析结论A 相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜程度;它们的计算公式也不相同不正确B 相关系数的值有正有负,还可以是0;当相关系数在0到1之间时,两个变量为正相关,在1-到0之间时,两个变量负相关不正确C l两侧的样本点的个数分布与n的奇偶性无关,也不一定是平均分布不正确D 回归直线l一定过样本点中心(,)x y;由回归直线方程的计算公式a y bx=- 可知直线l必过点(,)x y正确5.26. 0.9857.【解】解法1.首先考虑除,E F外,相邻两端点不同色的情形:此时A有4种涂法,与A相邻的点B有3种涂法,D有3种涂法,E有2种涂法,此时,C有2种涂法,F有2种涂法,因此共有433222288⨯⨯⨯⨯⨯=(种).但是,这是有可能,E F同色,且当,B D同色,,A C不同色时,,E F同色.此时的涂法有同色的,E F有4种,对于点E,点,A D共有326⨯=种,由对称性,B C只有1种涂法.所以共有432124⨯⨯⨯=(种).因此,符合题目要求的涂法有28824264-=(种).故选B.解法2.分两种情形讨论:点,A F同色和点,A F不同色,涂法数如下表:,A F B E DC合计点,A F同色433214332172⨯⨯⨯⨯=点,A F不同色43⨯2222432222192⨯⨯⨯⨯⨯=因此,符合题目要求的涂法有72192264+=(种).故选B. 解法3.先对,,B F C 涂色,有43224⨯⨯=(种).固定其中一种涂法,设四种不同的颜色为颜色①,②,③,④.且设B 涂颜色①,F 涂颜色②,C 涂颜色③.则根据题意,,A E D 的涂法可用下表枚举: A ②② ② ② ③ ③ ③ ③ ④ ④ ④ E ③③ ④ ① ④ ④ ① ① ③ ③ ① D ④① ①④②①④②①②②以上共11种,因此符合题目要求的涂法有2411264⨯=(种).故选B. 解法4.分两种情形讨论:(1)全部使用四种不同的颜色.第一步:对,,B F C 涂色,只能用三种颜色,有34A 24=(种), 第二步:从,,A E D 三点中选一点涂第四种颜色,有13C 3=种,再对另两点涂色有3种涂法,共有339⨯=种涂法,所以全部使用四种不同的颜色的涂法有249216⨯=(种); (2) 只使用三种颜色.第一步:对,,B F C 涂色,有3343C A 24=(种), 第二步:对,,A E D 三点涂色,由于只用三种颜色,则点A 有2种涂法,此时E 和D 只有1种涂法.所以只使用三种颜色的涂法有24248⨯=(种). 由(1),(2) 符合题目要求的涂法有21648264+=种).故选B. 解法5.为研究问题方便,不妨把平面图形变换成三棱柱,如右图所示,染色规则: 在三棱柱的六个顶点中,相同颜色的顶点可连接同一颜色的线段,依题意,三棱柱的九条棱都不能染色. 下面分情况进行讨论:(1) 当六个顶点只用三种颜色涂色时,相同颜色 顶点的连线为三棱柱侧面上的对角线,如图 (甲)或(乙),图中字母的角码表示颜色编号, 则不同的涂色方法共有:1324C A 48=(种); (2) 当六个顶点用四种颜色涂色时,又可分为 在(1)的条件下,用第四种颜色替换掉六个顶点中的一个或两个:2B 3C 1F 2D 3E 1A )(图甲3B 1C 2F 2D 3E 1A )(图乙2B 3C F 2D 3E 4A 3B 4C 2F 2D 4E 1A①用第四种颜色替换掉六个顶点中的一个, 如图(丙),此时相当于在(1)的条件下,去掉 一条侧面上的对角线,有13C 种方法,因此,不同的涂色方法共有:113324C (C A )144=(种);②用第四种颜色替换掉六个顶点中两个,显然被替换掉的两个顶点的颜色编号不能相同,否则与(1)重复,被替换掉的两个顶点也不能在同一底面上或同一侧 棱上,因此被替换掉的两个顶点与被保留的两个同颜色顶点在同一侧面上,如 图(丁), 此时相当于在(1)的条件下,保留一个侧面上的对角线,考虑到重复情 况,不同的涂色方法共有:1133241C (C A )722=(种). 综上所述,不同的涂色方法共有: 2647214448=++(种).故选B .8.解】24,23.设甲的平均数为a ,乙的平均数为b ,则1201320151111202410a --+++++++++=+=.1391424101210202310b ---+++++++=+=.则这10天中甲、乙两人日加工零件的平均数分别为24和23 9. B10.5312.2161.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个; (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2).所以1().6P A =………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲………………8分品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 2.【分析】(1)会用频率估计概率,然后把问题转化为互斥事件的概率;(2)首先确定X 的取值,然后确定有关概率,注意运用对立事件、相互独立事件的概率公式进行计算,列出分布列后即可计算数学期望. 【解】(1)i A 表示事件“甲选择路径i L 时,40分钟内赶到火车站”, i B 表示事件“甲选择路径i L 时,50分钟内赶到火车站”,1i =,2. 用频率估计相应的概率,则有:1()0.10.20.30.6P A =++=,2()0.10.40.5P A =+=;∵12()()P A P A >,∴甲应选择路径1L ;1()0.10.20.30.20.8P B =+++=,2()0.10.40.40.9P B =++=;∵21()()P B P B >,∴乙应选择路径2L .(2)用A ,B 分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知()0.6P A =,()0.9P B =,又事件A ,B 相互独立,X 的取值是0,1,2, ∴(0)()()()0.40.10.04P X P AB P A P B ===⋅=⨯=,(1)()()()()()0.40.90.60.10.42P X P AB AB P A P B P A P B ==+=+=⨯+⨯=(2)()()()0.60.90.54P X P AB P A P B ===⋅=⨯=,∴X 的分布列为X0 1 2P0.04 0.420.54∴00.0410.4220.54 1.5EX =⨯+⨯+⨯=.3.本小题主要考查相互独立事件、随机变量的分布列、数学期望等概念及相关计算,考查运用所学知识和方法解决实际问题的能力.解:(Ⅰ)依题意得,甲、乙在三小时及以上且不超过四小时还车的概率分别为14、14.记“甲、乙两人所付的租车费用相同”为事件A ,则1111115()42244416P A =⨯+⨯+⨯=.答:甲、乙两人所付的租车费用相同的概率为516.(Ⅱ)ξ可能的取值有0,2,4,6,8.1(0)8P ξ==;11115(2)442216P ξ==⋅+⋅=;1111115(4)44242416P ξ==⋅+⋅+⋅=;11113(6)442416P ξ==⋅+⋅=;111(8)4416P ξ==⋅=.甲、乙两人所付的租车费用之和ξ的分布列ξ 0 2 4 6 8P18516 516316 116所以155317024688161616162E ξ=⨯+⨯+⨯+⨯+⨯=.4.【解】(Ⅰ)设X 为射手在5次射击中击中目标的次数,则2~5,3X B ⎛⎫ ⎪⎝⎭. 在5次射击中恰有2次击中的概率为()232522402C 133243P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭.(Ⅱ)设“第i 次击中目标”为事件()1,2,3,4,5i A i =,“射手在5次射击中有3次连续击中目标,另外2次未击中目标”为事件A .则()()()()123451234512345P A P A A A A A P A A A A A P A A A A A =++3232321121123333333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭881=. (Ⅲ)由题意,ξ的所有可能取值为0,1,2,3,6.()0(P P ξ==三次均未中)()312311327P A A A ⎛⎫===⎪⎝⎭; ()1(P P ξ==仅击中1次)()()()123123123P A A A P A A A P A A A =++ 222112112233333339⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; ()2P ξ=(P =击中2次但未连续击中)()123212433327P A A A ==⨯⨯=; ()3P ξ=(P =有2次连续击中)()()2212312321128333327P A A A P A A A ⎛⎫⎛⎫=+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭; ()6P ξ=(P =3次连续击中)()312328327P A A A ⎛⎫==⎪⎝⎭. 或()()()()()610123P P P P P ξξξξξ==-=-=-=-=124881279272727=----=. 所以ξ的分布列为ξ 0 1 2 3 6P127 29 427 827 827。