函数的奇偶性、周期性与对称性专题训练
- 格式:doc
- 大小:152.50 KB
- 文档页数:9
专题05 函数的奇偶性(对称性)与周期性问题【高考真题】1.(2022·全国乙文)若()1ln 1f x a b x=++-是奇函数,则=a _____,b =______. 2.(2022·新高考Ⅱ)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .13.(2022·全国乙理)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图像关于直线x =2对称,g (2)=4.则221()k f k ==∑( )A .-21B .-22C .-23D .-244.(2022·新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x + 均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭ C .(1)(4)f f -= D .(1)(2)g g -= 【常用结论】1.函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称. 结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶,偶()⨯÷偶=偶,奇()⨯÷偶=奇.结论7:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论8:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论9:函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数; 结论10:函数f (x )=log a x -bx +b (a >0且a ≠1)是奇函数;函数f (x )=log a (1+m 2x 2±mx )(a >0且a ≠1)是奇函数.结论11:函数y =f (x )是可导的奇函数,则导函数y =f ′(x )是偶函数;函数y =f (x )是可导的偶函数,则导函数y =f ′(x )是奇函数;结论12:导函数y =f ′(x )是连续的奇函数,则所有的原函数y =f (x )都是偶函数;导函数y =f ′(x )是连续的偶函数,则原函数y =f (x )中只有一个是奇函数;2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y =f (x )满足f (x +a )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a ,b )对称.推论1:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a ,0)对称.推论2:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y =f (x )关于直线x =a 轴对称,则以下三式成立且等价:f (a +x )=f (a -x )⇔f (2a -x )=f (x )⇔f (2a +x )=f (-x )若函数y =f (x )关于点(a ,0)中心对称,则以下三式成立且等价:f (a +x )=-f (a -x )⇔f (2a -x )=-f (x )⇔f (2a +x )=-f (-x )(4)原函数与导函数的对称性的关系定理1:可导函数y =f (x )的图象关于直线x =a 对称的充要条件是导函数y =f ′(x )的图象关于点(a ,0)中心对称.定理2:可导函数y =f (x )的图象关于点(a ,f (a ))中心对称的充要条件是导函数y =f ′(x )的图象关于直线x =a 对称.3.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ; 结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ; 结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论10:若函数f (x )可导,并且是周期为T 的周期函数,则f ′(x )也是的周期为T 的周期函数;若函数f (x )可导,其导函数f ′(x )是周期为T 的周期函数,且f (0)=f (T ),则f (x )也是的周期为T 的周期函数结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.【同类问题】题型一 函数的奇偶性与周期性1.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=( )A .-2B .0C .2D .12.(2021·全国甲)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f ⎝⎛⎭⎫92等于( )A .-94B .-32C .74D .523.已知函数f (x )为定义在R 上的奇函数,f (x +2)是偶函数,且当x ∈(0,2]时,f (x )=x ,则f (-2 022)+f (2023)=( )A .-3B .-2C .1D .04.(多选)(2022·威海模拟)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是偶函数,则( )A .f (x )是偶函数B .f (x )是奇函数C .f (x +3)是偶函数D .f (x )=f (x +4)5.(多选)已知f (x )为奇函数,且f (x +1)为偶函数,若f (1)=0,则( )A .f (3)=0B .f (3)=f (5)C .f (x +3)=f (x -1)D .f (x +2)+f (x +1)=16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2 022)=________.7.(多选)定义在R 上的偶函数f (x )满足f (x +2)=-f (x ),且在[-2,0]上单调递减,下面关于f (x )的判断正确的是( )A .f (0)是函数的最小值B .f (x )的图象关于点(1,0)对称C .f (x )在[2,4]上单调递增D .f (x )的图象关于直线x =2对称8.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式____________.9.函数y =f (x )对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 020)+f (2 021)+f (2 022)的值为________.题型二 函数的奇偶性与对称性10.已知f (x )是定义在R 上的偶函数,则以下函数中图象一定关于点(-1,0)成中心对称的是( )A .y =(x -1)f (x -1)B .y =(x +1)f (x +1)C .y =xf (x )+1D .y =xf (x )-111.已知函数f (x )是定义域为R 的偶函数,且f (x )的周期为2,在[-1,0]上单调递增,那么f (x )在[1,3]上( )A .单调递增B .单调递减C .先增后减D .先减后增12.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在区间[1,2]上单调递减,令a =ln 2,b =⎝⎛⎭⎫14-12,c =log 122,则f (a ),f (b ),f (c )的大小关系是( ) A .f (b )<f (c )<f (a )B .f (a )<f (c )<f (b )C .f (c )<f (b )<f (a )D .f (c )<f (a )<f (b ) 13.定义在R 上的奇函数f (x ),其图象关于点(-2,0)对称,且f (x )在[0,2)上单调递增,则( )A .f (11)<f (12)<f (21)B .f (21)<f (12)<f (11)C .f (11)<f (21)<f (12)D .f (21)<f (11)<f (12)14.写出一个满足f (x )=f (2-x )的偶函数f (x )=________.题型三 函数的周期性与对称性15.(多选)已知f (x )的定义域为R ,其函数图象关于直线x =-3对称且f (x +3)=f (x -3),当x ∈[0,3]时,f (x )=2x +2x -11,则下列结论正确的是( )A .f (x )为偶函数B .f (x )在[-6,-3]上单调递减C .f (x )的图象关于直线x =3对称D .f (2 023)=-716.已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-1)=2,则f (2 025)=________.17.已知偶函数f (x )满足f (x )+f (2-x )=0,下列说法正确的是( )A .函数f (x )是以2为周期的周期函数B .函数f (x )是以4为周期的周期函数C .函数f (x +2)为偶函数D .函数f (x -3)为偶函数18.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (1+x )=f (1-x ),当x ∈[-1,1]时,f (x )=x 3-3x ,则f (2 023)等于( )A .1B .-2C .-1D .219.已知函数f (x )满足:f (x +2)的图象关于直线x =-2对称,且f (x +2)=1f (x ),当2≤x ≤3时,f (x )=log 2⎝⎛⎭⎫x +112, 则f ⎝⎛⎭⎫2192的值为( )A .2B .3C .4D .620.设函数f (x )为定义在R 上的函数,对∀x ∈R 都有:f (x )=f (-x ),f (x )=f (2-x );且函数f (x )对∀x 1,x 2∈[0,1],x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0成立,设a =f ⎝⎛⎭⎫2 0232,b =f (log 43),c =f ⎝⎛⎭⎫-14,则a ,b ,c 的大小关系为________.21.(多选)已知奇函数f (x )的定义域为R ,且满足f (2+x )=f (2-x ),以下关于函数f (x )的说法正确的为( )A .f (x )满足f (8-x )=f (x )B .8为f (x )的一个周期C .f (x )=sin πx 4是满足条件的一个函数 D .f (x )有无数个零点 22.(多选)已知f (x )是定义在R 上的奇函数,f (2-x )=f (x ),当x ∈[0,1]时,f (x )=x 3,则下列结论错误的是( )A .f (2 021)=0B .2是f (x )的一个周期C .当x ∈(1,3)时,f (x )=(1-x )3D .f (x )>0的解集为(4k ,4k +2)(k ∈Z ) 题型四 抽象函数23.设函数y =f (x )的定义域为(0,+∞),f (xy )=f (x )+f (y ),若f (8)=3,则f (2)=________.24.已知定义在R 上的函数f (x )满足f (1)=1,且f (x +y )=f (x )+f (y )+1,则f (4)=________.25.(多选)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[1,2]上有最大值f (2)D .f (x -1)>0的解集为{x |x <1}26.已知f (x )是定义在区间(0,+∞)上的增函数,且f ⎝⎛⎭⎫x y =f (x )-f (y ),f (2)=1,如果x 满足f (x )-f ⎝⎛⎭⎫1x -3≤2, 则x 的取值范围为________.。
考向08 函数的奇偶性、周期性与对称性【2022年新高考全国Ⅰ卷】(多选题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【2022年新高考全国II 卷】已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .11.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++ ④函数2()log (1)a f x x x =+或函数2()log (1)a f x x x =+. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1xmf x m m R a =-∈+. 偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数 2.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数3.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.4.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-. (2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(1)如果一个奇函数()f x 在原点处有定义,即(0)f 有意义,那么一定有(0)0f =. (2)如果函数()f x 是偶函数,那么()(||)f x f x =.2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性3.函数周期性常用结论对()f x 定义域内任一自变量的值x : (1)若()()f x a f x +=-,则2(0)T a a =>. (2)若1()()f x a f x +=,则2(0)T a a =>. (3)若1()()f x a f x +=-,则2(0)T a a =>. 4.对称性的三个常用结论(1)若函数()y f x a =+是偶函数,则函数()y f x =的图象关于直线x a =对称.(2)若对于R 上的任意x 都有(2)()f a x f x -=或()(2)f x f a x -=+,则()y f x =的图象关于直线x a =对称.(3)若函数()y f x b =+是奇函数,则函数()y f x =的图象关于点(,0)b 中心对称. 5.两个奇偶函数四则运算的性质(1)两个奇函数的和仍为奇函数; (2)两个偶函数的和仍为偶函数; (3)两个奇函数的积是偶函数; (4)两个偶函数的积是偶函数;(5)一个奇函数与一个偶函数的积是奇函数。
分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
函数值域定义域问题: 1的值域求函数x x y-+-=53 2的值域求函数322122+-+-=x x x x y 分母”的方法,化成的值域,常可利用“去求形如fex dx c bx ax y ++++=22m(y)x 2+n(y)x+p(y)=0的形式,再利用x ∈R ,由Δ≥0求出y 的取值范围,注意(1)要分m(y)=0和m(y)≠0两种情况讨论,只有m(y)≠0时,才可利用判别式(2)在求出y 的取值范围后,要注意“=”能否取到) 3的值域求函数xx y cos 3sin 1++= 函数单调性问题:1. 若()x x x x f +-++=11lg 21,则不等式⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-21x x f <21的解集为 2.已知)2(log ax y a -=在]1,0[上是x 的减函数,则a 的取值范围是( ).A )10(, .B )2,1( .C )2,0( .D ),2[+∞3.已知函数,讨论函数的单调性;函数奇偶性问题:1判断下列函数奇偶性 <1>32()1x x f x x -=-; <2> 判断()(f x x =-2已知函数21()log 1x f x x x -=-++,求1()2005f -1()2004f +-1()2004f +1()2005f + 3已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
(Ⅰ)求,a b 的值;(Ⅱ)任意t R ∈,22(2)(2)0f t t f t k -+-< 成立,求k 的取值范围; 函数的对称性问题1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点( ) A. (2,-2) B. (2,2) C. (-4,2)D. (4,-2) 2. x ∈R ,恒有)21()21(x f x f --=+成立,当1(0,)2x ∈时,()4x f x =,则3()4f =___________. 3. 若函数f(x)的图象与g(x)=2x-1的图象关于直线y=x+1对称,则函数f(x)的解析式为f(x)=_______________ 函数的周期性问题1 已知函数f (x )的定义域为R ,则下列命题中:①若f (x -2)是偶函数,则函数f (x )的图象关于直线x =2对称;②若f (x +2)=-f (x -2),则函数f (x )的图象关于原点对称;③函数y =f (2+x )与函数y =f (2-x )的图象关于直线x =2对称; 1ln )1()(2+++=ax x a x f )(x f④函数y =f (x -2)与函数y =f (2-x )的图象关于直线x =2对称. 其中正确的命题序号是 ④ . 2若函数()()y f x x R =∈满足(2)()f x f x +=, 且(1,1]x ∈-时()||f x x =,则函数()y f x =的图象与函数lg ||y x =的图象的交点个数为___________ 3 设)(x f 是偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 21)(-=,则=)6.8(f __。
函数的对称性、奇偶性与周期性习题一.求函数值:1.函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若,5)1(-=f 则____))5((=f f2.设定义在R 上的函数)(x f 满足13)2()(=+x f x f ,若2)1(=f ,则=)99(f ( )A.13 B .2 C.213 D.132 3.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则___)6(=f4.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( ) A.0 B.12 C.1 D.525、已知)(x f 是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=6、函数)(x f 在R 上有定义,且满足)(x f 是偶函数,且()02005f =,()()1g x f x =-是奇函数,则()2005f 的值为7.已知函数()f x 为奇函数,且)2()2(x f x f -=+,当02≤≤-x 时,x x f 2)(= 则____)3log 2(2=+f8.(2009山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( C )A.-1B. 0C.1D. 29.在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,则100x =10. 设)(x f 是R 上的奇函数,)()2(x f x f -=+当10≤≤x 时,x x f =)(,则=)5.7(f ( ) A. 5.0 B. 5.0- C. 5.1 D. 5.1-二.比较函数值大小:1.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( D ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<2. 已知定义为R 的函数()x f 满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )A. 恒小于0B.恒大于0 C .可能为0 D .可正可负三.确定函数图象与x 轴交点的个数及与x 轴交点横坐标和的问题1.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有___个交点.2.定义在 R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期,若方程0)(=x f 在闭区间[]T T ,-上的根的个数记为n ,则n 可能是( )A 0B 1C 3D 53.已知定义在R 上的奇函数)(x f 满足)()4(x f x f -=-,且在区间[]2,0上是增函数,若方程()0)(>=m m x f 在区间[]8,8-上有四个不同的根432,1,,x x x x ,则____432=+++x x x x4、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( )A 、5B 、10C 、15D 、18三、求函数解析式1.设)(x f 是定义在R 上的函数,R x ∈∀均有0)2()(=++x f x f ,当11≤<-x 时,12)(-=x x f ,求当31≤<x 时,)(x f 的解析式_______2.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式________3.已知)(x f 是定义在R 上的偶函数,f(x)= f(4-x),且当[]0,2-∈x 时,12)(+-=x x f ,则当[]6,4∈x 时求)(x f 的解析式________四.判断函数奇偶性、对称性及周期性1、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于______对称。
函数的性质:单调性、奇偶性、周期性、对称性训练题型一:单调性的定义及判断1.下列函数在(),0∞-上单调递减的是()A .1y x=-B .2y x =C .3y x =D .y x=2.(2024·高三·黑龙江齐齐哈尔·期末)设函数()2f x x x x =-,则()f x ()A .是偶函数,且在()1,∞+上单调递增B .是奇函数,且在()1,1-上单调递减C .是偶函数,且在(),1∞--上单调递增D .是奇函数,且在(),1∞--上单调递减3.(2024·高三·上海静安·期中)已知函数2()(0)2x x af x a a =->,且(0)0f =.(1)求a 的值,并指出函数()f x 的奇偶性;(2)在(1)的条件下,运用函数单调性的定义,证明函数()f x 在(,)-∞+∞上是增函数.题型二:复合函数单调性的判断4.函数()()22log 45f x x x =-++的单调递增区间是()A .(),2-∞B .()2,+∞C .()2,5D .()1,2-5.函数()13f x ⎛= ⎪⎝⎭的单调增区间为()A .(],1-∞-B .(],1-∞C .[)1,+∞D .[)3,+∞6.已知函数()()2lg 12f x x ax =-+在[]1,3-上单调递减,则实数a 的取值范围是()A .[)6,+∞B .[)6,7C .(],2-∞-D .(]13,2--题型三:分段函数的单调性7.(2024·高三·云南大理·期中)已知函数()()2,211,282a x x f x x x ⎧-≥⎪=⎨--<⎪⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为()A .(),2-∞B .13,8⎛⎫-∞ ⎪⎝⎭C .(],2-∞D .13,8⎛⎤-∞ ⎥⎝⎦8.已知函数()252,122,1x ax x f x a x x⎧-+<⎪⎪=⎨-⎪≥⎪⎩满足对于任意实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是()A .()1,2B .[)1,2C .31,2⎛⎫ ⎪⎝⎭D .31,2⎡⎤⎢⎥⎣⎦9.已知函数()322,0()1202a x x ax a x f x x -⎧-+≤⎪=⎨->⎪⎩,若函数()f x 在R 上单调递增,则实数a 的取值范围是()A .3,22⎡⎤⎢⎥⎣⎦B .10,2⎡⎤⎢⎥⎣⎦C .30,2⎡⎤⎢⎥⎣⎦D .[]0,210.(2024·高三·内蒙古赤峰·开学考试)已知0a >,且1a ≠,函数()()3,2log 11,2a a x x f x x x -<⎧=⎨--≥⎩在R 上单调,则a 的取值范围是()A .()1,+∞B .12,33⎡⎤⎢⎥⎣⎦C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭题型四:利用函数单调性求函数最值11.(2024·上海松江·二模)已知02a <<,函数()1241,22,2x a x a x y a x -⎧-++≤=⎨>⎩,若该函数存在最小值,则实数a 的取值范围是.12.(2024·高三·北京东城·期末)设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为.②若()f x 有最小值,则实数a 的取值范围是.13.(2024·贵州·模拟预测)已知函数223()2xx f x -++=,则()f x 的最大值是.14.函数25y x =+的最大值为.题型五:利用函数单调性求参数的范围15.(2024·广东揭阳·二模)已知函数()21f x x ax =-++在()2,6上不单调,则a 的取值范围为()A .()2,6B .(][),26,-∞+∞ C .()4,12D .(][),412,-∞+∞ 16.(2024·山东·二模)已知函数()221f x x mx =-+在区间[)1,-+∞上单调递增,则()1f 的取值范围是().A .[)7,+∞B .()7,+∞C .(],7-∞D .(),7-∞17.(2024·陕西榆林·一模)已知函数()e e ax xf x =-在[)0,∞+上单调递增,则a 的取值范围是()A .[)0,∞+B .()1,+∞C .()e,+∞D .[)2e,+∞18.设函数()1()(2x x a f x +=在区间(0,1)上单调递增,则实数a 的取值范围为()A .(],2-∞-B .(]2,0-C .(]0,2D .[)2,+∞题型六:利用函数的单调性比较函数值大小19.已知定义在R 上的函数()f x 满足()(2)f x f x =-,且当[1,)x ∈+∞时,()e e x x f x -=+,若()2347π2,log 3,sin 5a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则()A .c a b >>B .c b a >>C .a b c >>D .b a c>>20.(2024·北京西城·一模)设()11,,2a t b t c t t t t=-=+=+,其中10t -<<,则()A .b a c <<B .c<a<bC .b<c<aD .c b a<<21.已知偶函数()f x 在区间(0,)+∞上单调递增,且0.35log 2ln 32a b c -==-=,,则()()()f a f b f c ,,的大小关系为()A .()()()f c f a f b >>B .()()()f b f c f a >>C .()()()f a f b f c >>D .()()()f c f b f a >>题型七:函数的奇偶性的判断与证明22.设函数()(),f x g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是()A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()f x g x 是偶函数D .()()||f x g x 是奇函数23.(2024·重庆·三模)设函数()22xf x x-=+,则下列函数中为奇函数的是()A .()21f x -+B .()22f x -+C .()22f x ++D .()21f x ++24.(2024·高三·江西)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则()A .()()y f x g x =⋅是偶函数B .()()y f x g x =⋅是偶函数C .()()y f x g x =⋅是奇函数D .()()y f x g x =⋅是奇函数25.(多选题)下列函数中为奇函数的是()A .()3f x x=B .()5f x x=C .()1f x x x=+D .()21f x x =26.判断下列函数的奇偶性:(1)()1lg 1x f x x -=+;(2)())lgf x x =.题型八:已知函数的奇偶性求参数27.设函数,1()11,1xx f x x x ⎧≠-⎪=+⎨⎪=-⎩,若()()g x f x a b =++为奇函数,则a b +=28.(2024·陕西西安·模拟预测)函数()52223g x ax x x ⎛⎫=-- ⎪⎝⎭为奇函数,则=a .29.(2024·四川内江·三模)若函数22,0()2,0x ax x f x bx x x ⎧+≥=⎨-<⎩是奇函数,则a b +=.30.设奇函数()cos ,0cos sin ,0a x x c x f x xb xc x ⎧+≥⎪=⎨+-<⎪⎩,则a c +的值为.题型九:已知函数的奇偶性求表达式、求值31.(2024·云南昆明·模拟预测)已知()f x ,()g x 分别为定义在R 上的奇函数和偶函数,()()32f x g x x ax a +=++,则()3f =.32.已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359xf xg x x x +=-++,则()()13f g -+=.33.已知()f x ,()g x 是分别定义在R 上的奇函数和偶函数,且()()321f x g x x x -=++,则()()12f g +=.34.(2024·黑龙江哈尔滨·)已知()f x 为奇函数,()g x 为偶函数,且满足()()e xf xg x x +=+,则()g x =()A .e e 2x x--B .e e 2x x-+C .e e 22x x x ---D .e e 22x x x --+题型十:奇函数的中值模型35.(2024·陕西榆林·三模)已知函数()y f x =为奇函数,且最大值为1,则函数()21y f x =+的最大值和最小值的和为.36.(2024·全国·模拟预测)已知函数()(ln 1xxa f xb xc a=+++,其中0a >且1a ≠,b ∈R ,c Z ∈,则()1f 和()1f -的值一定不会是()A.2和3-B .-3和4C .3和-1D.3437.已知函数())1f x x =+,正实数,a b 满足(2)(4)2f a f b +-=,则242b a a ab b ++的最小值为.38.已知函数())ln1f x x =+,则()()1g x f x =-是(填“奇”“偶”或“非奇非偶”)函数;若()4f a =,则()f a -=.39.(2024·安徽安庆·三模)若,x y R ∀∈,都有()()()4x y f x f f y ++=+成立,则函数()()()2221x f x x f x g x x +++=在[]2019,2019-上的最大值与最小值的和为.题型十一:利用单调性与奇偶性求解函数不等式40.已知函数2()2e 1x f x x =--+,若()2(2)20f m f m +-+>恒成立,则实数m 的取值范围是()A .(2,1)-B .(1,2)-C .(0,2)D .(2,4)41.(2024·大连)设函数3333()sin πe e 3x x f x x x --=+--+则满足()(32)4f x f x +-<的x 的取值范围是()A .(3,)+∞B .(3),-∞C .(1,)+∞D .(,1)-∞42.(2024·云南贵州·二模)若函数()f x 的定义域为R 且图象关于y 轴对称,在[)0,+¥上是增函数,且()30f -=,则不等式()0f x <的解是()A .()3∞--,B .()3∞+,C .()33-,D .()()33∞∞--⋃+,,43.(2024·辽宁·一模)已知函数()()2log 4162xf x x =+--,若()()121f a f a -≥+成立,则实数a 的取值范围为()A .(],2-∞-B .(][),20,-∞-+∞ C .42,3⎡⎤-⎢⎥⎣⎦D .(]4,2,3⎡⎫-∞-+∞⎪⎢⎣⎭题型十二:函数对称性的应用44.(2024·陕西宝鸡·二模)请写出一个图像关于点()1,0对称的函数的解析式.45.(2024·四川泸州·一模)函数()1xf x x =-的对称中心为.46.已知函数1()1f x x -=-,函数()g x 满足(1)(1)0g x g x -++=,若()f x 与()g x 的图象有6个交点,则所有交点横坐标之和等于.47.下列函数中,其图象与函数2log y x =的图象关于直线2x =对称的是()A .()2log 2y x =+B .()2log 2y x =-C .()2log 4y x =+D .()2log 4y x =-48.(2024·高三·陕西汉中·期中)已知函数()()R f x x ∈满足()21f x +为奇函数,若函数sin πy x =与()y f x =的图象的交点为11(,)x y ,22(,)x y ,…,(),m m x y ,则()1mi i i x y =+∑等于()A .0B .mC .2mD .4m题型十三:函数周期性的应用49.已知函数()f x 的定义域是R ,3322f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()()60f x f x +-=,当302x ≤≤时,()242=-f x x x ,则()2024f =.50.(2024·宁夏银川·一模)若定义在R 上的函数()f x 满足(1)y f x =+是奇函数,(4)()f x f x +=-,(2)2f =,则(1)(2)(3)(30)f f f f ++++=.51.(2024·山东枣庄·一模)已知()2f x +为偶函数,且()()26f x f x ++=-,则()2027f =.52.(多选题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()036f f +=,则下列关于()f x 的说法正确的有()A .()f x 的一个周期为4B .点()6,0是函数的一个对称中心C .[]1,2x ∈时,()222f x x =-D .2025522f ⎛⎫=⎪⎝⎭题型十四:对称性与周期性的综合应用53.(2024·四川南充·三模)已知函数()()f x g x 、的定义域均为R ,函数(21)1f x -+的图象关于原点对称,函数(1)g x +的图象关于y 轴对称,(2)(1)1,(4)0f x g x f +++=--=,则(2030)(2017)f g -=()A .4-B .3-C .3D .454.(2024·云南昆明·一模)已知函数()f x ,()g x 的定义域均为R ,()f x 为偶函数且()()23f x f x ++=,()()102g x g x +-=,则[]91()()i f i g i =+=∑()A .21B .22C .452D .47255.(2024·高三·河南濮阳·开学考试)已知函数()f x 的定义域为R ,且()41f x +的图象关于点()0,2中心对称,若()()2240f x f x x +--+=,则()1001i f i ==∑.56.(2024·江西)已知定义在R 上的函数()f x 满足(0)0,(3)4()f f x f x ==且(1)()2f x f x -+=,则23f ⎛⎫=⎪⎝⎭A .32B .12C .23D .1357.(2024·山东日照·二模)已知()f x 是定义域为R 的偶函数,()5.54f =,()()()1g x x f x =-,若()1g x +是偶函数,则()0.5g -=()A .6-B .4-C .4D .658.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若(21),(2)f x g x --均为偶函数,且当[1,2]x ∈时,3()2f x mx x =-,则(2024)g =.题型十五:类周期与倍增函数59.(2024·江西上饶·一模)已知函数211,[2,0]()12(2),(0,)x x f x x f x x ⎧-⎪+∈-=⎨-⎪-∈+∞⎩,若函数()()21g x f x x m =--+在区间[-2,4]内有3个零点,则实数m 的取值范围是.A .11|22m m ⎧⎫-<<⎨⎬⎩⎭B .1|12m m ⎧⎫-<≤⎨⎩⎭C .1|112m m m ⎧⎫-<<=⎨⎬⎩⎭或D .11|122m m m ⎧⎫-<<=⎨⎬⎩⎭或。
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(x f 在区间[6,6]上的根的个数可能是A.0B.1C.3D.52、f(x)是定义在R 上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数至少是() A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(x f ,那么)3120(f A.0B.2C.2D.24、已知112)(x xx f ,那么)8()6()4()2()0()2()4()6(f f f f f f f f A.14B.15C.16D.165、已知)(x f 的定义域为R ,若)1()1(xf xf 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(x fD.)3(x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(xf x f ,则下列结论一定成立的是A.)(x f 的周期为 4B. )(x f 的周期为 6C. )(x f 的图像关于直线1x 对称 D. )(x f 的图像关于点(1 , 0) 对称7、定义在R 上的函数)(x f 满足:)()(x f x f ,)1()1(x f x f ,当x[1, 1]时,3)(x x f ,则)2013(f A.1B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f ,并且)1(x f 为偶函数. 若3)1(f ,那么)101(f A.1 B.2C.3D.4 9、已知f(x)(x ∈R)为奇函数,f(2)=1,f (x +2)=f(x)+f(2),则f(3)等于()A.12B .1C.32D .2 10、若奇函数f (x)(x ∈R)满足f(3)=1,f(x +3)=f(x)+f (3),则f 32等于()A .0B .1C.12D .-1211、已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数,则()A .f(-25)<f(11)<f(80)B .f(80)<f(11)<f(-25)C .f(11)<f(80)<f(-25)D .f(-25)<f(80)<f(11)12、设f x 为定义在R 上的奇函数,满足2f x f x ,当01x 时f xx ,则7.5f 等于()A .0.5B .0.5C .1.5D .1.513、设f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则2f 与223f aa(a R )的大小关系是()A .2f <223f a aB .2f ≥223f aa C .2f>223f aaD .与a 的取值无关14、若函数f x 为奇函数,且当0x时,1f xx ,则当0x 时,有()A .f x 0B .f x 0C .f x f x ≤0D .f x -f x15、已知函数2212f xxa x 在区间4,上是减函数,则实数a 的取值范围是()A .a ≤-3B .a ≥-3C .a ≤5D .a ≥316、已知函数0f x x a x a a ,111)(x x x x g ,)0()0()(22x x xx x x x h ,则,,f x g x h x 的奇偶性依次为()A .奇函数,偶函数,奇函数B .奇函数,奇函数,偶函数C .奇函数,奇函数,奇函数D .奇函数,非奇非偶函数,奇函数17、已知函数221,f x xax b b a b R 对任意实数x 都有11f x f x成立,若当1,1x时,0f x恒成立,则b 的取值范围是()A .10b B .2bC .12b b 或D .不能确定18、已知函数2223f xxx ,那么()A .y f x 在区间1,1上是增函数B .y f x 在区间,1上是增函数C .y f x 在区间1,1上是减函数D .yf x 在区间,1上是减函数19、函数yf x 在0,2上是增函数,函数2y f x 是偶函数,则下列结论中正确的是()A .57122f f fB .57122f f fC .75122f f f D .75122ff f20、设函数f x 是R 上的奇函数,且当0x 时,23xf x,则2f等于()A .1B .114C .1D .11421、设函数)(x f 是R 上的偶函数,且在,0上是减函数,且12210x x x x ,,则A.)()(21x f x f B.)()(21x f x f C.)()(21x f x f D.不能确定22、函数y f x 与y g x 的定义域相同,且对定义域中任何x 有0f x f x,1g x g x ,若1g x的解集是0,则函数21f x F xf xg x是()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数23、已知函数)(x f 0,10,sin xe x x x x,若)()2(2a f a f ,则实数a 取值范围是A. (1,)),2( B. (1,2) C. (2,1) D. (2,),1()24、已知)(x f 是定义在R 上的不恒为零的偶函数,且对任意x 都有)()1()1(x f x x xf 那么)25(f =A .0B .1C .2D .3二、填空题:24、设y f x 是R 上的减函数,则3y f x 的单调递减区间为25、已知f x 为偶函数,g x 是奇函数,且f x 22g x x x ,则f x 、g x分别为;26、定义在1,1上的奇函数21x m f xxnx ,则常数m,n;27、一般地,家庭用电量y (千瓦)与气温x (℃)有函数关系)(x f y 。
函数的奇偶性、周期性与对称性专题训练A 组 基础达标 (建议用时:30分钟)一、选择题1.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54 D .32.函数y =log 21+x1-x的图象( ) A .关于原点对称 B .关于直线y =-x 对称 C .关于y 轴对称 D .关于直线y =x 对称3.已知f (x )是定义在R 上的偶函数,且f (x +2)=f (x )对x ∈R 恒成立,当x ∈[0,1]时,f (x )=2x ,则f ⎝ ⎛⎭⎪⎫-92=( )A .12B . 2C .22 D .14.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-35.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫1100,1 B .⎝ ⎛⎭⎪⎫0,1100∪(1,+∞) C .⎝ ⎛⎭⎪⎫1100,100 D .(0,1)∪(100,+∞)二、填空题6.已知函数f (x )=x 3+sin x +m -3是定义在[n ,n +6]上的奇函数,则m +n =________.7.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.三、解答题9.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值.10.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函数,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.B 组 能力提升 (建议用时:15分钟)11.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎪⎫lg 13=( ) A .13 B .-13 C .5 D .812.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)13.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x,则f (1),g (0),g (-1)之间的大小关系是________.14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.函数的奇偶性、周期性与对称性专题训练答案A 组 基础达标 (建议用时:30分钟)一、选择题1.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54D .3A [因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.] 2.函数y =log 21+x1-x的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称A [由1+x 1-x >0得-1<x <1,即函数定义域为(-1,1), 又f (-x )=log 21-x 1+x =-log 21+x1-x=-f (x ), 所以函数y =log 21+x1-x为奇函数,故选A.]3.已知f (x )是定义在R 上的偶函数,且f (x +2)=f (x )对x ∈R 恒成立,当x ∈[0,1]时,f (x )=2x,则f ⎝ ⎛⎭⎪⎫-92=( )A .12B . 2C .22 D .1B [由题意得f ⎝ ⎛⎭⎪⎫-92=f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=212=2,故选B.]4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3B [法一:根据题意作出y =f (x )的简图,由图知,选B. 法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ],由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4, ∴-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.]5.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x的取值范围是( ) A .⎝ ⎛⎭⎪⎫1100,1 B .⎝ ⎛⎭⎪⎫0,1100∪(1,+∞) C .⎝ ⎛⎭⎪⎫1100,100 D .(0,1)∪(100,+∞)C [法一:不等式可化为:⎩⎨⎧lg x ≥0,lg x <2或⎩⎨⎧lg x <0,-lg x <2,解得1≤x <100或1100<x <1,所以x 的取值范围为⎝ ⎛⎭⎪⎫1100,100. 法二:由偶函数的定义可知,f (x )=f (-x )=f (|x |),故不等式f (lg x )>f (2)可化为|lg x |<2,即-2<lg x <2,解得1100<x <100,故选C.] 二、填空题6.已知函数f (x )=x 3+sin x +m -3是定义在[n ,n +6]上的奇函数,则m +n =________.0 [因为奇函数的定义域关于原点对称,所以n +n +6=0,所以n =-3, 又f (0)=m -3=0.所以m =3,则m +n =0.]7.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________. 1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.⎝ ⎛⎭⎪⎫13,23 [∵f (x )是偶函数,∴f (x )=f (|x |), ∴f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23.]三、解答题9.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. [解] (1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎝ ⎛⎭⎪⎫32+⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以y =f (x )是以3为周期的周期函数.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.10.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函数,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.[解] (1)f (x )是奇函数,当x <0时,-x >0,此时f (x )=-f (-x )=--x1-3-x=x1-3-x. (2)f (x )<-x 8,当x >0时,x 1-3x <-x8,所以11-3x <-18,所以13x -1>18,所以3x -1<8,解得x <2,所以x ∈(0,2);当x <0时,x 1-3-x <-x 8,所以11-3-x>-18,所以3-x >32,所以x <-2,所以原不等式的解集是(-∞,-2)∪(0,2).B 组 能力提升 (建议用时:15分钟)11.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝ ⎛⎭⎪⎫lg 13=( )A .13B .-13C .5D .8C [因为f (x )+f (-x )=8,f ⎝ ⎛⎭⎪⎫lg 13=f (-lg 3),所以f ⎝ ⎛⎭⎪⎫lg 13=8-f (lg 3)=5,故选C.]12.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) A [∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4.]13.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x,则f (1),g (0),g (-1)之间的大小关系是________. f (1)>g (0)>g (-1) [在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x中, 用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x . 联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).]14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. [解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增. 结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].。