2018秋高一人教版数学必修一练习:第一章 集合与函数概念 3 Word版含解析
- 格式:doc
- 大小:70.00 KB
- 文档页数:4
(人教版)数学必修1第一章《集合与函数概念》高考分类练习题一、选择题1.【04广东】已知{}213|||,|6,22A x x B x x x ⎧⎫=+>=+≤⎨⎬⎩⎭则A B =I A.[)(]3,21,2--U B.(]()3,21,--+∞UC. (][)3,21,2--U D .(](],31,2-∞-U2.【04江苏】设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于A .{1,2}B .{3,4}C .{1}D . {-2,-1,0,1,2}3.【04江苏】 设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(}, 则使M=N 成立的实数对(a ,b)有A .0个B .1个C .2个D .无数多个4.【04北京g 理】 设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于A. {|}x x <-2B. {|}x x -<<21C. {|}x x <1 D .{|}x x -≤<215.【04北京g 理】函数f x x x P x x M (),,=∈-∈⎧⎨⎩,其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断: ①若P M ⋂=∅,则f P f M ()()⋂=∅②若P M ⋂≠∅,则f P f M ()()⋂≠∅③若P M R ⋃=,则f P f M R ()()⋃=④若P M R ⋃≠,则f P f M R ()()⋃≠其中正确判断有A. 1个B. 2个C. 3个D. 4个6.【04北京g 文】设M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于A. {|}x x 12<<B. {|}x x -<<21C. {|}x x 12<≤D. {|}x x -≤<217.【04福建g 文】设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则 )(B A C U I 等于A .{1,2,4}B .{4}C .{3,5}D .φ8.【04湖北g 理】已知)(,11)11(22x f x xx x f 则+-=+-的解析式可取为 A .21x x + B .212x x +- C .212xx + D .21x x +- 9.【04湖北g 理】设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是A .P QB .Q PC .P=QD .P I Q= 10.【04湖北g 文】设B A Q x x x B N k k x x A ⋂∈≤=∈+==则},,6|{),,15|{等于 A .{1,4} B .{1,6} C .{4,6} D .{1,4,6}11.【04湖北g 文】已知4254)(,252-+-=≥x x x x f x 则有 A .最大值45 B .最小值45 C .最大值1 D .最小值1 12.【04湖南g 文】函数)11lg(x y -= 的定义域为 A .{}0|<x x B .{}1|>x x C .{}10|<<x x D .{}10|><或x x13.【04湖南g 文】若f(x)=-x 2+2ax 与1)(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(14.【04湖南g 文】若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是15.【04湖南g 文】设集合U={(x ,y)|x ∈R,y ∈R}, A={(x ,y)|2x -y+m>0}, B={(x ,y)|x +y-n ≤0},那么点P (2,3))(B C A U ⋂∈的充要条件是A .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m 16.【04全国Ⅰ·理】设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是A .(I C A)∪B=IB .(IC A)∪(I C B)=IC .A ∩(I C B)=φD .(I C A)I (I C B)= I C B17.【04全国Ⅰ·文】设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= A .{2} B .{2,3} C .{3} D . {1,3}18.【04全国Ⅲ·理】设集合(){}22,1,,M x y x y x R y R =+=∈∈, (){}2,0,,N x y x y x R y R =-=∈∈,则集合M N I 中元素的个数为 A.1 B.2 C.3 D.419.【04全国Ⅲ·理】设函数2(1)1()411x x f x x x ⎧+<⎪=⎨--≥⎪⎩,则使得f (x )≥1的自变量x 的取值范围为A .(][],20,10-∞-⋃ B.(][],20,1-∞-⋃C. (][],21,10-∞-⋃D. [][]2,01,10-⋃20.【04全国Ⅳ·理】 已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂=A .{0}B .{0,1}C .{1,2}D .{0,2}21.【04全国Ⅳ·理】设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+= 则=)5(fA .0B .1C .25D .522.【04全国Ⅳ·文】设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )=A .{5}B .{0,3}C .{0,2,3,5} D. {0,1,3,4,5}23.【04天津·文】 设集合{}6,5,4,3,2,1=P ,{}62≤≤∈=x R x Q ,那么下列结论正确的是A. P Q P =IB. Q Q P ≠⊃IC. Q Q P =YD. ≠⊂Q P I P24.【04浙江·理】若U={1,2,3,4}, M={1,2},N={2,3}, 则()U C M N U =A .{1,2,3}B .{2}C .{1,3,4}D .{4} 25.【04重庆·文】函数221()1x f x x -=+, 则12(2)()f f =A .1B .-1C .35D . 35- 26.【04江苏】 设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于A .3B .32C .43D .65二、填空题1.【04北京g 理】在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最____________值(填“大”或“小”),且该值为__________ 2.【04福建g 文】设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围 是 .3.【04湖北g 理】设A 、B 为两个集合,下列四个命题:① A ⊄B ⇔对任意B x A x ∉∈有, ② A ⊄B ⇔=B A I φ ③ A ⊄B ⇔A B ④ A ⊄B ⇔存在B x A x ∉∈使得,其中真命题的序号是 .(把符合要求的命题序号都填上)4.【04上海·理】设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是 .5.【04上海·理】若函数f(x)=a 2+-b x 在[0,+∞)上为增函数,则实数a 、b 的取值范围是 。
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45.(A )(B )(C )(D )。
高一数学人教a版必修一_习题_第一章_集合与函数概念_1.1.2_word版有答案一、选择题(每小题5分,共20分)1.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B解析:显然B是A的真子集,因为A中元素是3的整数倍,而B的元素是3的偶数倍.答案: D2.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1} B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z} D.S={x||x|≤3,x∈N}解析:先用列举法表示集合,再观察元素与集合的关系.集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S ={0,1}中的任意一个元素都在集合M中,所以S⊆M,且S M.故选D.答案: D3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是()A.1 B.-1C.1或-1 D.0,1或-1解析:由题意,当Q为空集时,a=0;当Q不是空集时,由Q⊆P,a=1或a=-1.答案: D4.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为()A.6 B.5C.4 D.3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.答案: A二、填空题(每小题5分,共15分)5.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.解析:∵y=(x-1)2-2≥-2,∴M={y|y≥-2}.∴N M.答案:N M6.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.解析:由Venn图可得A B,C D B,A与D之间无包含关系,A与C之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A为小说,B为文学作品,C为叙事散文,D为散文.答案:小说文学作品叙事散文散文7.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.解析:因为集合A有且仅有2个子集,所以A仅有一个元素,即方程ax2+2x+a=0(a∈R)仅有一个根.当a=0时,方程化为2x=0,∴x=0,此时A={0},符合题意.当a≠0时,Δ=22-4·a·a=0,即a2=1,∴a=±1.此时A={-1},或A={1},符合题意.∴a=0或a=±1.答案:{0,1,-1}三、解答题(每小题10分,共20分)8.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.解析:由x2-3x+2=0,得x=1,或x=2.∴A={1,2}.∵B⊆A,∴对B分类讨论如下:(1)若B=∅,即方程ax-2=0无解,此时a=0.(2)若B≠∅,则B={1}或B={2}.则B={1}时,有a-2=0,即a=2;当B={2}时,有2a-2=0,即a=1.综上可知,符合题意的实数a所组成的集合C={0,1,2}.9.已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求a的取值范围.解析:集合A={0,-4},由于B⊆A,则(1)当B=A时,即0,-4是方程x2+2(a+1)x+a2-1=0的两根,代入解得a=1.(2)当B A时,①当B=∅时,则Δ=4(a+1)2-4(a2-1)<0,解得a<-1;②当B={0}或B={-4}时,方程x2+2(a+1)x+a2-1=0应有两个相等的实数根0或-4,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满足条件.综上可知a=0或a≤-1.。
高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若2A x x x==,则1-_______A;{|}(3)若2=+-=,则3_______B;{|60}B x x x(4)若{|110}C x N x=∈≤≤,则8_______C,9.1_______C.2.试选择适当的方法表示下列集合:(1)由方程290x-=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x=-+的图象的交点组成的集合;=+与26y x(4)不等式453x-<的解集.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c的所有子集.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉”符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C . .9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ð,S A ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ð,()R A B ð,()R A B ð,()R A B ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有个.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系? 3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .。
高一数学单元卷(一)必修1答案(第一章集合和函数的概念)一.选择题(本大题12小题,每小题5分,共60分)1.答案:A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同,(3)361,0.5242=-=,有重复的元素,应该是3个元素,(4)本集合还包括坐标轴 2.答案:B,{}32x x ∈-<+N ={}5+N x x ∈<={}1,2,3,4,故选B.3. A 阴影部分完全覆盖了C 部分,这样就要求交集运算的两边都含有C 部分; 4答案:B ,T S Y = 1,3,5,6 ,)(T S C U Y ={}2,4,7,85.答案:B, =M Z k k x x ∈+=,412| , N = Z k k x x ∈++=,41)1(| ,1k +属于全体整数,2k 属于偶数, M N ⊆6.答案:C,判断两个函数是否同一函数,看其定义域和对应关系是否相同.7. C 有可能是没有交点的,如果有交点,那么对于1x =仅有一个函数值;8.答案:D, 该分段函数的三段各自的值域为(][)[),1,0,4,4,-∞+∞,而[)30,4∈∴2()3,3,12,f x x x x ===±-<<而∴ 3x =;9.答案:A,Q 1,2x y =-=,所以3,1x y x y -=-+=10. C 22224(2)44,042,240x x x x x x x -+=--+≤≤-+≤-≤--+≤20242,02x x y ≤--+≤≤≤;11.答案:A,奇函数关于原点对称,左右两边有相同的单调性12.答案:B, 对称轴2,24,2x a a a =--≤≥-二.填空题: (本大题4小题,每小题4分,共16分)13. []4,9 021,3,49x x ≤-≤≤≤≤≤得2x 即14.答案:1|12k k ⎧⎫-≤≤⎨⎬⎩⎭ ; 213212k k -≥-⎧⎨+≤⎩得112k -≤≤ 15.(](2,0)2,5-U 奇函数关于原点对称,补足左边的图象16.答案:3(1)x x -, 设0x <,则0x ->,33()(1)(1)f x x x x x -=-+-=-- ∵()()f x f x -=-∴3()()(1)f x f x x x =--=-三.解答题:(本大题共六小题,共74分)17.解:∵{}3A B =-I ,∴3B -∈,而213a +≠-, 4分 ∴当{}{}33,0,0,1,3,3,1,1a a A B -=-==-=--,这样{}3,1A B =-I 与{}3A B =-I 矛盾; 8分当213,1,a a -=-=-符合{}3A B =-I∴1a =- 12分18.解:由A ∩C =A ,A ∩B =φ 得{}1,3A =, 5分 0px q ++=2即方程x 的两个根是1,3,由韦达定理,得 7分 则1+3=-p p=-41×3=q q=3 12分19.解:令12,(0)x t t -=≥, 2分则2221111,2222t t x y t t t --==+=-++ 5分 21(1)12y t =--+, 9分 当1t =时,(]max 1,,1y y =∈-∞所以 12分20.解: 设OE=x,则当0≤x ≤2时,△OEF 的高EF=241212121x x x s x =⋅=∴ 3分 当2<x ≤3时,△BEF 的高EF=3-x ,∴)3)(3(211321x x s ---⨯⨯= 6分 当3x >时,32s = 9分 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<-+-≤≤==323323321204)(22x x x x x x x f S 10分 12分 21.解:()f x Q 是奇函数,∴()()f x f x \-=-,∴22(1)(1)f a f a \--=-∴22(1)(1)(1)f a f a f a -<--=-, 6分 P x x -=+21 q x x =⋅21()f x Q 的定义域为()1,1-且在定义域上单调递减,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩, 10分∴01a << 12分22.解:(1)依题意得(0)012()25f f ì=ïïïíï=ïïî 即2010221514b a b ìïï=ïï+ïïïí+ïï=ïïï+ïïïî得10a b ì=ïïíï=ïî ∴2()1x f x x \=+ 4分 (2)证明:任取1211x x -<<<,则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 121211,0x x x x -<<<\-<Q ,221210,10x x +>+> 又121211,10x x x x -<<\->Q 12()()0f x f x \-<∴ ()f x 在(1,1)-上是增函数。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:运用集合的运算求解.M∩N={-2,-1,0},故选C.答案: C2.设集合A={x|x+2=0},集合B={x|x2-4=0},则A∩B=()A.{-2} B.{2}C.{-2,2} D.∅解析:解出集合A,B后依据交集的概念求解.∵A={x|x+2=0},∴A={-2}.∵B={x|x2-4=0},∴B={-2,2}.∴A∩B={-2}.故选A.答案: A3.设集合A={x∈Z|-10≤x≤-1},B={ x∈Z||x|≤5},则A∪B中的元素个数是() A.10 B.11C.15 D.16解析:A={-10,-9,-8,-7,-6,…,-1},B={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴A∪B={-10,-9,-8,…,-1,0,1,2,3,4,5},A∪B中共16个元素.答案: D4.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析: 先求解集合A ,再进行集合之间的运算. ∵A ={x |x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R . 故选B. 答案: B二、填空题(每小题5分,共15分)5.设M ={0,1,2,4,5,7},N ={1,4,6,8,9},P ={4,7,9},则(M ∩N )∪(M ∩P )=________. 解析: M ∩N ={1,4},M ∩P ={4,7}, 所以(M ∩N )∪(M ∩P )={1,4,7}. 答案: {1,4,7}6.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R7.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)8.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5}.若A ∪B =R ,求a 的取值范围. 解析: 在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧a +8≥5,a <-1,解得-3≤a <-1.综上可知,a 的取值范围为-3≤a <-1.9.集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.即a 的取值范围为a >-4.。
高中人教A版数学必修1单元测试第一章集合与函数概念(一)(集合)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个集合中,是空集的是()A.{x|x+3=3} B.{(x,y)|y=-x2,x,y∈R}C.{x|x2≤0} D.{x|x2-x+1=0,x∈R}2.已知集合A={x∈N|x<6},则下列关系式错误的是()A.0∈A B.1.5∉A C.-1∉A D.6∈A3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}4.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=()A.{1,2,3} B.{1,2,4} C.{2,3,4} D.{1,2,3,4}5.满足条件{1,2}∪A={1,2}的所有非空集合A的个数是()A.1个B.2个C.3个D.4个6.若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个7.已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.{x=3,y=-1} B.{(x,y)|x=3或y=-1}C.∅D.{(3,-1)}8.已知集合A={0,1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.169.设全集U 是实数集R ,M ={x |x >2或x <-2},N ={x |x ≥3或x <1}都是U 的子集,则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}10.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0或1 C .1 D .不能确定11.集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪⎪12x ∈Z 中含有的元素个数为( )A .4B .6C .8D .1212.设a ,b 都是非零实数,则y =a |a |+b |b |+ab|ab |可能取的值组成的集合为( ) A .{3} B .{3,2,1} C .{3,-2,1}D .{3,-1}第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若集合A ={x |-1≤x <2},B ={x |x ≤a },若A ∩B ≠∅,则实数a 的取值范围是________.14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =a +16,a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =b 2-13,b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =c 2+16,c ∈Z ,则A ,B ,C 之间的关系是________.15.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B ⊆A ,则m 的取值集合为________.16.若三个非零且互不相等的实数a ,b ,c ,满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”.若集合M ={x ||x |≤2014,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 的个数为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集为R ,A ={x |3≤x <7},B ={x |2<x <10}. 求:A ∪B ,∁R (A ∩B ),(∁R A )∩B .18.(本小题满分12分)(1)已知全集U =R ,集合M ={x |x +3≤0},N ={x |x 2=x +12},求(∁U M )∩N ; (2)已知全集U =R ,集合A ={x |x <-1或x >1},B ={x |-1≤x <0},求A ∪(∁U B ).19.(本小题满分12分)已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求实数a,b的值.20.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩∁R B;(2)若A⊆B,求a的取值范围.21.(本小题满分12分)设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,判断集合A 与B 的关系; (2)若A ∩B =B ,求实数a 组成的集合C .22.(本小题满分12分)已知集合A ={x |(a -1)x 2+3x -2=0},B ={x |x 2-3x +2=0}. (1)若A ≠∅,求实数a 的取值范围; (2)若A ∩B =A ,求实数a 的取值范围.详解答案第一章 集合与函数概念(一)(集 合)1.D 解析:选项D 中Δ=(-1)2-4×1×1=-3<0,所以方程x 2-x +1=0无实数根.2.D 解析:∵集合A ={x ∈N |x <6}={0,1,2,3,4,5},∴6∉A .故选D. 3.D 解析:∵U ={1,3,5,7,9},A ={1,5,7},∴∁U A ={3,9}.故选D. 4.D 解析:∵A ∩B ={1,2},C ={2,3,4},∴(A ∩B )∪C ={1,2,3,4}. 5.C 解析:∵{1,2}∪A ={1,2}∴集合A 可取集合{1,2}的非空子集.∴集合A 有3个.故选C.6.C 解析:∵A ∪B ={1,4,x },∴x 2=4或x 2=x .解得x =±2或x =1或x=0.检验当x =1时,A ={1,4,1}不符合集合的性质,∴x =2或x =-2或x =0.故选C.7.C 解析:∵集合M 的代表元素是实数,集合N 的代表元素是点,∴M ∩N =∅.故选C.8.C 解析:∵A ∩B ={1,3},∴A ∩B 的子集分别是∅,{1},{3},{1,3}.故选C.解题技巧:本题主要考查了列举法表示两个集合的交集,考查了子集的求法,解决本题的关键是确定出A ∩B 所含元素的个数n ,因此所有子集的个数为2n 个.9.A 解析:∵图中阴影部分表示:x ∈N 且x ∉M ,∴x ∈N ∩∁U M .∴∁U M ={x |-2≤x ≤2},∴N ∩∁U M ={x |-2≤x <1}.故选A.10.B 解析:∵集合A ={x |ax 2+2x +1=0}中只有一个元素,∴①当a =0时,集合A ={x |2x +1=0}只有一个元素,符合题意;②当a ≠0时,一元二次方程ax 2+2x +1=0只有一解,∴Δ=0,即4-4a =0,∴a =1.故选B.11.B 解析:∵x ∈N *,12x ∈Z ,∴x =1时,12x =12∈Z ;x =2时,12x =6∈Z ;x =3时,12x =4∈Z ;x =4时,12x =3∈Z ;x =6时,12x =2∈Z ;x =12时,12x =1∈Z .12.D 解析:①当a >0,b >0时,y =3;②当a >0,b <0时,y =-1;③当a <0,b >0时,y =-1;④当a <0,b <0时,y =-1.13.a ≥-1 解析:如图:∵A ∩B ≠∅,且A ={x |-1≤x <2},B ={x |x ≤a },∴a ≥-1. 14.AB =C 解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =a +16,a ∈Z=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(6a +1),a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =b 2-13,b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3b -2),b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16[3(b +1)-2],b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =c 2+16,c ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3c +1),c ∈Z .∴A B =C .15.m =⎩⎨⎧⎭⎬⎫0,-12,13 解析:集合A ={2,-3},又∵B ⊆A ,∴B =∅,{-3},{2}.∴m =0或m =-12或m =13.16.1 006 解析:因为若集合P 中元素a ,b ,c 既是调和的,又是等差的,则1a +1b =2c 且a +c =2b ,则a =-2b ,c =4b ,因此满足条件的“好集”为形如{-2b ,b,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,符合条件的b 的值可取1 006个,故“好集”P 的个数为1 006个.解题技巧:本题主要考查了以集合为背景的新概念题,解决本题的关键是弄清楚新概念、新运算、新方法的含义,转化为集合问题求解.17.解:∵全集为R ,A ={x |3≤x <7},B ={x |2<x <10}, ∴A ∪B ={x |2<x <10},A ∩B ={x |3≤x <7}, ∴∁R (A ∩B )={x |x ≥7或x <3}. ∵∁R A ={x |x ≥7或x <3},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.18.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁U M )∩N ={4}.(2)∵A ={x |x <-1或x >1},B ={x |-1≤x <0}, ∴∁U B ={x |x <-1或x ≥0}. ∴A ∪(∁U B )={x |x <-1或x ≥0}.19.解:∵A ∩B ={x |1<x <3},∴b =3, 又A ∪B ={x |x >-2}, ∴-2<a ≤-1, 又A ∩B ={x |1<x <3}, ∴-1≤a <1, ∴a =-1.20.解:(1)当a =-2时,集合A ={x |x ≤1},∁R B ={x |-1≤x ≤5}, ∴A ∩∁R B ={x |-1≤x ≤1}.(2)∵A ={x |x ≤a +3},B ={x |x <-1或x >5},A ⊆B , ∴a +3<-1,∴ a <-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a 是否取到不等式的端点值.21.解:A ={x |x 2-8x +15=0}={3,5}. (1)若a =15,则B ={5},所以B A . (2)若A ∩B =B ,则B ⊆A . 当a =0时,B =∅,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,因为B ⊆A ,所以1a =3或1a =5,即a =13或a =15;综上所述,实数a 组成的集合C 为⎩⎨⎧⎭⎬⎫0,13,15.22.解:(1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅;②当a ≠1时,Δ≥0,即a ≥-18且a ≠1,综上,a ≥-18;(2)∵B ={1,2},A ∩B =A ,∴A =∅或{1}或{2}或{1,2}. ①A =∅,Δ<0,即a <-18;②当A ={1}或{2}时,Δ=0,即a =0且a =-18,不存在这样的实数; ③当A ={1,2},Δ>0,即a >-18且a ≠1,解得a =0. 综上,a <-18或a =0.第一章集合与函数概念(二)(函数的概念与基本性质)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1 x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lgx 1002.已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有()A.3个B.4个C.5个D.6个3.函数f(x)=x+1x-1的定义域是()A.-1,1) B.-1,1)∪(1,+∞) C.-1,+∞) D.(1,+∞)4.函数y=2--x2+4x的值域是()A.-2,2] B.1,2]C.0,2] D.-2, 2 ] 5.已知f(x)的图象如图,则f(x)的解析式为()A .f (x )=⎩⎪⎨⎪⎧1,0≤x ≤1-x -2,1<x ≤2B .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1x +2,1<x ≤2C .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1x -2,1<x ≤2D .f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1-x +2,1<x ≤26.定义两种运算:a ⊕b =a 2-b 2,a b =(a -b )2,则函数f (x )=2⊕x (x2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪2,+∞) C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪2,+∞) D .f (x )=-4-x 2x ,x ∈-2,0)∪(0,2]7.函数f (x )=1x -x 的图象关于( ) A .坐标原点对称 B .x 轴对称 C .y 轴对称D .直线y =x 对称8.设f (x )是定义在-6,6]上的偶函数,且f (4)>f (1),则下列各式一定成立的是( )A .f (0)<f (6)B .f (4)>f (3)C .f (2)>f (0)D .f (-1)<f (4)9.若奇函数f (x )在1,3]上为增函数,且有最小值0,则它在-3,-1]上( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0D .是增函数,有最大值010.已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0),满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3)11.若f (x )是R 上的减函数,且f (x )的图象经过点A (0,4)和点B (3,-2),则当不等式|f (x +t )-1|<3的解集为(-1,2)时,t 的值为( )A .0B .-1C .1D .212.已知函数y =f (x )满足:①y =f (x +1)是偶函数;②在1,+∞)上为增函数.若x 1<0,x 2>0,且x 1+x 2<-2,则f (-x 1)与f (-x 2)的大小关系是( )A .f (-x 1)>f (-x 2)B .f (-x 1)<f (-x 2)C .f (-x 1)=f (-x 2)D .无法确定第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数f (x )=ax 7+bx -2,且f (2 014)=10,则f (-2 014)的值为________. 14.若函数f (x )=ax +1x +2在x ∈(-2,+∞)上单调递减,则实数a 的取值范围是________.15.已知函数f (x )=x +3x +1,记f (1)+f (2)+f (4)+f (8)+f (16)=m ,f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫116=n ,则m +n =________. 16.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a 2-1对一切x ≥0都成立,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)已知f (x -2)=3x -5,求f (x );(2)若f (f (f (x )))=27x +26,求一次函数f (x )的解析式.18.(本小题满分12分) 已知f (x )=1x -1,x ∈2,6].(1)证明:f (x )是定义域上的减函数; (2)求f (x )的最大值和最小值.19.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎨⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量x 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)20.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈-5,5].(1)当a=-1时,求函数的最大值和最小值;(2)若y=f(x)在区间-5,5]上是单调函数,求实数a的取值范围.21.(本小题满分12分)已知二次函数f(x)=ax2+bx(a,b∈R),若f(1)=-1且函数f(x)的图象关于直线x=1对称.(1)求a,b的值;(2)若函数f(x)在k,k+1](k≥1)上的最大值为8,求实数k的值.22.(本小题满分12分)已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值74.(1)求f(x)的解析式;(2)求函数h(x)=f(x)-(2t-3)x在区间0,1]上的最小值,其中t∈R;(3)在区间-1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.详解答案第一章集合与函数概念(二)(函数的概念与基本性质)1.D解析:∵y=x-1与y=(x-1)2=|x-1|的对应关系不同,∴它们不是同一函数;y=x-1(x≥1)与y=x-1x-1(x>1)的定义域不同,∴它们不是同一函数;又y=4lg x(x>0)与y=2lg x2(x≠0)的定义域不同,因此它们也不是同一函数,而y=lg x-2(x>0)与y=lg x100=lg x-2(x>0)有相同的定义域、值域与对应关系,因此它们是同一函数.2.C解析:令x2=0,1,4,解得x=0,±1,±2.故选C.3.B 解析:由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.4.C 解析:令t =-x 2+4x ,x ∈0,4],∴t ∈0,4].又∵y 1=x ,x ∈0,+∞)是增函数∴ t ∈0,2],-t ∈-2,0],∴y ∈0,2].故选C.5.C 解析:当0≤x ≤1时,f (x )=-1;当1<x ≤2时,设f (x )=kx +b (k ≠0),把点(1,-1),(2,0)代入f (x )=kx +b (k ≠0),则f (x )=x -2.所以f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1,x -2,1<x ≤2.故选C. 6.D 解析:f (x )=2⊕x (x2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.由⎩⎪⎨⎪⎧4-x 2≥0,|x -2|-2≠0,得-2≤x ≤2且x ≠0.∴f (x )=-4-x 2x .7.A 解析:函数f (x )的定义域关于原点对称,又∵f (-x )=1-x+x =-⎝ ⎛⎭⎪⎫1x -x =-f (x ),∴f (x )为奇函数,其图象关于坐标原点对称.8.D 解析:∵f (x )是定义在-6,6]上的偶函数,∴f (-1)=f (1).又f (4)>f (1),f (4)>f (-1).9.D 解析:因为奇函数f (x )在1,3]上为增函数,且有最小值0,所以f (x )在-3,-1]上是增函数,且有最大值0.10.A 解析:由于函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,所以该函数为R 上的减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,4a ≤a 0,解得0<a ≤14.解题技巧:本题主要考查了分段函数的单调性,解决本题的关键是利用好该函数为R 上的减函数这一条件.应特别注意隐含条件“a 0≥4a ”.11.C 解析:由不等式|f (x +t )-1|<3,得-3<f (x +t )-1<3,即-2<f (x +t )<4.又因为f (x )的图象经过点A (0,4)和点B (3,-2),所以f (0)=4,f (3)=-2,所以f (3)<f (x +t )<f (0).又f (x )在R 上为减函数,则3>x +t >0,即-t <x <3-t ,解集为(-t,3-t ).∵不等式的解集为(-1,2),∴-t =-1,3-t =2,解得t =1.故选C.12.A 解析:由y =f (x +1)是偶函数且把y =f (x +1)的图象向右平移1个单位可得函数y =f (x )的图象,所以函数y =f (x )的图象关于x =1对称,即f (2+x )=f (-x ).因为x 1<0,x 2>0,且x 1+x 2<-2,所以2<2+x 2<-x 1.因为函数在1,+∞)上为增函数,所以f (2+x 2)<f (-x 1),即f (-x 1)>f (-x 2),故选A.13.-14 解析:设g (x )=ax 7+bx ,则g (x )是奇函数,g (-2 014)=-g (2 014).∵f (2 014)=10且f (2 014)=g (2 014)-2,∴g (2 014)=12,∴g (-2 014)=-12,∴f (-2 014)=g (-2 014)-2,∴f (-2 014)=-14.14.a <12 解析:f (x )=ax +1x +2=a +1-2a x +2.∵y =1x +2在x ∈(-2,+∞)上是减函数,∴1-2a >0,∴a <12.15.18 解析:因为函数f (x )=x +3x +1,所以f ⎝ ⎛⎭⎪⎫1x =1+3xx +1.又因为f (x )+f ⎝ ⎛⎭⎪⎫1x =4(x +1)x +1=4,f (1)+f (2)+f (4)+f (8)+f (16)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫116 =f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (4)+f ⎝ ⎛⎭⎪⎫14+f (8)+f ⎝ ⎛⎭⎪⎫18+f (16)+f ⎝ ⎛⎭⎪⎫116=f (1)+4×4=18, 所以m +n =18.解题技巧:本题主要考查了学生的观察、归纳、推理的能力,解决本题的关键是挖掘出题目中隐含的规律f (x )+f ⎝ ⎛⎭⎪⎫1x =4.16.-1≤a <0 解析:当x =0时,f (x )=0,则0≥a 2-1,解得-1≤a ≤1,所以-1≤a <0.当x >0时,-x <0,f (-x )=-x +a 2-x -2,则f (x )=-f (-x )=x +a 2x +2.由对数函数的图象可知,当x =a 2=|a |=-a 时,有f (x )min =-2a +2, 所以-2a +2≥a 2-1,即a 2+2a -3≤0,解得-3≤a ≤1.又a <0, 所以-3≤a <0. 综上所述,-1≤a <0.17.解:(1)令t =x -2,则x =t +2,t ∈R ,由已知有f (t )=3(t +2)-5=3t +1,故f (x )=3x +1.(2)设f (x )=ax +b (a ≠0),f (f (x ))=a 2x +ab +b , f (f (f (x )))=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b ,∴⎩⎪⎨⎪⎧a 3=27,a 2b +ab +b =26,解得a =3,b =2.则f (x )=3x +2.18.(1)证明:设2≤x 1<x 2≤6,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1),因为x 1-1>0,x 2-1>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以f (x )是定义域上的减函数.(2)由(1)的结论可得,f (x )min =f (6)=15,f (x )max =f (2)=1. 19.解:(1)当0≤x ≤400时,f (x )=400x -12x 2-100x -20 000=-12x 2+300x -20 000. 当x >400时,f (x )=80 000-100x -20 000=60 000-100x ,所以f (x )=⎩⎨⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12x 2+300x -20 000=-12(x -300)2+25 000; 当x =300时,f (x )max =25 000; 当x >400时,f (x )=60 000-100x <f (400)=20 000<25 000; 所以当x =300时,f (x )max =25 000.故当月产量x 为300台时,公司获利润最大,最大利润为25 000元. 20.解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1. 又因为x ∈-5,5].所以函数的最大值为37,最小值为1. (2)若y =f (x )在区间-5,5]上是单调函数, 则有-a ≤-5或-a ≥5解得a ≤-5或a ≥5.解题技巧:本题主要考查了二次函数在给定区间上的最值与单调性.解决本题的关键是确定对称轴和区间端点的关系.注意分类讨论.21.解:(1)由题意可得f (1)=a +b =-1且-b2a =1, 解得a =1,b =-2. (2)f (x )=x 2-2x =(x -1)2-1.因为k ≥1,所以f (x )在k ,k +1]上单调递增, 所以f (x )max =f (k +1)=(k +1)2-2(k +1)=8, 解得k =±3. 又k ≥1,所以k =3.22.解:(1)由题知二次函数图象的对称轴为x =32,又最小值是74,则可设f (x )=a ⎝ ⎛⎭⎪⎫x -322+74(a ≠0), 又图象过点(0,4),则a ⎝ ⎛⎭⎪⎫0-322+74=4,解得a =1. ∴f (x )=⎝ ⎛⎭⎪⎫x -322+74=x 2-3x +4. (2)h (x )=f (x )-(2t -3)x =x 2-2tx +4=(x -t )2+4-t 2,其对称轴x =t . ①t ≤0时,函数h (x )在0,1]上单调递增,最小值为h (0)=4;②当0<t <1时,函数h (x )的最小值为h (t )=4-t 2;③当t ≥1时,函数h (x )在0,1]上单调递减,最小值为h (1)=5-2t ,所以h (x )min =⎩⎪⎨⎪⎧ 4,t ≤0,4-t 2,0<t <1,5-2t ,t ≥1.(3)由已知:f (x )>2x +m 对x ∈-1,3]恒成立,∴m <x 2-5x +4对x ∈-1,3]恒成立.∴m <(x 2-5x +4)min (x ∈-1,3]).∵g (x )=x 2-5x +4在x ∈-1,3]上的最小值为-94, ∴m <-94.。
2018-2019年高中数学新课标人教A版《必修一》《第一章集合与函数的概念》《1.3 函数的基本性质》课后练习试卷【3】含答案考点及解析班级:___________ 姓名:___________ 分数:___________ 题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上评卷人得分一、选择题,1.已知集合,若,则的值为B.2A.3C.0D.-1 【答案】B 【解析】试题分析:∵集合,,且,∴2∈B,∴x=2,故选B考点:本题考查了集合的运算点评:熟练掌握集合的概念及交集的运算是解决此类问题的关键,属基础题 2.已知集合( ) A.{x|2<x<3}B.{x|-1≤x≤5} C.{x| -1<x<5}D.{x| -1<x≤5} 【答案】B 【解析】试题分析:∵画出数轴可得{x|-1≤x≤5},故选B考点:本题考查了集合的运算点评:求解集合运算问题可应用数轴或韦恩图来描述“交”“并”“补”运算.,从而使抽象问题形象化,增加计算的准确性. 3.已知,,若,则实数的取值范围是( ) A.C.D.B.【答案】D【解析】试题分析:因为集合A=,那么根据一元二次不等式的求解先因式分解得到两个根为x=1,x=2,然后结合图像得到解集为,集合B中含有参数a,那么对于集合的关系运用数轴法作图可知,要是A是B的子集,则要满足,选D.考点:本试题主要考查了集合的子集的概念的运用。
点评:解决该试题的易错点就是对于端点值的取舍问题。
4.已知全集U=R,A=,则C=( )A.B.C.D.【答案】D 【解析】解:因为全集U=R,A=结合数轴法示,可知选项A,B,C都不是符合题意,只有选择D。
5.若集合,集合,则等于( )A.B.C.D.【答案】B【解析】,,所以,故选B 6.设全集,则图中阴影部分表示的集合为 ( ) A.B.C.D.【答案】B【解析】,图中阴影部分表示的集合为.故选B7.设集合,若=,则a的取值范围为()A.B.C.D.【答案】D【解析】本题考查函数定义域的求法和推理能力。
一、选择题1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B =( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2} D .{0}答案 A解析 由并集的概念,可得A ∪B ={0,1,2,3,4}.2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}答案 D解析 ∵要求集合M 与N 的公共元素,∴⎩⎪⎨⎪⎧ x +y =2x -y =4解得⎩⎪⎨⎪⎧x =3y =-1∴M ∩N ={(3,-1)},选D.3.设全集U =R ,A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则右图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}答案 A解析 注意到集合A 中的元素为自然数,因此易知A ={1,2,3,4,5,6,7,8,9,10},而直接解集合B 中的方程可知B ={-3,2},因此阴影部分显然表示的是A ∩B ={2},选A.4.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4答案 B解析 直接列出满足条件的M 集合有{a 1,a 2}、{a 1,a 2,a 4},因此选B.5.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩B 等于( ) A .{x |x <1} B .{x |-1≤x ≤2} C .{x |-1≤x ≤1} D .{x |-1≤x <1} 答案 D解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 二、填空题6.[2015·江苏高考]已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.答案 5解析 A ∪B ={1,2,3,4,5},∴A ∪B 中元素的个数为5. 7.[2016·福建六校高一联考]已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.答案 2解析 由题意易知2∈(A ∪B ),且2∉B ,∴2∈A ,∴m =2.8.已知集合P ={-1,a +b ,ab },集合Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b ,a -b ,若P∪Q =P ∩Q ,则a -b =________.答案 -4解析 由P ∪Q =P ∩Q 易知P =Q ,由Q 集合可知a 和b 均不为0,因此ab ≠0,于是必须a +b =0,所以易得ba=-1,因此又必得ab=a -b ,代入b =-a 解得a =-2.所以b =2,因此得到a -b =-4.三、解答题9.[2016·山东烟台模块检测]已知集合A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5}.(1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =B ,求a 的取值范围. 解 (1)要使A ∩B =∅,则需满足下列不等式组⎩⎪⎨⎪⎧a +3≤5,a ≥-1,解此不等式组得-1≤a ≤2, 即a 的取值范围是{a |-1≤a ≤2}. (2)要使A ∪B =B ,即A 是B 的子集, 则需满足a +3<-1或a >5, 解得a >5或a <-4,即a 的取值范围是{a |a >5或a <-4}.10.[2016·衡水高一调研]已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠∅且A ∪B =A ,求a ,b 的值.解 B ≠∅且A ∪B =A ,所以B ≠∅且B ⊆A ,故B 存在两种情况:(1)当B 含有两个元素时,B =A ={-1,1},此时a =0,b =-1; (2)当B 含有一个元素时,Δ=4a 2-4b =0,∴a 2=b . 若B ={1}时,有a 2-2a +1=0,∴a =1,b =1.若B ={-1}时,有a 2+2a +1=0,∴a =-1,b =1.综上:⎩⎪⎨⎪⎧ a =0,b =-1或⎩⎪⎨⎪⎧ a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =1.。
§1.3 习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-122.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b >0成立,则必有( ) A .函数f (x )先增后减 B .函数f (x )先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数3.已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b >0,则有( )A .f (a )+f (b )>-f (a )-f (b )B .f (a )+f (b )<-f (a )-f (b )C .f (a )+f (b )>f (-a )+f (-b )D .f (a )+f (b )<f (-a )+f (-b )4.函数f (x )的图象如图所示,则最大、最小值分别为( )A .f (32),f (-32)B .f (0),f (32)C .f (0),f (-32) D .f (0),f (3)5.已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________. 6.已知f (x )=⎩⎪⎨⎪⎧12x -1, x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是______________.一、选择题1.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( ) A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 2)<0 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f (x )都有f (x )·f (-x )≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为( ) A .②③④B .①③C .②D .④3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f (x )=2⊕x(x ⊗2)-2为( )A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数也是偶函数4.用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-12对称,则t的值为()A.-2B.2C.-1D.15.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是()A.增函数且最小值为3B.增函数且最大值为3C.减函数且最小值为-3D.减函数且最大值为-36.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0) B.(-∞,0)∪(1,2)C.(1,2) D.(0,2)二、填空题7.若函数f(x)=-x+abx+1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x-3,则f(-2)+f(0)=________.9.函数f(x)=x2+2x+a,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________.三、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数;(2)解关于x的不等式f(x)<0.11.已知f(x)=x2+ax+bx,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.能力提升12.设函数f(x)=1-1x+1,x∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.1.函数单调性的判定方法 (1)定义法.(2)直接法:运用已知的结论,直接判断函数的单调性,如一次函数,二次函数,反比例函数;还可以根据f (x ),g (x )的单调性判断-f (x ),1f (x ),f (x )+g (x )的单调性等.(3)图象法:根据函数的图象判断函数的单调性. 2.二次函数在闭区间上的最值对于二次函数f (x )=a (x -h )2+k (a >0)在区间[m ,n ]上最值问题,有以下结论: (1)若h ∈[m ,n ],则y min =f (h )=k ,y max =max{f (m ),f (n )}; (2)若h ∉[m ,n ],则y min =min{f (m ),f (n )}, y max =max{f (m ),f (n )}(a <0时可仿此讨论). 3.函数奇偶性与单调性的差异.函数的奇偶性是相对于函数的定义域来说的,这一点与研究函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只是对函数定义域内的每一个值x ,都有f (-x )=-f (x )[或f (-x )=f (x )],才能说f (x )是奇函数(或偶函数).§1.3 习题课双基演练1.D [由已知,令2k +1<0,解得k <-12.]2.C [由f (a )-f (b )a -b >0,知f (a )-f (b )与a -b 同号,由增函数的定义知选C.]3.C [∵a +b >0,∴a >-b ,b >-a .由函数的单调性可知,f (a )>f (-b ),f (b )>f (-a ). 两式相加得C 正确.]4.C[由图象可知,当x=0时,f(x)取得最大值;当x=-32时,f(x)取得最小值.故选C.]5.130解析偶函数定义域关于原点对称,∴a-1+2a=0.∴a=1 3.∴f(x)=13x2+bx+1+b.又∵f(x)是偶函数,∴b=0. 6.(-∞,-1)解析若a≥0,则12a-1>a,解得a<-2,∴a∈∅;若a<0,则1a>a,解得a<-1或a>1,∴a<-1.综上,a∈(-∞,-1).作业设计1.B[由已知得f(x1)=f(-x1),且-x1<0,x2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x1)<f(x2),则f(-x1)<f(x2)得-x1<x2,x1+x2>0.故选B.] 2.C[判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x=0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x2,x∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x2+x,x∈[-1,1],有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x∈[-a,a],根据确定一个函数的两要素知,a取不同的实数时,得到不同的函数.故④错误.综上可知,选C.]3.A[f(x)=2xx2+2,f(-x)=-f(x),选A.] 4.D[当t>0时f(x)的图象如图所示(实线)对称轴为x=-t2,则t2=12,∴t=1.]5.D[当-5≤x≤-1时1≤-x≤5,∴f(-x)≥3,即-f(x)≥3.从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同,故f(x)在[-5,-1]上是减函数.故选D.]6.D[依题意,因为f(x)是偶函数,所以f(x-1)<0化为f(|x-1|)<0,又x∈[0,+∞)时,f(x)=x-1,所以|x-1|-1<0,即|x-1|<1,解得0<x<2,故选D.]7.1解析f(x)为[-1,1]上的奇函数,且在x=0处有定义,所以f(0)=0,故a=0.又f(-1)=-f(1),所以--1-b+1=1b+1,故b=0,于是f(x)=-x.函数f(x)=-x在区间[-1,1]上为减函数,当x取区间左端点的值时,函数取得最大值1. 8.-1解析∵f(-0)=-f(0),∴f(0)=0,且f(2)=22-3=1.∴f(-2)=-f(2)=-1,∴f(-2)+f(0)=-1.9.a>-3解析∵f(x)=x2+2x+a=(x+1)2+a-1,∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0,即3+a>0,∴a>-3.10.(1)证明设x1<x2<0,则-x1>-x2>0.∵f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2).∵f(x)是奇函数,∴f(-x1)=-f(x1),f(-x2)=-f(x2),∴-f(x1)>-f(x2),即f(x1)<f(x2).∴函数f(x)在(-∞,0)上是增函数.(2)解若x>0,则f(x)<f(1),∴x<1,∴0<x<1;若x<0,则f(x)<f(-1),∴x<-1.∴关于x的不等式f(x)<0的解集为(-∞,-1)∪(0,1).11.(1)证明设0<x1<x2<1,则x1x2>0,x1-x2<0.又b>1,且0<x1<x2<1,∴x1x2-b<0.∵f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2>0,∴f(x1)>f(x2),所以函数f(x)在(0,1)上是减函数.(2)解设0<x1<x2<1,则f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2由函数f(x)在(0,1)上是减函数,知x1x2-b<0恒成立,则b≥1. 设1<x1<x2,同理可得b≤1,故b=1.x∈(0,+∞)时,通过图象可知f(x)min=f(1)=a+2=3.故a=1.12.(1)证明设x1>x2≥0,f(x1)-f(x2)=(1-1x1+1)-(1-1x2+1)=x1-x2(x1+1)(x2+1).由x1>x2≥0⇒x1-x2>0,(x1+1)(x2+1)>0,得f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在定义域上是增函数.(2)解g(x)=f(x+1)-f(x)=1(x+1)(x+2),g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解(1)作OH,DN分别垂直DC,AB交于H,N,连结OD.由圆的性质,H是中点,设OH=h,h=OD2-DH2=4-x2.又在直角△AND中,AD=AN2+DN2=(2-x)2+(4-x2)=8-4x=22-x,所以y=f(x)=AB+2AD+DC=4+2x+42-x,其定义域是(0,2).(2)令t=2-x,则t∈(0,2),且x=2-t2,所以y=4+2·(2-t2)+4t=-2(t-1)2+10,当t=1,即x=1时,y的最大值是10.。
一、选择题
1.下列各式中,正确的是( )
A.23∈{x|x≤3} B.23∉{x|x≤3}
C.23⊆{x|x≤3} D.{23} {x|x≤3}
答案 B
解析23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A,C不正确,又集合{23}{x|x≤3},故D不正确.
2.[2016·成都七中高一月考]下列四个集合中,表示空集的是( )
A.{0}
B.{(x,y)|x2+y2=0,x,y∈R}
C.{x||x|=5,x∈Z,x∉N}
D.{x|2x2+3x-2=0,x∈N}
答案 D
解析A中,{0}有元素0,不是空集;B中,集合为{(0,0)},不是空集;C中,集合为{-5},不是空集;D中,方程没有非负整数解,为空集,选D.
3.[2016·福建漳州高一质检]定义集合A*B={x|x∈A,且x∉B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为( ) A.1 B.2
C.3 D.4
答案 D
解析A*B中的元素有{1,7},
∴A*B的子集个数为22=4个,选D.
4.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A ⊆C,则集合A的个数是( )
A.8 B.3
C.4 D.1
答案 C
解析若A=∅,则满足A⊆B,A⊆C;若A≠∅,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.
5.[2016·浏阳高一检测]已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )
A.1个B.2个
C.3个D.4个
答案 C
解析A={x|3≤x2≤5}={2,-2},它的真子集有∅,{2},{-2},共3个.
二、填空题
6.已知集合U,S,T,F之间的关系如下图所示,下列关系中错误的有________.(只填序号)
①S U;②F T;③S T;④S F;⑤S F;⑥F U.
答案②④⑤
解析根据子集、真子集的Venn图,可知S U,S T,F U
正确,其余错误.
7.[2016·玉溪高一检测]已知集合A ={x |-2≤x ≤3},B ={x |x ≥m },若A ⊆B ,则实数m 的取值范围为________.
答案 m ≤-2
解析 由已知A ⊆B ,画数轴
可得m ≤-2.
8.设x ,y ∈R ,A ={(x ,y )|y =x },B =⎩⎨⎧⎭
⎬⎫ x ,y ⎪⎪⎪⎪
y x =1,则A ,B 的关系是________.
答案 B A
解析 A 中(x ,y ),x ∈R ,y ∈R ,所以A 表示直线y =x 上所有点构成的集合.
B 中的x ≠0,所以B 表示直线y =x 上所有点构成的集合,但除
去原点.
∴B A . 三、解答题
9.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0}.若A =B ,求a 的值.
解 由A =B 及集合中元素特点可得
⎩⎪⎨⎪⎧ a 2-1=0,a 2-3a =-2,解得⎩⎪⎨⎪⎧
a =±1,
a =1或a =2,
∴a =1. 把a =1代入验证,满足集合中元素的互异性. ∴a =1.
10.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.
解由x2+x-6=0,得x=2或x=-3.
所以M={2,-3}.
若a=2,则N={2},此时N M;
若a=-3,则N={2,-3},此时N=M;
若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.。