第一章控制原理拉氏变换
- 格式:doc
- 大小:196.00 KB
- 文档页数:13
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表 序号 F(s) f(t) 序号 F(s) f(t)11 1121(t) 123t13414511+Ts Tte T-1 156)(1a s s +ate --1167)1(1+Ts sTt e--117)1sin(122ϕξωξωξω----t e n t nn8189191020三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
自动控制原理课程教案-附录1-拉普拉斯变换附录1. 拉普拉斯变换附录1.1拉氏变换的定义如果有一个以时间为变量的函数()f t ,它的定义域是0t >,那么拉氏变换就是如下运算式()()st t F s f t e dt ∞=⎰ A-1式中s 为复数。
一个函数可以进行拉氏变换的充分条件是 (1) 在0t <时,()0f t =;(2) 在0t ≥时的任一有限区域内,()f t 是分段连续的; (3) 0()st f t e dt ∞<∞⎰在实际工程中,上述条件通常是满足的。
式A-1中,()F s 成为像函数,()f t 成为原函数。
为了表述方便,通常把式A-1记作()[()]F s L f t =如果已知象函数()F s ,可用下式求出原函数1()()2c j st c j f t F s e ds j π+∞-∞=⎰ (A-2)式中c 为实数,并且大于()F s 任意奇点的实数部分,此式称为拉氏变换的反变换。
同样,为了表述方便,可以记作1()[()]f t L F s -=为了工程应用方便,常把()F s 和()f t 的对应关系编成表格,就是一般所说的拉氏变换表。
表A-1列出了最常用的几种拉氏变换关系。
一些常用函数的拉氏变换附录1.1.1单位阶跃函数的拉氏变换这一函数的定义为0, 0()0, 0t u t t <⎧=⎨>⎩它表示0t =时,突然作用于系统的一个不变的给定量或扰动量,如图3-1所示。
单位阶跃函数的拉氏变换为0011()[]st st F s e dt e s s∞--∞==-=⎰ 在进行这个积分时,假设s 的实部比零大,即Re[]0s >,因此lim 0st t e -→∞→附录1.1.2 单位脉冲函数的拉氏变换单位脉冲函数也是作为自动控制系统常用的标准输入量。
它是在持续时间0ε→期间内作用的矩形波,其幅值与作用时间的乘积等于1,如图3-3所示。
拉普拉斯变换拉普拉斯变换简称拉氏变换。
它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。
并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。
因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。
在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。
本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。
最后,介绍用拉氏变换解微分方程的方法。
在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。
2.1拉氏变换2.1.1拉氏变换的定义若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作[()]f t L 或)(s F ,并定义为:[()]()()e dL stf t F s f t t +∞-==⎰(2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。
原函数是实变量t 的函数,象函数是复变量s 的函数。
所以拉氏变换是将原来的实变量函数()f t 转化为复变量函数()F s 的一种积分运算。
在本书中,将用大写字母表示相对应的小写字母所代表的函数的拉氏变换。
必e 1[1()]1e d L st stt t ss+∞-+∞-=⋅=-=⎰(2.2) 在自动控制系统中,单位阶跃函数相当于一个实加作用信号,如开关的闭合(或断开),加(减)负载等。
⑵单位脉冲函数单位脉冲函数如图2.2所示。
其定义为()0t t t δ∞=⎧=⎨≠⎩ 同时,()d 1t t δ+∞=⎰,即脉冲面积为1。
而且有如下特性:()()d (0)t f t t f δ+∞-∞⋅=⎰(0)f 为()f t 在0t =时刻的函数值。
第一讲 拉普拉斯变换及其应用1.1基本要求1,熟悉拉氏变换的基本法则2,熟练掌握典型函数的拉氏变换式。
3,掌握用拉氏变换求解微分方程初值问题的思路。
4,熟练掌握求有理分式函数拉氏反变换的方法 1.2.重点讲解1, 对于学习本课程而言,广义积分式(拉氏变换的定义)的收敛性以及复变量主值积分式(反变换定义式)的计算,与正确地熟练地运用拉氏变换的基本法则相比不是主要的,因为在工程计算中可以用查表的方式来完成拉氏变换和拉氏反变换的计算。
而拉氏变换的基本法则的运用则直接关系到是否真正掌握这种变换的工具。
2,拉氏变换的线性性质源自定积分的线性性质,这说明作为一种变换关系,拉氏变换是线性变换。
应当指出线性关系并非所有变换都具有的性质,例如以十为底的对数可以看成正半数轴到数轴的变换关系,但关系式g()g g l a b l a l b +≠+说明取对数的运算显然不满足线性关系。
3, 为了保证拉氏变换的一一对应关系,总假定拉氏变换的定义式中的原函数()f t 在t 时为零。
即原函数应写成0<()1()f t t ⋅,根据单位阶跃函数1(t)的定义,这里()1()f t ⋅t 为()0()1()00f t t f t t t > ⋅=<下面给出()f t 、()1()f t t ⋅、、0()1()f t t t ⋅−00()1(f t t t t )−⋅−、0(f t t )−的函数关系,以说明通常所说“将()f t 延迟t ” 的正确表示。
显然应当是图1-1中的(d) ,不是(c)或(e) 0()1()f t t ⋅0()1()f t t t ⋅−00()1()f t t t t −⋅− (d)(c)(b) (a) (e)图1-1 将()f t 延迟t基于上述认识,就能正确表达图形和用延迟定理求出某些图形的拉氏变换式。
例题1-2图1-2 波形图求图1-2中的波形的拉氏变换。
解 图1-2中的波形可以看成、()1()t t ⋅001(t t t t )−⋅−、t t 01()t 0⋅−这三个信号的代数和,读者可画出这三个信号的波形图以验证下式的正确性。
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表)1sin(122ϕξωξωξω----t e n t nn三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s), 则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
自动控制原理总结第一章绪论技术术语1.被控对象 :是指要务实现自动控制的机器、设施或生产过程。
2.被控量:表征被控对象工作状态的物理参量 (或状态参量 ),如转速、压力、温度、电压、位移等。
3.控制器:又称调理器、控制装置,由控制元件构成,它接受指令信号,输出控制作用信号于被控对象。
4.给定值或指令信号 r(t) :要求控制系统按必定规律变化的信号,是系统的输入信号。
5.扰乱信号 n(t) :又称扰动值,是一种对系统的被控量起损坏作用的信号。
6.反应信号 b(t) :是指被控量经丈量元件检测后回馈送到系统输入端的信号。
7.偏差信号 e(t):是指给定值与被控量的差值,或指令信号与反应信号的差值。
闭环控制的主要长处:控制精度高,抗扰乱能力强。
弊端:使用的元件多,线路复杂,系统的剖析和设计都比较麻烦。
对控制系统的性能要求:稳固性迅速性正确性稳固性和迅速性反应了系统的过渡过程的性能。
正确性是权衡系统稳态精度的指标,反应了动向过程后期的性能。
第二章控制系统的数学模型拉氏变换的定义:F ( s) f ( t )e- st d t几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加快函数4.指数函数e-at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数 (δ函数 )拉氏变换的基本法例1.线性法例2.微分法例3.积分法例Lf ( t )d t1F ( s )s4.终值定理e( ) lim e( t ) lim sE ( s)ts 05.位移定理L f (t)e 0 s F(s)Le atf ( t )F ( s a )传达函数: 线性定常系统在零初始条件下, 输出信号的拉氏变换与输入信号的拉氏变换之比 称为系统 (或元零件 )的传达函数。
动向构造图及其等效变换1.串连变换法例2.并联变换法例3.反应变换法例4.比较点前移“加倒数”;比较点后移“加自己”。
5.引出点前移“加自己”;引出点后移“加倒数” 梅森( S. J. Mason )公式求传达函数典型环节的传达函数 1.比率 (放大 )环节 2.积分环节 3.惯性环节 4.一阶微分环节 5.振荡环节G ( s)12 s 22 Ts 1T C ( s ) = 1 n6.二阶微分环节( s )P k kR ( s )k 1第三章时域剖析法二阶系统剖析2nKJF2nJ2 n(完整版)自动控制原理知识点汇总二阶系统的单位阶跃响应1.过阻尼 ξ>1 的状况 :系统闭环特色方程有两个不相等的负实根。