基于模糊PID算法的电阻炉温度控制系统设计
- 格式:doc
- 大小:480.50 KB
- 文档页数:6
《基于模糊PID控制的电锅炉温度控制系统的研究》篇一一、引言电锅炉作为一种常见的供暖设备,其温度控制系统的稳定性和准确性对于保障供暖效果、提高能源利用效率以及保护设备安全具有重要意义。
传统的PID控制方法在电锅炉温度控制中已经得到了广泛应用,但仍然存在一些不足,如对参数的调整和适应环境变化的能力较弱。
因此,本文提出了一种基于模糊PID控制的电锅炉温度控制系统,旨在提高系统的控制精度和稳定性。
二、电锅炉温度控制系统的现状与挑战电锅炉温度控制系统主要通过控制加热功率来实现对水温的精确控制。
传统的PID控制方法在电锅炉温度控制中已取得了良好的效果,但在实际应用中仍面临一些挑战。
例如,系统对外部干扰的抗干扰能力较弱,且难以适应不同工况下的参数变化。
此外,传统PID控制方法对于非线性系统的控制效果也不理想。
三、模糊PID控制原理及优势模糊PID控制是一种结合了模糊控制和PID控制的混合控制方法。
它通过引入模糊逻辑对PID参数进行在线调整,从而提高系统对外部环境变化的适应能力。
相比传统PID控制方法,模糊PID控制具有以下优势:1. 适应性强:模糊PID控制能够根据实际工况对PID参数进行在线调整,具有较强的适应性和抗干扰能力。
2. 控制精度高:通过模糊逻辑对PID参数进行优化,可以提高系统的控制精度和稳定性。
3. 灵活性好:模糊逻辑的引入使得系统能够处理更为复杂的非线性问题,提高系统的灵活性。
四、基于模糊PID控制的电锅炉温度控制系统设计本文设计的基于模糊PID控制的电锅炉温度控制系统主要包括以下几个部分:1. 模糊控制器设计:根据电锅炉温度控制系统的特点,设计合适的模糊控制器。
通过分析系统误差和误差变化率,利用模糊逻辑对PID参数进行在线调整。
2. PID控制器设计:根据系统需求,设计合适的PID控制器。
通过调整比例、积分和微分系数,实现对电锅炉温度的精确控制。
3. 系统实现:将模糊控制器与PID控制器相结合,形成基于模糊PID控制的电锅炉温度控制系统。
科技与创新┃Science and Technology&Innovation ·96·2018年第13期文章编号:2095-6835(2018)13-0096-02基于模糊PID的电热炉温度智能控制系统张少杰(广东新功电器有限公司,广东潮州515700)摘要:随着科学技术的持续发展,智能化技术和设备开始向社会中的各行各业渗透,比如石化行业、电厂建设行业、机械制造行业、食品加工行业等,都会应用到温度控制系统。
基于此,将立足于现实需求,提出一种新型的控制方法,将PID与模糊控制相结合,以此来实现电热炉温度控制、节能等目标。
对电热炉温度控制系统的工作机理进行了分析,并对系统的设计与实现加以阐述,最终通过仿真分析的方式展现系统的使用效果。
关键词:模糊PID;电热炉;智能控制;温度控制系统中图分类号:TP273文献标识码:A DOI:10.15913/ki.kjycx.2018.13.096由于现阶段多个行业和领域中都将应用到温度控制系统,需要控制温度的对象多种多样,部分控制对象之间存在一定的差距,参数的变化幅度较大,且还存在诸多干扰因素。
在此背景下,工业热处理生产中采用了电热炉,其具有非线性、升温和保温等特征,并且通过智能控制系统使设备的控制精度得到进一步提升。
1电热炉温度智能控制系统的工作机理1.1生产过程及要求模糊PID电热炉温度智能控制系统的主要功能是对产品进行加热和烘干。
在实际加热过程中,主要通过封闭式的方式进行加热,利用PID调节气对电热炉的温度进行控制和改变,使其能够以更加适宜的温度投入到产品的生产加工工作当中。
1.2基本原理在模糊PID智能控制原理的应用中,作为典型的例子便是电热炉温度控制,具有非线性、随时间改变、升温与保温等特点,其中,升温主要是通过增加电热炉温度的方式来实现;而降温则主要是通过对电热炉温度的降低来实现。
如果电热炉的温度超出了最高或最低的界定值,则很难实现温度的改变,此时便产生了设备故障问题。
基于模糊PID的电阻炉温度控制器的设计与仿真研究摘要电阻炉是一种具有纯滞后的大惯性系统,开关炉门、加热材料、环境温度以及电网电压等都影响控制过程,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。
因此本文将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应地在线对PID参数进行修改,借此提高其控制效果。
本文首先采用机理分析法对电阻炉正常工作时的温度对象进行分析,从理论上建立电阻炉被控对象的数学模型。
其次文中设计了三种控制系统。
一种是PID控制系统,一种是纯模糊控制系统,还有一种是模糊PID控制系统。
本文分析研究了常规PID控制方案、模糊控制方案,并分别对电阻炉PID控制系统、纯模糊控制系统进行仿真分析。
结果表明PID控制系统超调量太大,模糊控制系统虽然能有效减少超调量,但稳态误差较大。
针对PID控制和模糊控制的优缺点,设计了基于模糊自适应PID的电阻炉温度控制器。
模糊自整定PID控制是在一般PID控制系统的基础上,加上一个模糊控制规则环节,利用模糊控制规则在线对PID参数进行修改的一种自适应控制系统。
对电阻炉的模糊自适应PID 控制系统进行仿真分析,结果表明模糊自适应PID控制可实现调节时问短、超凋量小、稳态误差在±l℃内的性能指标,并对该控制方案的抗干扰性,鲁棒性进行了仿真分析,进一步验证了该控制方案是一种较为理想的智能型控制方案。
关键词:电阻炉,仿真,PID控制,模糊控制,模糊自适应PID控制Based on Fuzzy PID Resistance Furnace Temperature Controller Design and SimulationABSTRACTResistance furnace has pure lag and larger inertia. There are many factors which affect controlling process, such as opening and closing furnace door, heated metal material, surrounding temperature and wire power. In tradition, heating furnace controlling system is most based on some model, which can’t achieve heating process request. So this paper try in draught fuzzy controlling arithmetic into traditional heating furnace controlling system to form brainpower fuzzy control system. It makes using of fuzzy control rule to self-tuning PID parameters on line, and improving its control effect.This paper adopted the main research contents of resistance furnace mechanism analysis on the normal temperature object when analyzed theoretically establish resistance furnace, the mathematical model of the controlled object. This paper designs the three control system. One is the PID control system; One is pure fuzzy control system, the other is the fuzzy PID control system. The paper studies the conventional PID control scheme, the fuzzy control scheme, and to resistance furnace respectively the PID control system, pure fuzzy control system simulation analysis. Results show that the PID control system overshoots too big, fuzzy control system, while can effectively reduce overshoot meal, but the steady-state error is bigger. Aimed at the PID control and fuzzy control, design the advantages and disadvantages of based on fuzzy adaptive PID resistance furnace temperature controller. to the resistance furnace fuzzy adaptive PID control system simulation analysis, and the results show that the fuzzy adaptive PID control can be realized when asked short, ultra adjust remains in small amount and steady-state error of plus or minus l within±l℃, and the performance of the control scheme, anti-jamming robustness simulation analysis, further verified this control scheme is an ideal intelligent control scheme.KEY WORDS: resistance furnace,stimulation,PID control,fuzzy control,fuzzy self-tuning PID control目录摘要 (I)ABSTRACT (II)目录 (III)1绪论 (1)1.1课题背景及意义 (1)1.2国内外研究现状 (2)1.3本文的研究内容 (2)2自动控制技术的发展及电阻炉温的数学模型 (3)2.1自动控制技术的发展 (3)2.1.1自动控制技术及应用 (3)2.1.2过程控制的发展 (4)2.1.3传统控制方法 (4)2.1.4智能控制 (5)2.2电阻炉温的数学模型 (6)3 PID控制系统 (8)3.1 PID控制的基本理论 (8)3.2 各个参数对PID控制效果的影响 (8)3.3 PID控制器的仿真研究 (9)4 模糊控制系统 (11)4.1模糊控制的起源 (11)4.2 模糊控制的基本理论 (11)4.3 模糊控制器的设计 (12)4.3.1模糊控制器的结构选择 (13)4.3.2 精确量的模糊化 (14)4.3.3 建立模糊控制规则或控制算法 (15)4.3.4 模糊推理 (15)4.3.5 反模糊化 (16)4.3.6 模糊控制表的制定 (16)4.4 模糊控制器的仿真研究 (17)5 模糊PID控制系统 (21)5.1模糊PID控制器的原理 (21)IV5.2 电阻炉温度的模糊PID控制器的设计 (22)5.3模糊自适应PID控制器的仿真研究 (25)5.4与传统PID控制和模糊控制的仿真比较 (28)结论 (30)致谢 (31)参考文献 (32)基于模糊PID的电阻炉温度控制器的设计与仿真研究 11绪论1.1课题背景及意义从20世纪20年代开始,随着科学技术的发展和工业生产水平的提高,电阻炉已经得到了广泛的应用,并且在国民经济中占有举足轻重的地位。
基于模糊-PID的电阻炉温度控制系统的研究的开题
报告
一、研究背景和意义
电阻炉在工业生产过程中广泛用于熔炼、加热和烘干等工艺,温度
控制是保证电阻炉正常运行和产品质量稳定的重要因素之一。
传统的PID 控制器常常难以满足电阻炉温度控制的要求,尤其是在控制精度、响应
速度和稳定性等方面存在一定的局限性。
模糊控制是一种基于模糊数学理论的先进控制方法,它可以用于处
理具有模糊性的系统,对于电阻炉的温度控制具有很好的应用前景。
本
研究旨在利用模糊控制的思想,设计一种基于模糊-PID的电阻炉温度控
制系统,提高系统的控制精度和响应速度,使其具有更好的稳定性和自
适应性。
二、研究内容和方法
1. 建立电阻炉温度控制数学模型,分析系统的动态特性和控制要求;
2. 设计基于模糊控制的温度控制系统,包括模糊控制器和PID控制
器的结合;
3. 分析模糊控制参数的选择和调试方法,提高控制系统的稳定性和
自适应性;
4. 搭建电阻炉温度控制系统的实验平台,进行控制算法的实验验证
和性能评估;
5. 最终实现一个基于模糊-PID的电阻炉温度控制系统原型,并对其进行实际应用测试。
三、预期成果和意义
1. 设计一种基于模糊-PID的电阻炉温度控制系统,提高系统的控制精度和响应速度,使其具有更好的稳定性和自适应性;
2. 针对电阻炉温度控制这一特殊需求,探索并验证了一种新的控制思路和方法,为电阻炉温度控制技术的进一步研究和发展提供了新的思路和参考;
3. 实现了一个基于模糊-PID的电阻炉温度控制系统原型,为实际生产过程中的应用提供了可靠的技术支持和实用化解决方案。
基于模糊PID算法的电阻炉温度控制系统设计来自:网络引言电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。
而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。
且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。
模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。
将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。
基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。
该控制器控制精度高,具有较高的灵活性和可靠性。
2温度控制系统硬件设计该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。
由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。
此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。
一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。
基于模糊PID算法的温度控制系统的设计基于模糊PID算法的温度控制系统的设计摘要:本文主要介绍了基于模糊PID算法的温度控制系统的设计。
首先介绍了温度控制系统的背景和重要性,然后详细介绍了PID控制算法和模糊PID控制算法的原理和特点。
接着,我们设计了基于模糊PID算法的温度控制系统,并进行了实验验证,测试了系统的控制性能。
最后,对实验结果进行了分析和总结。
关键词:温度控制系统;PID控制算法;模糊PID控制算法;控制性能1. 引言随着科学技术的发展和工业生产的进步,温度控制在各个领域都起着重要的作用,如工业生产中的温度控制、环境监测中的温度控制等。
传统的温度控制系统采用PID控制算法,能够较好地实现控制目标。
然而,对于存在非线性、时变性、模型不准确等问题的温度控制系统来说,传统的PID控制算法不一定能够获得满意的控制效果。
因此,引入模糊PID控制算法成为了一个研究热点。
2. PID控制算法和模糊PID控制算法的原理和特点2.1 PID控制算法的原理和特点PID控制算法是一种经典的控制算法,由比例、积分和微分三个部分组成。
具体来说,PID控制器根据当前的偏差,分别计算比例部分、积分部分和微分部分的控制量,最后将这三个控制量进行线性组合,得到最终的控制量。
PID控制算法具有简单、稳定性好等特点,被广泛应用于工业控制领域。
2.2 模糊PID控制算法的原理和特点模糊PID控制算法是PID控制算法与模糊控制算法相结合的一种控制方法。
模糊控制算法能够处理非线性、不确定性的系统,因此在对温度控制系统进行非线性控制时,模糊PID控制算法可以更好地适应系统的变化。
模糊PID控制算法的核心思想是将PID控制算法中的参数进行模糊化,使得控制器能够根据当前的控制误差和误差的变化率进行模糊推理,从而实现对温度控制系统的精确控制。
3. 基于模糊PID算法的温度控制系统的设计3.1 系统结构设计基于模糊PID算法的温度控制系统包括传感器、执行器、温度控制器等部分。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1炉温控制系统结构及工作原理 (2)2模糊控制器的设计 (3)2.1输入、输出的模糊化 (3)2.2模糊控制规则 (4)2.3模糊推理 (5)2.4模糊判决 (5)2.5数字PID算法 (5)3利用MATLAB模糊逻辑工具箱设计模糊控制器过程 (6)3.1利用MATLAB模糊推理工具箱编辑模糊控制器过程 (6)3.1.1编辑模糊变量及变量的隶属度函数 (6)3.1.2编辑输入、输出变量的隶属函数 (6)3.1.3编辑模糊控制规则 (6)3.1.4模糊控制的生成 (7)3.2仿真模型的建立 (7)3.2.1对仿真结构图进行说明 (7)3.2.2注意仿真前,先进行部分设置 (8)3.3仿真结果 (8)4MATLAB与VC++的混合编程介绍 (9)5温控制系统软件的介绍 (11)5.1软件实现功能 (11)5.2界面简介 (11)6模糊PID控制ActiveX控件的编制 (12)致谢 (13)参考文献 (13)附录A (13)基于模糊PID控制的电阻炉温度控制系统摘要:电阻炉是一个特性参数随炉温变化而变化的被控对象,炉温控制具有大惯性、大滞后、时变性的特点。
传统PID难以达到较高要求,故本文应用一种参数自适应模糊PID 控制方法,根据系统误差E和误差变化率EC对参数的要求在线整定PID参数KP、KI、KD。
在用SIMULINK仿真过程中,该控制器比常规PID具有良好的动、静态特性。
简介了Matlab与Visual C++联合编程技术,采用Matlab与Visual C++联合编程和ActivcX技术将模糊PID控制ActivcX控件嵌入VC控制系统中,可使炉温准确快速地跟随设定值。
另外,该系统可实时直观显示温度值和炉内加热电压值。
关键词:电阻炉温度控制系统 ; 自适应 ; 混合编程 ; ActiveXThe Application of Fuzzy-PID inTemperature Control of Electric Resistance FurnaceStudent majoring in Automation Zhao LiTutor Shi XunwenAbstract:As the model parameters of resistance furnace vary with temperature , it show some character of big inertial,pure delay and inconstancy. The traditional method can't meet the higher technological requirements. Therefore,this paper applies a Parameter Self-tuning Fuzzy PID Controller's method to rectify the parameters of PID controller online to meet the command in the case with variational error and its variance ratio .Based on the simulink, a powerful simulation platform, the practice proves that the method has better steady accuracy and tracking performance than the traditional.The ActivcX along with the union programming technology of Matlab and Visual C++ was introduced and be used to realized the Fuzzy-PID controller, which can make the initial temperature of electric resistance furnace followed by current temperature quickly and exactly. Therefore, the temperature and voltage are also applied in the control system pane.Key words:Temperature Control system of Electric Resistance Furnace; self-adaptation; union programming ; ActiveX引言PID控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的确定性控制系统。
基于模糊PID控制的锅炉炉温系统的设计(一)近年来,随着工业生产的不断发展和进步,越来越多的企业开始采用自动化系统进行生产管理,其中锅炉炉温系统更是其中的重要组成部分。
传统的PID控制方法带有较大的误差,无法精准地控制温度,因此近年来基于模糊PID控制的炉温控制系统备受关注。
本文主要介绍基于模糊PID控制的锅炉炉温系统的设计。
一、炉温控制系统结构设计1.硬件方案设计将炉温控制系统分为三个部分:输入,处理和输出。
输入部分为传感器测量的实际炉温,处理部分为模糊PID控制器,输出部分为执行器控制给燃料增加或减少。
2.软件方案设计使用模糊PID控制器作为处理部分,采用模糊推理对控制量进行处理,实现对炉温的实时控制。
二、模糊PID控制详解1.模糊集合及模糊规则使用隶属度函数描述不同温度下炉温的模糊集合,例如:温度为"寒冷","凉爽","温暖","炙热"等。
同时,定义规则,将输入变量和输出变量进行相关联,例如:当实际温度为“寒冷”且误差为“负大”,则控制器输出“大电流”。
2.模糊推理过程模糊推理过程是指根据模糊集合和规则进行模糊推论,得出控制量。
推理过程采用模糊逻辑运算,使用"并"、"或"、"非"等运算符进行表达,以得到最终的控制信号。
3.模糊PID控制器参数设计使用实验测量方法获取系统响应曲线,通过最小二乘法计算出比例系数、积分系数和微分系数,以确定PID控制器参数。
三、实验结果分析通过实验测量,得到模糊PID控制器的响应曲线,与传统PID控制器进行对比,结果表明基于模糊PID控制的锅炉炉温系统控制效果更好,误差更小、响应速度更快。
总之,基于模糊PID控制的锅炉炉温系统设计能够有效地改善传统PID 控制的炉温控制方式,精准控制锅炉炉温,同时适应于复杂的工业生产过程,具有广泛的实际应用价值。
基于模糊PID控制的电锅炉温度控制系统的研究摘要温度控制在工业控制中一直是富有新意的课题,对于不同的控制对象有着不同的控制方式和模式。
温度系统惯性大、滞后现象严重,难以建立精确的数学模型,给控制过程带来很大难题。
本文以电锅炉为研究对象,研究一种最佳的控制方案,以达到系统稳定、调节时间短且超调量小的性能指标。
本文对电锅炉可采用的控制方案进行了深入研究,首选的研究方案是PID控制。
温度PID控制器的原理,是将温度偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。
PID控制的重点是参数的调节,本文利用了Ziegler-Nichols. Chien-Hrones和人工整定方法对其参数进行整定。
第二个研究方案是模糊控制,研究了模糊控制的机理,确定了电锅炉模糊控制器的结构。
通过对电锅炉温升特点的分析,建立了模糊控制规则表。
借助matlab中的Simulink和Fuzzy工具箱,对电锅炉PID控制系统和模糊控制系统进行仿真分析。
结果表明当采用PID算法时,系统的超调量与调节时间,不能同时满足技术要求。
当采用模糊控制时,超调量与调节时间虽然同时满足技术要求,但系统出现了稳定误差。
因此本文将模糊控制的智能性与PID控制的通用性、可靠性相互结合,设计了一种参数自整定模糊PID控制器,采用模糊推理的方法实现PID参数称、凡和凡的在线整定。
经仿真研究,参数自整定模糊PID控制效果达到了电锅炉温度控制系统的性能指标,是一种较为理想的智能性控制方案。
在分析电锅炉供暖系统对控制器要求的基础上,研制了以PIC16F877A单片机为核心部件的温度智能控制器,实现了温度的采集与控制、超限报警等各种功能。
在进行硬件电路设计的同时,也进行了相应软件设计,并将本文所提出的模糊PID算法引入到软件设计中,给出了主程序流程图、模糊PID算法工作流程图和温度采集流程图等。
Research on Fuzzy PID Control System ofTe m pe raturef orE lectricB oilerAbstractTem p er aturec ontroli sa t opicf ullo fn ew meaningsi n industry,to diferentcontrol object, there are diferent methods and modes. But it is dificult to control well because of characteristics of the temperature itself, such as its great inertia, serioust ime-laga ndt hed ifficulty toe stablisha na ccuratem athematicalm odelo fth e object. A duty in this thesis is to study a kind of appropriate control method to the temperatureo fth ee lectricb oiler.It s'te chnologyr equirementsa er:re gulatingt ime mustb es hort,o vershootm ustb es malla ndt hec ontrolsy stem mustb es table.Th em e thodo ft hee lectricb oilerc ontrolis s tudiedd eeply byt het hesis.T hefirstis P IDc ontrol.P rincipleo fte mperatureP IDc ontrolleris t oc ontrolth eo bjectby the linear combination of temperature deviation's proportional, integral and derivative.Th ec ontrolke yi sth ep arametera djustment.T hep arameteris a djustedb y methods of Ziegler-Nichols, Chien-Hrones and artifical tuning in this thesis. The secondm ethodi sfu zzyc ontrol.T hef uzzyc ontrolth eoryi sst udieda ndt hee lectric boiler fuzzy controller structure is determined. The fuzzy control rule table isestablished through analysing the characteristic of the electric boiler temperature inthe thesis.In t hi st h esis,th eP ID controls ystem andf uzzyc ontrolsy stem ares imulatedb y using Simulink and fuzzy logic tools in MATLAB. Experimental results illustratethat the PID control is used in the system, regulating time and overshoot always can not achieve the specification .When fuzzy control is used, regulating time and overshoota lwaysc ana chievest hes pecification,b uts ystem causes teady-statee ror. So it comes to a new method of combining them together. The patameters of耳,Kand Kd are adjust by fuzzy inference. Experimental results illustrate that the fuzzy PID parameters controller achieved the system performance index. The method offuzzy PID control is a ideal method.In t hi sth esis,ba singo nt her equesto fth ee lectricb oilerh eatings ystemt ot he controller, a temperature controller of the electric boiler is designed, in which the目录第1章绪论 (3)1.1课题的提出与意义 (3)1.2工业控制的发展概况 (3)1.3传统控制方法的缺陷 (4)1.4智能控制方法概述 (4)1.4.1智能控制方法的起源、发展和分类 (4)1.4.2智能控制方法的特点 (5)1.5论文的主要研究内容 (6)第2章被控对象及控制策略研究 (6)2.1被控对象及其原有控制方案 (6)2.1.1被控对象分析 (6)2.1.2原有控制方案 (7)2.2控制策略研究 (8)2.2.IPID控制基本理论 (8)2.2.2设计PID控制器时注意事项 (10)2.3模糊控制理论 (11)2.3.1模糊控制的基本思想 (11)2.3.2模糊控制系统的组成及结构分析 (11)2.3.3模糊控制算法的实现 (14)2.3.4模糊控制方法的进展 (15)2.4本章小结 (16)第3章控制系统特性及仿真研究 (17)3.1电锅炉温度控制系统特性 (17)3.2仿真工具 (18)3.2.1 MATLAB简介 (18)3.2.2 Simulink开发环境和模糊逻辑工具箱 (18)3.3控制系统仿真研究 (20)3.3.1 PID控制器设计 (20)3.3.2 PID参数的整定 (21)3.4模糊控制器设计及模糊推理方法 (26)3.4.1模糊控制器的结构 (26)3.4.2温控系统的模糊控制器设计 (27)3.5.2控制系统参数自整定模糊PID控制 (32)3.6控制系统方案选择 (35)3.7本章小结 (35)结论 (36)参考文献 (36)致谢 (38)第1章绪论1.1课题的提出与意义在工业生产过程中,控制对象各种各样,温度是生产过程和科学实验普遍而且重要的物理参数之一。
《基于模糊PID控制的电锅炉温度控制系统的研究》篇一一、引言随着科技的发展,电锅炉作为现代供暖设备的重要组成部分,其控制系统的性能直接影响着供暖的效率和舒适度。
温度控制系统作为电锅炉的核心部分,其稳定性和准确性是保证电锅炉正常工作的关键。
传统的PID控制算法在电锅炉温度控制中已得到广泛应用,然而在某些非线性、时变性的复杂环境中,传统PID控制算法的控制效果并不理想。
因此,本研究将模糊控制理论与PID控制算法相结合,提出了一种基于模糊PID控制的电锅炉温度控制系统,以提高电锅炉的温控性能。
二、系统构成与工作原理本研究所提出的电锅炉温度控制系统主要由模糊PID控制器、电锅炉本体、温度传感器等部分组成。
其中,模糊PID控制器是本系统的核心部分,负责接收温度传感器的反馈信号,并根据预设的温度值对电锅炉进行控制。
系统的工作原理如下:首先,温度传感器实时检测电锅炉的水温,并将检测结果反馈给模糊PID控制器。
模糊PID控制器根据预设的温度值与实际温度值的差异,计算出控制量,并通过调节电锅炉的功率,实现对水温的精确控制。
三、模糊PID控制算法研究模糊PID控制算法是将模糊控制和PID控制相结合的一种控制算法。
该算法通过引入模糊控制理论,对传统PID控制算法进行优化,提高了系统的适应性和鲁棒性。
在模糊PID控制算法中,首先需要建立模糊规则库,包括输入变量的模糊化、输出变量的去模糊化以及模糊规则的制定等。
然后,根据实际温度值与预设温度值的差异,以及温差的变化率等参数,通过模糊推理机制计算出相应的控制量。
最后,将计算出的控制量作用于电锅炉,实现对水温的精确控制。
四、实验研究与结果分析为了验证基于模糊PID控制的电锅炉温度控制系统的性能,本研究进行了大量的实验研究。
实验结果表明,与传统的PID控制算法相比,基于模糊PID控制的电锅炉温度控制系统具有更好的稳定性和准确性。
在非线性、时变性的复杂环境中,该系统能够快速响应温度变化,实现对水温的精确控制。
基于模糊pid控制的电阻炉炉温系统的研究
电阻炉炉温系统是一种常用于工业生产中的加热设备,其用途广泛。
为了使炉温能够保持在所需的设定值附近,需要对电阻炉进行控制。
传统的PID控制器在控制电阻炉炉温时可能存
在一些问题,如参数调节困难、系统的非线性等。
因此,研究基于模糊PID控制的电阻炉炉温系统具有重要意义。
模糊控制是一种通过建立模糊规则来实现控制的方法,它可以处理系统的非线性以及复杂的控制任务。
模糊PID控制器将PID控制器与模糊控制相结合,能够克服传统PID控制在非线性系统控制中的一些问题。
基于模糊PID控制的电阻炉炉温系统的研究主要包括以下几
个方面:
1. 建立电阻炉炉温系统模型:通过分析电阻炉的热传导过程和控制机理,建立电阻炉炉温系统的数学模型,包括炉温和控制输入之间的关系。
2. 设计模糊PID控制器:根据电阻炉炉温系统的特点和要求,设计模糊PID控制器的结构和参数,并确定模糊规则的形式
和数量。
3. 模糊推理和模糊调节:利用模糊推理机制将系统的输入和输出转化为模糊集合,并通过模糊调节来实现控制器的参数调节。
4. 系统仿真与实验:通过在仿真环境下对电阻炉炉温系统进行
模拟实验,验证模糊PID控制器的性能和稳定性。
然后,可以进行实际的试验验证来进一步验证控制器的效果和鲁棒性。
通过对电阻炉炉温系统进行基于模糊PID控制的研究,可以提高电阻炉炉温控制的性能和稳定性,使其能够更好地适应工业生产的需求。
同时,该研究还可以为其他非线性系统的控制提供参考和借鉴。
基于PID算法的温度控制系统软件设计引言电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。
而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。
且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。
模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。
将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。
基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。
该控制器控制精度高,具有较高的灵活性和可靠性。
2温度控制系统硬件设计该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。
由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。
此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。
一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。
存档日期:存档编号:徐州师范大学科文学院本科生毕业论文(设计)论文题目:基于模糊PID的电阻炉温度控制系统设计姓名:学号:专业:电气工程及其自动化班级:指导教师:摘要电阻炉是一种具有纯滞后的大惯性系统,开关炉门、加热材料、环境温度以及电网电压等都影响控制过程,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。
近年来模糊PID控制在许多控制应用中都取得了成功,模糊PID控制应用于控制系统设计不需要知道被控对象精确的数学模型,对于许多无法建立精确数学模型的复杂系统能获得较好的控制效果,同时又能简化系统的设计,因此,在电阻炉温度控制系统中,模糊PID控制就成为较好的选择。
本文主要给出了电阻炉系统的模糊PID控制设计。
首先介绍了PID控制和模糊控制理论的相关知识,基于电阻炉的数学模型,提出了用PID和模糊PID理论实现对温度进行控制的方案,然后给出仿真,通过比较证明了模糊PID控制的可行性和优点。
关键词:温度控制模糊PID控制电阻炉仿真AbstractThe resistance furnace is a kind of pure inertial system lags behind the door,switch,environmental temperature and heating material,voltage control process,etc.Influence of traditional heating control system based on certain mostly based on the model,the heating process requirements to guarantee.In recent years,fuzzy PID control application in many the success, fuzzy PID control applied to control system design,need not know is accurate mathematical model for many cannot be established mathematical model of complex systems can gain better control effect, also can simplify system design,therefore,in the resistance furnace temperature control system,the fuzzy PID control becomes better choice. This paper discusses the application of fuzzy PID control system,control theory of resistance furnace is introduced first exhaustive PID control and fuzzy control theory of knowledge,and proposed in this foundation with PID and theory of fuzzy PID control scheme for temperature is established,based on the resistance furnace temperature of simple mathematical model of fuzzy PID controller,and then,by comparing the simulation proves its feasibility.Key words:Temperature control Fuzzy PID control The resistance furnace Simulation目录摘要 (I)Abstract (II)1绪论 (1)1.1课题的提出和意义 (1)1.2温度控制系统控制方案 (1)1.3本文的工作 (4)2模糊PID控制 (5)2.1常规PID控制 (5)2.2模糊控制 (9)2.3模糊PID控制 (13)3电阻炉温度控制系统的模糊PID设计 (16)3.1电阻炉系统数学模型的建立 (16)3.2电阻炉模糊控制器的建立 (18)3.3电阻炉模糊PID控制器设计 (20)4仿真研究与比较 (28)4.1PID控制 (28)4.2电阻炉模糊控制 (29)4.3电阻炉模糊PID控制 (29)4.4比较与总结 (30)5总结与展望 (32)致谢 (33)参考文献 (34)1绪论1.1课题的提出和意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章绪论1引言随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。
其中,温度是一个非常重要的过程变量。
例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制。
然而,用常规的控制方法,潜力是有限的,难以满足较高的性能要求。
采用单片机来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。
模糊PID单片机温度控制系统,是利用单片机作为系统的主控制器,测量电路中的温度反馈信号经A/D变换后,送入单片机中进行处理,经过模糊PID算法后,单片机的输出用来控制可控硅的通断,控制加热炉的输出功率,从而实现对温度的控制。
本设计运用MCS-51系列单片机集中的8051单片机为主控制器,对加热炉的温度进行智能化控制,最终通过软件设计来实现人机对话功能,实现对加热炉的温度控制。
本设计主要介绍模糊PID单片机温度控制系统,内容主要包括:采样、滤波、键盘显示、加热控制系统,单片机MCS-51的开发及系统应用软件的开发等。
全文共分四章。
第一章绪论介绍相关技术发展,系统设计概述及设计要求,方案论证。
第二章硬件电路的设计介绍主控电路核心MCS-51单片机AT80C51的基本结构和配置以及一些子模块的设计。
第三章典型芯片的介绍MAX6675 包括了A/D采样技术和数字滤波技术。
第四章软件设计介绍以模糊PID为主的温度控制算法及系统加热控制系统。
第五章主要是系统软件编程。
2单片机技术现状与发展单片机又称为微控制器(Microcontroller),是把中央处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、定时器/计数器、I/O接口电路等部件集成在一块芯片上的微型计算机。
《基于模糊PID的高精度温度控制系统》一、引言随着工业自动化程度的不断提高,高精度温度控制系统的需求日益增加。
在许多工业应用中,如化工、食品加工、冶金和医药等领域,对温度的精确控制显得尤为重要。
为了满足这些需求,传统的PID控制算法虽已得到广泛应用,但仍存在一些不足,如对非线性系统和外部干扰的鲁棒性较差。
因此,本文提出了一种基于模糊PID的高精度温度控制系统,旨在提高系统的控制精度和鲁棒性。
二、模糊PID控制原理模糊PID控制是一种将模糊控制和PID控制相结合的智能控制方法。
它通过引入模糊逻辑来优化传统的PID控制算法,使其能够更好地适应非线性系统和外部干扰。
1. 模糊逻辑原理模糊逻辑是一种处理不确定性和近似性的方法。
它通过将人类的经验和知识转化为模糊规则,实现对复杂系统的智能控制。
在模糊PID控制中,模糊逻辑主要用于调整PID控制器的参数,以适应不同的工作条件和外部环境。
2. PID控制原理PID控制是一种基于误差的反馈控制算法。
它通过比较系统输出与期望值之间的误差,计算出一个控制量来调整系统。
在温度控制系统中,PID控制器根据温度传感器测得的实时温度与设定温度之间的误差,计算出加热或冷却的控制量,以实现温度的精确控制。
三、基于模糊PID的高精度温度控制系统设计基于模糊PID的高精度温度控制系统主要由模糊控制器、PID控制器、执行机构和温度传感器等部分组成。
其中,模糊控制器和PID控制器是系统的核心部分。
1. 模糊控制器设计模糊控制器是系统的智能部分,它根据系统的实时状态和历史数据,通过模糊逻辑推理出合适的PID控制器参数。
模糊控制器的设计包括模糊化、知识库、推理机和去模糊化等部分。
其中,模糊化是将实时数据转化为模糊变量;知识库包括模糊规则和参数;推理机根据模糊规则和参数进行推理;去模糊化是将推理结果转化为实际的控制量。
2. PID控制器设计PID控制器是系统的执行部分,它根据模糊控制器输出的控制量,计算出实际的加热或冷却控制量。
基于模糊PID算法的电阻炉温度控制系统设计引言广告插播信息维库最新热卖芯片:LXT908PC EPC1LC20MAX153CAP ADG527AKR TLC542IFN MAX538BEPA CD54HC374F3A M62392FP LTC1643ALCGN CY7B145-25JC电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。
而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。
且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。
模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。
将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。
基于PID控制算法,以ADUC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。
该控制器控制精度高,具有较高的灵活性和可靠性。
2 温度控制系统硬件设计该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。
由图1可见,以内含C52兼容单片机的ADUC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。
基于模糊PID算法的电阻炉温度控制系统设计引言
电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。
而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。
且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。
模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。
将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。
基于PID控制算法,以ADUC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。
该控制器控制精度高,具有较高的灵活性和可靠性。
2 温度控制系统硬件设计
该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。
由图1可见,以内含C52兼容单片机的ADUC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。
此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。
一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。
达到控制电炉温度的目的。
如果实际测得的温度值超过了该系统所要求的温度范围,单片机就向报警装置发出指令,系统进行报警。
2.1 系统主控模块
系统主控模块电路如图2所示,它主要由CPU及数据存储器,晶体振荡器、复位电路、图形液晶显示器(LCD)及控制电路、微型打印机接口控制电路、实时日历时钟,热电偶信号处理电路等构成。
这里,该系统设计可测量3点温度。
传感器选择K型(镍铬-镍硅)热电偶,可用于从室温到1 200°C的温度测量,测量范围宽,精度高。
在温度测量范围内K型热电偶的输出热电势只有0~45.119 mV,为了和ADUC845的A /D转换器相匹配,采用ACl226和1B51作为信号调理电路,由AC1226、1B51构成热电偶冷端温度补偿及信号调理器电路。
当热端距测温仪表较远时,需利用热电偶匹配导线将冷端延长。
CD4051为多路模拟开关,由ABC控制接通,当5~3接通时,输入接地,UO输出UOmin,用于零点校准;当4~3接通时,单片机1.25 V稳定参考电压Uref,再经电阻R1、R2分压,得到毫伏级参考输入电压,UO输出UOmax,用于增益校准;当2~3、1~3、12~3分别分时接通时,依次输入3个热电偶正常测温所得变换电压,UO从而输出3个温度点所对应的电压UOA,UOB,UOC。
在HI端与+UISO端之间串上一只220 MΩ上拉电阻,一旦热电偶开路,HI端即被偏置为+UISO,迫使1B51的输出电压超量程,由此判定热电偶已开路。
多路模拟开关和测量数据采集过程在单片机协调下工作,每次数据采集都进行自动判断和校准阁。
2.2 控制输出驱动电路
对温度的控制是通过可控硅调功器电路实现,如图3所示。
双向可控硅管和硅碳棒串接在交流220 V、50 Hz交流市电回路中,图3中只给出了A相。
移相触发脉冲由ADUC845用软件在P1.3引脚上产生的,零同步脉冲同步后,经光耦合管和驱动器输出送到可控硅的控制极。
过零同步脉冲由过零触发电路产生,利用同步变压器和电压比较器LM311组成正弦交流电的正半波过零检测电路,它在交流电每一个正半周的
起始零点处产生上升沿.并在正半周回零处产生一个下降沿,电压比较器LM311用于把50 Hz正弦交流电压变成方波。
方波的正边沿和负边沿分别作为两个单稳态触发器的输入触发信号,单稳态触发器输出的2个窄脉冲经二极管或门混合后通过可重复触发集成单稳态触发器MC14528,单稳态输出的两路窄脉冲再叠加,就可得到对应于交流市电的100 Hz过零同步脉冲。
脉冲宽度可由MC14528的外接电阻R4和外接电容C1、C2调节。
此脉冲加到ADUC845的TO作为计数脉冲和INT1中断口触发INT1中断。
可控硅的过流、过压保护采用一般阻容保护电路。
R5是触发器输出限流电阻,R3用以消除漏电流,防止KP150的误触发。
3 温度控制系统软件设计
3.1 主程序及其功能
软件设计采用模块化设计原则。
控制程序主要由测量采样操作,温度参数设置界面的显示,操作按键的管理,测量过程,数据算法处理,输出控制的处理及测量结果显示等模块组成。
主模块是为其他模块构建整体框架及初始化工作。
调用运算和显示构成一个无限循环圈,温控的所有功能都在该循环圈中周而复始有选择执行。
除非掉电或复位,否则系统程序不会跳出该循环圈。
因浮点数运算占用时间较多,应将其作为单独模块。
控制算法模块包括:PID运算模块和PID参数自整定模块两部分,主要是相应控制算法的初始化及运算程序。
数学运算模块主要包括诸如带符号浮点数求补运算、带符号浮点数乘法、无符号浮点数除法以及浮点数加减法等运算子程序,供其他模块根据算法的需要随时调用。
显示设定和操作界面由菜单显示,用INTO中断完成。
界面中用线框框起来的符号和汉字表示当前起作用的按键,用“上下左右”按键移动光标和改变数据,按下确认键后选中有效,开始执行所选功能,按下返回键就回到上一级界面(菜单)。
数据的采集及预处理模块由TO计数定时产生中断,包括数字滤波、标度变换、显示刷新等部分,完成数据预处理及人机交互功能。
过零同步由交流过零触发产生INT1中断,并确定移相顺序,触发T1定时,产生移相脉冲,控制输出。
一旦中断,首先判断具体的中断源。
若是定时中断,则调用相应的模块完成定时服务;若是人机面板的按键中断,则在识别按键后,进入散转程序,随之调用相应的键盘处理服务模块。
无论是哪一个中断源产生中断,执行完相应的程序后均返回主模块,必要时修改显示内容,并开始下一轮循环。
图4所示为系统软件主程序流程。
3.2 模糊自整定PID算法程序
模糊自整定PID算法程序程序的总流程为:首先模糊整定,然后根据误差和误差变化率对PID的3个参数进行在线调整,把经过模糊调整后的PID参数作为最终的控制参数进行PID控制。
温度误差e和温度误差变化率△e的最坏情况值均取为100℃,在此建立的温度误差e和温度误差变化率△e的基本论域,数字量化确定e(k)的论域区间为[-128,128]。
这样就必须对温度误差e和温度误差变化率△e超过100°C.变换后的e和△e其动态范围限幅压缩,这样就可以使温度误差和温度误差变化率△e在整个测控温度变化范围[0℃,1 112°C]内,控制量都可以起到作用。
图5为模糊PID控制流程。
4 结语
将系统温度设置不同的温度值,观测记录温度变化曲线。
电加热炉温度控制系统实际输出的响应曲线如图6所示。
从电加热炉温度控制的实际效果来看,Fuzzy-PID复合控制器具有以下特点:①系统具有较好动态特性。
不仅升温速度快,而且超调量很小;②系统具有比较理想的稳态品质,稳态过程没有振荡,温度控制精度在±3℃以内;③系统的抗干扰能力增强,对生产现场的各种噪声和干扰具有较好的抑制作用;④当被控过程参数发生变化时,控制系统仍能保持较好的适应能力和鲁棒性。