解答动力学问题的三个基本观点
- 格式:ppt
- 大小:540.50 KB
- 文档页数:10
第六章 碰撞与动量守恒定律用三大观点处理力学问题【考点预测】1.牛顿运动定律和运动学公式解决匀变速直线运动问题2.动能定理和能量守恒定律解决直线或曲线运动问题3.动量定理或动量守恒定律解决非匀变速直线运动问题【方法技巧与总结】1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.作用时间都极短,因此用动量守恒定律去解决.【题型归纳目录】题型一:动力学观点和能量的结合问题题型二:动力学观点和动量的结合问题题型三:动量观点和能量的结合问题题型四:动力学、动量、能量的结合问题【题型一】动力学观点和能量的结合问题【典型例题】1(2022秋·福建龙岩·高三校联考期中)大货车装载很重的货物时,在行驶过程中要防止货物发生相对滑动,否则存在安全隐患。
下面进行安全模拟测试实验:如图1所示,一辆后车厢表面粗糙且足够长的小货车向前以未知速度v匀速行驶,质量m A=10kg的货物A(可看成质点)和质量m B=20kg的货物B(可看成水平长板)叠放在一起,开始时A位于B的右端,在t=0时刻将货物A、B轻放到小货车的后车厢前端,最终货物A恰好没有滑离货物B,货物A、B在0~1s时间内的速度一时间图像如图2所示,已知货物A、B间的动摩擦因数μ1=0.40,取重力加速度g=10m/s2。
解动力学问题的三大观点及选用原则模型概述1.解动力学问题的三个基本观点1)动力学观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.用动量定理可简化问题的求解过程.2.力的三个作用效果及五个规律1)力的三个作用效果作用效果对应规律表达式列式角度力的瞬时作用效果牛顿第二定律F合=ma动力学力在空间上的积累效果动能定理W合=ΔE k即W合=12mv22-12mv21功能关系力在时间上的积累效果动量定理I合=Δp即FΔt=mv′-mv冲量与动量的关系2)两个守恒定律名称表达式列式角度能量守恒定律(包括机械能守恒定律)E2=E1能量转化(转移)动量守恒定律p2=p1动量关系3.力学规律的选用原则1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转化为系统内能的量.5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化,作用时间都极短,因此用动量守恒定律去解决.6)对多个物理过程进行整体思考,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动。
7)对多个研究对象进行整体思考,即把两个或两个以上的物体作为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统)。
8)若单独利用动量观点(或能量观点)无法解决问题,可尝试两种观点结合联立方程求解。
解决物理动力学的三大观点观点一:力的观点1力学平衡问题:核心公式F 合=0(多个力时用正交分解法列式)2非力学平衡问题:核心公式F 合=ma (a 为解决问题的桥梁量,多个力时用正交分解法列式) 例如有①匀变速直线运动中,v=v 0+at ,x=v 0t+21at 2,v 2—v 02=2as ,F 合=ma (多个力时用正交分解法) ②平抛运动问题:将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动 ③圆周运动:F n =F 向(一般的圆周运动) F 引=F 向(天体的圆周运动)观点二:功和能关系观点1动能定理(适用于所有类型的运动、恒力做功、变力做功等)2其他功能关系:如重力做功对应重力势能变化关系、弹簧弹力做功对应弹性势能变化、机械能守恒定律,除重力以外的其他力做功对应机械能变化等观点三:动量观点(后面将要学习)例.如图用F=10N 的推力将质量为m=1kg 的物体由静止开始在粗糙平面上运动,F 与水平面的夹角为37°,物体与地面之间的滑动摩擦因素为μ=0.1,g=10m/s 2,,sin37°=0.6,cos37°=0.8,运动10m 后立即撤去F ,问撤去F 后,物体还能够滑行多长的距离。
练习1.如图,在竖直平面内有一固定光滑轨道,其中AB 是长为R 的水平直轨道,BCD 是圆心为O 、半径为R 的43圆弧轨道,两轨道相切与B 点。
在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点是撤除外力。
已知小球刚好能沿圆轨道经过最高点C ,重力加速度大小为g 。
求(1)小球在AB 段运动的加速度的大小;(2)小球从D 点运动到A 点所用的时间。
练习2.(2011·黄岗中学高一检测)如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A 端与圆心O等高,AD为水平面,B点为光滑轨道的最高点且在O的正上方,一个小球在A 点正上方由静止释放,自由下落至A点进入圆轨道并恰好能通过B点(从A点进入圆轨道时无机械能损失),最后落到水平面C点处.求:(1)释放点距A点的竖直高度;(2)落点C到A点的水平距离.练习3.如图所示,一玩溜冰的小孩(可视作质点)的质量m=30kg,他在左侧平台上滑行一段距离后做平抛运动,恰能无碰撞地从A点沿圆弧切线进入光滑竖直圆弧轨道,并沿轨道下滑.A、B为圆弧轨道的两端点,其连线水平,与平台的高度差h=0.8m.已知圆弧轨道的半径R=1.0m,对应的圆心角θ=106°,sin53°=0.8,cos53°=0.6,g取10m/s2,求(1)小孩做平抛运动的初速度.(2)小孩运动到圆弧轨道最低点O时对轨道的压力大小.。