第2章 递归与分治-3
- 格式:ppt
- 大小:376.50 KB
- 文档页数:27
递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。
它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。
下面,我们来详细了解一下递归和分治法。
1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。
递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。
主函数负责将问题分解,子函数负责解决子问题。
2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。
(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。
3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。
分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。
4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。
分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。
总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。
文库贡献者物理与电子信息工程学院信息工程系课程介绍2013年11月目录1. 《算法设计与分析》课程介绍 (1)2. 《离散数学》课程介绍 (2)3. 《计算机组成原理》课程介绍 (3)4. 《网络应用终端开发》课程介绍 (4)5. 《数据结构》课程介绍 (5)6. 《面向对象程序设计(Java)》课程介绍 (6)7. 《嵌入式操作系统基础》课程介绍 (8)8. 《数据结构》课程介绍 (9)9. 《操作系统A》课程介绍 (11)10. 《多媒体技术A》课程介绍 (12)11. 《ARM原理与应用》课程介绍 (13)12. 《ERP系统实施及二次开发技术》课程介绍 (14)13. 《Internet开发基础(JSP)》课程介绍 (15)14. 《IP统一通信技术》课程介绍 (17)15. 《IT项目管理》课程介绍 (18)16. 《嵌入式系统软件开发》课程介绍 (19)17. 《面向对象程序设计A》课程介绍 (20)18. 《Web应用开发》课程介绍 (22)19. 《Xml与Web Service》课程介绍 (24)20. 《编译原理》课程介绍 (26)21. 《数据库原理与应用》课程介绍 (27)22. 《电子商务概论》课程介绍 (28)23. 《企业运作模拟》课程介绍 (29)24. 《信息系统分析与设计》课程介绍 (31)25. 《管理学原理》课程介绍 (32)26. 《会计学原理》课程介绍 (34)27. 《数字电路与逻辑设计》课程介绍 (35)28. 《程序设计基础》课程介绍 (36)29. 《计算机网络》课程介绍 (38)30. 《计算机网络安全》课程介绍 (39)31. 《计算机网络规划与设计》课程介绍 (40)32. 《路由与交换技术》课程介绍 (41)33. 《企业管理与ERP》课程介绍 (43)34. 《软件工程B》课程介绍 (44)35. 《软件质量与测试基础》课程介绍 (45)36. 《网络协议分析与设计》课程介绍 (46)37. 《物流与供应链管理》课程介绍 (47)38. 《网络性能测试与分析》课程介绍 (48)39. 《信息系统分析与设计》课程介绍 (49)40. 《现代通信技术》课程介绍 (50)41. 《计算机网络基础》课程介绍 (51)42. 《计算机组成与体系结构》课程介绍 (53)43. 《运筹学B》课程介绍 (54)44. 《大型数据库系统基础》课程介绍 (55)1.《算法设计与分析》课程介绍2)教学目的和要求算法设计与分析是计算机科学与技术专业的专业课程,在计算机科学与应用的理论研究中具有重要的地位。
竭诚为您提供优质文档/双击可除递归与分治实验报告篇一:实验一递归与分治算法编程-实验报告纸南京信息工程大学实验(实习)报告实验(实习)名称递归与分治算法编程实验(实习)日期得分指导教师院专业年级班次姓名学号1.实验目的:1)掌握递归与分治策略的基本思想2)掌握递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用3)掌握二分查找、合并排序、快速排序等问题的分治算法实现4)熟悉myeclipse或eclipse等Java开发工具的使用。
2.实验内容:1)采用myeclipse或eclipse编程实现基于分治策略的二分查找算法。
2)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3.实验步骤二分查找publicclasssorting{publicstaticintbinarysearch(int[]a,intx,intn){intle ft=0;intright=n-1;while(left intmiddle=(left+right)/2;if(x==a[middle])returnmiddle;if(x>a[middle])left=middle+1;elseright=middle-1;}return-1;}publicstaticvoidmain(stringargs[]){intx,n;inta[]={1,3,4,5,6,13,25};x=6;n=7;ints;s=binarysearch(a,x,n);system.out.println(s);合并排序publicclassmergesort{publicstaticvoidmergesort(int[]a){}publicstaticvoid mergepass(int[]x,int[]y,ints){}publicstaticvoidmerg e(int[]c,int[]d,intl,intm,intr){inti=1,j=m+1,k=1;in ti=0;while(i }}if(c[i]-(c[j])m)for(intq=j;q快速排序publicclassQsort{privatestaticvoidqsort(inta[],intp,intr){}privatest aticintpartition(inta[],intp,intr){inti=p;intj=r+1; intx=a[p];inttemp;while(true){while((a[++i]-x)0);if (i>=j)break;temp=a[i];if(p }}}a[j]=temp;mymath.s wap(a,i,j);//a[p]=a[j];a[j]=x;returnj;publicstaticv oidmain(string[]args){}inta[]={4,2,7,9,1};qsort(a,0,4);for(inti=0;;i++){}s ystem.out.println(a[i]);4.实验分析和总结掌握了递归与分治策略的基本思想掌握了递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用掌握了二分查找、合并排序、快速排序等问题的分治算法实现熟悉了myeclipse或eclipse等Java开发工具的使用。
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。
3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。
(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。
4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。
一、概述1.介绍矩阵乘法的概念和意义2.引出递归与分治法在矩阵乘法中的应用二、传统矩阵乘法算法1.介绍传统的矩阵乘法算法原理2.分析传统算法的时间复杂度和空间复杂度3.讨论传统算法在大规模矩阵计算中的局限性三、Strassen矩阵乘法算法原理1.介绍Strassen算法的基本思想和原理2.引出递归与分治法在Strassen算法中的运用3.分析Strassen算法的时间复杂度和空间复杂度四、递归与分治法在Strassen算法中的运用1.详细解释递归与分治法在Strassen算法中的具体应用过程2.分析递归与分治法对算法性能的影响3.讨论递归与分治法在其他算法中的推广应用五、实例分析1.通过具体实例演示Strassen算法和传统算法的计算过程2.对比分析两种算法的计算效率和精度3.总结实例分析结果,展示递归与分治法在Strassen算法中的优势六、改进和优化1.讨论现有Strassen算法的局限性和不足2.提出改进和优化的方案,探讨递归与分治法在算法优化中的作用3.展望递归与分治法在矩阵计算领域的未来发展方向七、结论1.总结文中讨论的内容,强调递归与分治法在Strassen算法中的重要性和价值2.展望递归与分治法在矩阵计算领域的广阔应用前景3.对读者提出建议,鼓励更多的研究者投身于这一领域的研究和探索。
六、改进和优化1. Strassen算法的局限性和不足尽管Strassen算法在理论上具有较低的时间复杂度,但实际应用中也存在一些局限性和不足。
Strassen算法中涉及到的矩阵分块操作会引入额外的运算开销和存储开销,使得在小规模矩阵计算中,并不能体现出明显的优势。
Strassen算法要求矩阵的维度必须为2的幂次方,而实际场景中的矩阵往往难以满足这一条件,限制了算法的适用范围。
另外,由于Strassen算法引入了额外的递归调用,对于小规模矩阵,递归调用会使得算法的性能反而不如传统的矩阵乘法算法。
2. 改进和优化的方案针对Strassen算法的局限性和不足,可以考虑一些改进和优化的方案。