证明(zhèngmíng):设X(0)是原问题的最优解,相应的最优基为B, 非 基变量的检验数为
CN- CBB-1N≤0
全体检验数有C- CBB-1A≤0,即 C≤CBB-1A
令Y(0)= CBB-1,则有 Y(0)A≥C
即是对偶问题的可行解(Y(0) ≥0,松驰变量的检验数)。 由于 z=C X(0)= CBXB(0)= CBB-1b= Y(0)b(目标值相等)
1?b?因为mmjmljpjlljpjjjmljpjlljpjjipbbpbbpbpbppppbbb???1???1????1?1?????111121112111????eyyppppppbbbkkjmljjkljjj??????????????????????000000121112111???eyymklk由于??????10?故有111b????be???????????????????????????????00100001b21111lkklkkyyyybe??????????10lkmklkyyy?3线性规划的对偶问题的提出每个线性规划都有另一个线性规划对偶问题与它密切相关对偶理论揭示了原问题与对偶问题的内在联系
5y1 7y2 6y3 4
yy11,,yy32 ,y03 0y2 0
2y1 3y2 y3 2 3y1 y2 4y3 3 5y1 7y2 6y3 4 y1,y2 ,y3 0
第十五页,共三十四页。
例3 试求下述线性规划问题的对偶问题
min z 2 x1 3 x2 5 x3 x4
§2 改进(gǎijìn)的单纯形算法
•问题 •原理和计算(jìsuàn)步骤(见书p50)
第一页,共三十四页。
主要是计算 B1的差别: 设当前基
B (Pj1, Pj 2 ,, Pj(l1) , Pjl , Pj(l1) ,, Pjm )