6流变分析
- 格式:ppt
- 大小:1.23 MB
- 文档页数:34
流变测试原理
流变测试是一种通过测量物质在力学条件下的流变性质来研究物质性能的方法。
其基本原理是,流变仪施加一定的剪切力或应力,测量物质产生的流变响应,从而表征物质的流变性质。
具体来说,流变测试的原理基于牛顿流体或非牛顿流体的力学原理。
牛顿流体的流动性质可以根据牛顿定律描述,即流体的粘度恒定,流体的切应力与切变速率呈线性关系。
而非牛顿流体的流动性质则更加复杂,例如受力后粘度可以发生改变,切变速率和应力不再呈线性关系。
因此,通过流变测试可以深入了解物质的流变性质,为各种科研和工业应用提供有效的手段。
例如,在润滑剂的研究中,通过流变测试可以研究润滑剂的豁温特性和流变特性,为轴承等机械部件的润滑和摩擦性能提供重要的依据。
以上内容仅供参考,建议查阅流变测试专业书籍或咨询专业人士获取更准确的信息。
第1篇一、实验目的本次实验旨在研究不同条件下聚合物材料的流变性能,包括剪切粘度、剪切速率、离模膨胀效应等,以期为聚合物材料的加工和应用提供理论依据。
二、实验原理流变学是研究物质在外力作用下流动和变形的学科。
聚合物材料在加工过程中,如注塑、挤出等,会受到剪切应力、剪切速率和温度等外界因素的影响,从而表现出不同的流变性能。
本实验通过改变实验条件,研究聚合物材料的流变性能,并分析其影响因素。
三、实验材料与仪器1. 实验材料:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等聚合物材料。
2. 实验仪器:流变仪、温度控制器、剪切速率控制器、电子天平、烘箱等。
四、实验方法1. 样品制备:将聚合物材料分别加热至熔融状态,然后倒入模具中,制成一定厚度的样品。
2. 实验步骤:(1)将样品放入流变仪的样品盒中,设置实验温度和剪切速率。
(2)启动流变仪,记录剪切应力、剪切速率、温度等数据。
(3)分析数据,研究聚合物材料的流变性能。
五、实验结果与分析1. 剪切粘度与剪切速率的关系实验结果表明,不同聚合物材料的剪切粘度随剪切速率的变化规律不同。
对于PE、PP等聚合物材料,剪切粘度随剪切速率的增加而降低,表现出剪切变稀现象;而对于PVC等聚合物材料,剪切粘度随剪切速率的增加而增加,表现出剪切变稠现象。
2. 离模膨胀效应实验结果表明,聚合物材料的离模膨胀效应与其分子结构和加工条件密切相关。
在相同条件下,PE、PP等聚合物材料的离模膨胀效应较小,而PVC等聚合物材料的离模膨胀效应较大。
3. 温度对流变性能的影响实验结果表明,温度对聚合物材料的流变性能有显著影响。
随着温度的升高,聚合物材料的剪切粘度降低,离模膨胀效应增大。
六、结论1. 不同聚合物材料的流变性能与其分子结构和加工条件密切相关。
2. 剪切速率、温度等因素对聚合物材料的流变性能有显著影响。
3. 了解聚合物材料的流变性能有助于优化加工工艺,提高产品质量。
七、实验注意事项1. 实验过程中应注意安全操作,避免发生意外事故。
有机添加剂SEED 在聚酰胺6 改性中的应用摘要: 在己内酰胺水解聚合时加入一定量的有机添加剂 N ,N′- 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 - 苯二酰胺(SEED) ,合成出含有添加剂 SEED的改性聚酰胺 6 树脂 ,研究了改性聚酰胺6 的流变性、热稳定性及染色性。
实验表明:当 SEED添加量为 0. 2 %时 ,聚酰胺 6 熔体表观粘度随剪切速率的升高而下降的趋势变慢 ,熔体加工稳定性提高;与空白试样相比 ,改性聚酰胺 6 的初始热分解温度提高约 3 ℃,高温(170 ℃、 190 ℃)老化 1 h后纤维的断裂强度保留率可达80 %以上 ,热稳定性改善;且改性树脂的端氨基含量可高达45 mmol/ kg ,为空白试样的1. 7 倍 ,纤维的酸性染料染色上染率明显提高。
改性聚酰胺 6 稳定性、染色性的改善 ,是有机添加剂 SEED 中特有的芳胺基和受阻哌啶基结构综合作用的结果。
关键词: N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基- 4 - 哌啶基) - 1 ,3 - 苯二酰胺; 聚酰胺6 ; 末端氨基; 热稳定性; 染色性聚酰胺 6 由于具有拉伸强度高、自润滑性良好、冲击韧性好、耐磨性、耐化学性、耐油性优异等突出优点 ,在工程塑料及功能化塑料领域得到迅速发展 ,但也存在着耐光性、耐热性、染色性 (尤其是染色深度) 较差等缺点 ,需要加以改进 ,以适应各种用途的要求。
而聚酰胺所存在的不足一般可通过加入适当的添加剂来抑制。
Malik 等研究了在聚酰胺树脂中直接加入有机添加剂 SEED 后的改性效果,本研究则通过在己内酰胺水解开环聚合中加入一定量的SEED ,以合成出含有一定 SEED 含量的改性聚酰胺 6 树脂 ,并探了有机添加剂 SEED 在改善聚酰胺 6 的流变性、热稳定性及染色性等方面的作用效果。
1 实验部分1. 1 原材料及配方1. 1. 1 原材料己内酰胺(LA) ,日本东丽公司;蒸馏水(H2O) ,开环剂 ,实验室自制;间苯二甲酸( IPA) ,相对分子质量调节剂 ,化学纯 ,上海润捷化学试剂有限公司;苯甲酸(BIA) ,相对分子质量调节剂 ,分析纯 ,湖南湘中精细化学品厂;N ,N′ - 二(2 ,2 ,6 ,6 - 四甲基 - 4 - 哌啶基) - 1 ,3 -苯二酰胺,有机热稳定剂,汽巴精化(中国)有限公司。
第六章钻井液的流变性钻井液的流变性是钻井液的一项最基本性能,它是指在外力作用下,钻井液发生流动变形的特性。
该特性通常用钻井液的流变曲线、表观粘度、塑性粘度、动切力、静切力等流变参数来进行描述的。
它在解决1、岩屑携带,保证井底和井眼清洁;2、悬浮岩屑和加重材料;3、保持井眼规则和保障井下安全;4、提高机械钻速等钻井问题时起着十分重要的作用。
另外,钻井液的某些流变参数还直接用于钻井环空水力学的有关计算。
对钻井液流变性的深入研究有利于对油气井钻井液流变参数的优化设计和合理调控。
一、流体流变性的概念1、流体流动的特点流体流动实际上是流体随时间连续变形的过程。
液体的流动变形是因为液体受到剪切作用引起的剪切变形。
既液体在大小相等、方向相反、而作用线相距很近的两个力作用下,液体内部指点发生相对错动。
以河水流动的速度分布为例,可以看到,越靠近河岸,流速越小,河中心处流速最大。
水在管道中流速分布与河水相似,管道中心流速最大,靠近管壁处速度为零。
可以想象,如果把管道内流动的水沿着管道半径的方向由内向外分成若干层,每一层流速是不同的。
如图6—1所示。
液流中各层的流速不同这个现象,通常用剪切速率(或称速度梯度)这个物理量来描述。
图6-1在圆形管道中水的流速分布a —流速分布示意图b —流速分布曲线2、剪切速率和剪切应力如前所述,液体在管内流动时,在垂直于流速方向上,由内向外流速逐渐减小。
若液体液层之间的距离为dx,各液层的速度差为dv,则垂直于流速方向不同液层流速的变化可以表示为dv/dx,那么dv/dx叫速度梯度即剪切速率。
其物理意义是在垂直于流速方向上,单位距离流速的增量。
物理单位为S-1钻井液在循环系统的不同位置剪切速率值如下:沉砂池: 10 —20 S-1环形空间: 50 —250 S -1钻杆内: 100—1000 S-1钻头喷嘴处: 104 —105 S-1液体流动时表现出的速度梯度,是液体内存在内摩擦作用的结果。
郑州大学姓名:田富成学号:20110680226 学院:力学与工程科学学院专业:工程力学论文题目:尼龙6性能及其分子量对力学强度影响指导教师:李倩职称:教授2013年11月08日摘要尼龙6(PA6)是一种综合性能优良的工程塑料。
本文主要叙述了尼龙6纳米复合材料的性能和制备方法,以及插层剂对复合材料的综合性能影响。
对不同分子量尼龙6纳米复合材料的力学性能、结晶性能、流变性能进行了综述。
介绍了蒙脱石/尼龙6纳米复合材料制备、性能。
关键词:纳米复合材料尼龙6 分子量蒙脱石介绍尼龙6又叫PA6,聚酰胺6,其结构式为1力学性能聚合物/粘土纳米复合材料的力学性能优于纤维增强聚合物体系,因为层状粘土可以在二维方向上起到增强作用,无需特殊的层压处理。
它比传统的聚合填充体系质量轻,只需少量的粘土即可具有很高的强度、韧性及阻隔性能。
而常规纤维、矿物填充的复合材料需要高得多的填充量,且各项指标还不能兼顾。
在粘土含量很少的情况下(小于5%),日本丰田中央研究所合成的尼龙/粘土纳米复合材料(NCH)、尼龙与粘土共混物(NCC)的强度和模量均比PA6显著提高,并且材料的冲击强度并没有象传统填充聚合物那样下降川。
当加人二胺后,材料的断裂伸长和冲击强度增大,并随着二胺含量的增加而增加,而材料的强度和模量稍有下降(和NCH相比)。
这主要是因为加人二胺后,部分粘土片层由于二钱离子的作用而成柱状排列,因此降低了粘土片层和PA6的相互作用面积,所以材料的机械性能有所下降。
2结晶性能PA6是一种多晶型聚合物,粘土对PA6的晶型影响很大。
Dsc结果表明PA6cN中纳米层状粘土起成核剂的作用。
粘土的加人影响成核的机理和PA6晶体的生长。
且PA6CN的结晶度随冷却速率的增大而增大。
粘土在PA6中能促进下晶型的生成,而且随着粘土含量的增加,下晶型的结晶衍射峰逐渐增强。
3流变性能PA6CN的熔体粘度取决于母体树脂PA6的相对分子质量和粘土的加入量。
第六章流变学基础1 物体在去除其应力时恢复原状的性质称为( )(A)黏弹性(B)塑性(C)弹性(D)假塑性(E)胀性2 在层流条件下的剪切应力S与剪切速度D成正比的液体为( )(A)非牛顿流体(B)塑性流体(C)假塑性流体(D)牛顿流体(E)胀性流体3 对于塑性流动,引起液体流动的最低剪切应力称为( )(A)流动点(B)黏性率(C)屈服值(D)HLB值(E)弹性率4 随剪切速度增大,体系表观黏度增大的流体是( )(A)牛顿流体(B)塑性流体(C)塑性流体(D)胀性流体(E)触变流体5 表观黏度不随剪切应力或剪切速度增大、减小而变化的流动称为( ) (A)牛顿流动(B)塑性流动(C)假塑性流动(D)胀性流动(E)触变流动6 在外力作用下,黏度减小、流动性增大,当外力减小或停止时,黏度逐渐恢复的流体是( )(A)牛顿流体(B)塑性流体(C)假塑性流体(D)胀性流体(E)触变流体7 下列作为黏度的单位正确的是( )(A)N(B)N/m(C)Pa(D)Pa.S(E)m2/s8 流动曲线通过原点,且随着剪切应力的增加,表观黏度减少的是( ) (A)胀性流体(B)牛顿流体(C)塑性流体(D)假塑性流体(E)准黏性流体9 关于触变性的叙述中错误的是( )(A)触变性流体的流变曲线其上行线与下行线不重合(B)塑性流体、假塑性流体、胀性流体多数具有触变性(C)滞后环的面积越大,说明触变性越强(D)凝胶状态与溶胶状态为等温互变关系,即具有触变性(E)触变性不受温度、pH值、聚合物的浓度、聚合物的结构的影响10 下列关于液体流变性与黏度的叙述中错误的是( )(A)物体在适当的外力作用下所具有的流动性和变形性称为流变性(B)液体受应力的作用产生变形,即流动(C)黏度是液体内部存在阻碍液体流动的摩擦力(D)液体沿应力方向(流体流动方向)上的速度梯度称为切变速度(E)理想液体的流动服从牛顿定律参考答案:CDCDA EDEED。
六速旋转粘度计的使用方法和参数计算旋转粘度计如何操作六速旋转粘度计多点测量数值绘制流变曲线,确定液体在流动过程中的流型,选用合适的计算公式,对非牛顿流体进行较的测量,用于现场钻井液流变参数的讨论分析,同时,可进行动、静切力、流性指数和稠度系数等一系列技术参数的测定。
有利于安全、快速、科学钻井的需要。
具有操作便利,测试精准的特点。
使用方法1、取出仪器,检查各转动部件、电器及电源插头是否安全牢靠。
2、向左旋转外转筒,取下外转筒。
将内筒逆时针方向旋转并向上推与内筒轴锥端搭配。
动作要轻柔,以免仪器的内筒轴变形和损伤。
向右旋转外转筒,装上外转筒。
3、接通电源220V,50Hz。
4、按动三位开关,调置高速或低速挡。
5、仪器转动时,轻轻拉动变速拉杆的红色手柄,依据标示变换所需要的转速。
6、将仪器以300r/min和600r/min转动,察看外转筒不得有摇摆,如有摇摆应停机重新安装外转筒。
7、以300r/min转动,检查刻度盘指针零位是否摇摆,如指针不在零位,应进行校验。
8、将刚搅拌过的钻井液倒入样品杯内至刻线处(350ml),立刻置于托盘上,上升托盘使内杯液面达到外转筒刻线处。
9、快速从高速调整到低速进行测量,待刻度盘的读数稳定后,分别记录各速梯下的读数.对其触变性的流体应在固定速梯下,剪切确定时间,取较小的读数为准,也可接受在快速搅拌后,快速转为低速进行读数的方法。
10、样品的粘度、切应力等测试和数据计算参照下文"参数计算"进行。
11、测试完后,关闭电源,松开托板手轮,移开样品杯。
12、轻轻左旋卸下外转筒,并将内筒逆时针方向旋转垂直向下用力,取下内筒。
13、清洗外转筒,并擦干,将外转筒安装在仪器上,清洗内筒时应用手指堵住锥孔,以免脏物和液体进入腔内,内筒单独放置在箱内固定位置。
14、测量扭力弹簧要视仪器使用频率1~2年内定期校验。
参数计算将室温调整在205℃,严格依照本章第二节操作步骤操作。
反应挤出己内酰胺阴离子开环聚合尼龙6的研究进展陶威;李姣;闫东广【摘要】作为一种可连续化生产,残留单体易于脱除,产物分子量高,分子量分布窄,产品性价比高的制备方法,反应挤出阴离子聚合法在尼龙6的研究中应用广泛。
简要介绍了反应挤出阴离子聚合尼龙6的反应机理、工艺流程,并对国内外研究现状及发展趋势进行了分析,详细综述了反应挤出阴离子聚合尼龙6在纳米复合材料、尼龙6为基体的合金以及尼龙6为分散相的合金研究中的最新进展。
%As a kind of continuous production reaction extrusion anionic polymerization which could easy removal the residual monomer, produce high molecular weight PA6 and narrow the molecular weight distribution has been widely applied in the study of nylon 6. The mechanism, characteristics and research of polyamide 6 prepared via anionic ring-opening polymerization of ε-caprolactam by reactive extrusion was presented briefly. The research progress of composites and blends of polyamide 6 prepared by reactive extrusion was summarized detailedly. The development tendency of polyamide 6 prepared by reactive extrusion was depicted also.【期刊名称】《广州化工》【年(卷),期】2015(000)010【总页数】3页(P30-32)【关键词】反应挤出;尼龙6;复合材料;合金;研究进展【作者】陶威;李姣;闫东广【作者单位】江苏科技大学材料科学与工程学院,江苏镇江 212003;江苏科技大学材料科学与工程学院,江苏镇江 212003;江苏科技大学材料科学与工程学院,江苏镇江 212003【正文语种】中文【中图分类】TQ320.66-3;TQ323.6;TQ050.4-3尼龙6 是聚己内酰胺(Polyamide 6,PA6) 的俗称,具有优异的力学性能,兼具自润滑、耐磨、耐油、耐溶剂、自熄性以及良好的加工性能等优点,是尼龙系列中产量最大、用量最多、用途最广的品种,PA6 工程塑料广泛应用于汽车、船舶、电子电器、工业机械和日用消费品的构件和组件等,其纤维可制成纺织品、工业丝和地毯用丝等。
频率扫描进行分散体系流变分析介绍涂料或颜料基本上颜料在液体中的分散体系。
许多分散剂制造商认识到,产品成功与否取决于储存稳定性、抗流挂、流平性、涂刷性和喷雾性。
这些因素常常相互制约,因此它们之间必须达到某种平衡才能生产出成功的产品。
测量流变特性可以获得微观结构信息,使我们更好地了解应用特性和最终使用特性。
测定样品微结构最好的方法之一是振荡(动态)测试。
在采用详细动态测试探究样品微结构之前,必须首先定义线性粘弹区 (LVER)。
这可以通过幅度扫描进行测定。
如前所述,LVER也可以用来测定悬浮液的稳定性。
因为结构特性与弹性最为相关,所以弹性模量 (G')的 LVER 长度可以用于测量样品结构的稳定性。
样品的 LVER 长表明其具有分散良好并稳定的体系。
在幅度扫描测试中,必须从 LVER 选择应力和应变并应用于随后的振荡测量。
解释频率扫描是非常有用的测试,因为它能够测定样品粘弹特性与时间尺度的关系函数。
通过该测试可以得到几组参数,如储能(弹性)模量 (G')、粘性(损耗)模量 (G") 和复数粘度 (η*)。
储存模量可以用来衡量样品的弹性成分,同样,损耗模量可以用来衡量样品粘性。
在时间尺度相近的过程中,特定频率下哪个模量占主导就表明结构完整的物质是呈弹性还是呈粘性。
大多数涂料的力学响应呈粘弹性,因为在批量生产阶段,悬浮固体、添加剂浓度、胶体稠度等会诱导某些结构产生。
注意以下扫频数据集中给出的实例。
图 1 是典型的无相互作用的颗粒分散体系,粘度几乎与频率无关。
损耗模量高于弹性模量,并且两个模量都在很大程度上取决于频率。
这种情况下极易发生沉降。
图 2 显示弱结构体系。
粘性模量仍然高于弹性模量。
然而两者间的差距要小于无相互作用体系。
复数粘度也取决于频率。
这个系统中可能会发生沉降。
图 3 显示的体系能归入良好结构(凝胶体)类。
该例中微粒相互作用力强,储存模量(G') 高于损耗模量 (G"),两个模量几乎都与频率相互独立。