奥数:方阵问题
- 格式:docx
- 大小:28.71 KB
- 文档页数:12
【导语】⽅阵是古代军队作战时采⽤的⼀种队形,是把军队在野外开阔地上排列成⽅形阵式。
远古⽅阵由前军、中军和后军相互嵌套排列⽽成,⽅阵平⾯呈现“回”字形状,反映出远古观念中的⼀种政治地理结构,来源于“天圆地⽅”的宇宙观。
以下是整理的《⼩学⽣奥数⽅阵问题应⽤题》相关资料,希望帮助到您。
1.⼩学⽣奥数⽅阵问题应⽤题 1、幼⼉园⼩朋友在⽼师指导下,把棋⼦排成2个正⽅形⽅阵,如果在这个⽅阵中去掉横竖各⼀排,则这个⽅阵少了9枚棋⼦,那么这个⽅阵共有多少枚棋⼦? 2、活动中,⽼师把学⽣组成⼀个正⽅形⽅队,其中有两⾏、两列都是男⽣,男⽣共有36⼈,其余是⼥⽣,问参加这个⽅队的学⽣共有多少⼈? 3、在⼀块正⽅形草地四周种树,四个⾓上都种上⼀棵,每边种10棵,这块草地四周共种树多少棵? 4、晶晶⽤围棋⼦摆成⼀个三层空⼼⽅阵,最外⼀层每边有围棋⼦11枚。
晶晶摆这个⽅阵共享围棋⼦多少枚? 5、三年级学⽣组成⼀个正⽅形⽅队,共8⾏,每⾏8⼈,后来由于服装不够,只好去掉⼀⾏⼀列,问去掉了多少学⽣?2.⼩学⽣奥数⽅阵问题应⽤题 1、某校五年级学⽣排成⼀个⽅阵,最外⼀层的⼈数为60⼈。
问⽅阵外层每边有多少⼈?这个⽅阵共有五年级学⽣多少⼈? 2、晶晶⽤围棋⼦摆成⼀个三层空⼼⽅阵,最外⼀层每边有围棋⼦14个。
晶晶摆这个⽅阵共享围棋⼦多少个? 3、三年级学⽣排成⼀个⽅阵最外⼀层的⼈数是60⼈请问⽅阵外层每边有多少⼈这个⽅阵共有三年级学⽣多少⼈? 4、弟弟⽤围棋⼦摆成⼀个三层的`空⼼⽅阵、最外⼀层每边有14个棋⼦。
问弟弟摆这个⽅阵,共享了多少个棋⼦? 5、三年级学⽣组成⼀个正⽅形⽅队,共8⾏,每⾏8⼈,后来由于服装不够,只好去掉⼀⾏⼀列,问去掉了多少学⽣?3.⼩学⽣奥数⽅阵问题应⽤题 1、有⼀个⽤圆⽚摆成的两层中空⽅阵,外层每边有16个圆⽚,如果把内层的圆⽚取出来,在外层再摆⼀层,变成⼀个新的中空⽅阵,应再增加多少圆⽚? 2、解放军进⾏排队表演,组成⼀个外层有48⼈,内层有16⼈的多层中空⽅阵,这个⽅阵有⼏层?⼀共有多少⼈? 3、有⼀队⼠兵,排成了⼀个⽅阵,最外层⼀周共有240⼈,问这个⽅阵共有多少⼈? 4、某校少先队员可以排成⼀个四层空⼼⽅阵如果最外层每边有20个学⽣,问这个空⼼⽅阵最⾥边⼀周有多少个学⽣?这个四层空⼼⽅阵共有多少个学⽣? 5、六⼀⼉童节前⼣,在校园雕塑的周围,⽤204盆鲜花围成了⼀个每边三层的⽅阵求最外⾯⼀层每边有鲜花多少盆?4.⼩学⽣奥数⽅阵问题应⽤题 1、⼀个七层空⼼⽅阵最外⼀层共有80⼈,则最内层共有()⼈。
方阵问题方阵是古代军队作战时采用的一种队形,方阵平面一般呈现“回”字形状,是把军队在野外开阔地上排列成方形阵式。
数学中的方阵是指行数与列数一样多的矩阵。
n×n阶矩阵被称为n阶方阵。
将若干人或物按一定条件排成正方形(简称方阵),根据已知条件求总数,求每条边个数或层数等,这类问题就叫做方阵问题。
1.方阵每边人数相邻两层物体总数相差8,每边相差2。
每边人数=一层总数÷4+1 或一层总数=(每边人数-1)×42.方阵总人数①实心方阵:总人数=每边人数×每边人数②空心方阵:总人数=外边方阵人数-内边方阵人数内边人数=外边人数-层数×2若将空心方阵分成四个相等的矩形计算,则:空心方阵总人数=(外边人数-层数)×层数×43.方阵问题思维方法:①重叠点思维:若有边与边的重叠情况,把各边点数相加时重叠点计算了两次,因此需要再减去重叠点个数,才是最终的全部数目;②逆向法思维:如已知空心方阵的总数求外层每条边的数目,可逆用求总数公式:外边人数=空心方阵总人数÷4÷层数+层数。
【例1】在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解:22×22=484(人)练习一1、小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少?2、同学们做早操,排成一个方阵,从前、后、左、右数,王强都是第5个,这个方阵共有多少人?3、花坛最外层一条边上有18盆花,最外层有多少盆花?【例2】有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?解析:100÷4+1=26(人),因此方阵中一共有26×26=676(人)。
练习二1、四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?2、某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?3、正方形舞厅四周均匀的装彩灯,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?4、五年级有4个班级,每个班级有36人,要组成一个方阵,最外层有几个人?【例3】121人的方阵,现要增加1行1列,需要增加多少人?解析:因为11×11=121,所以现有的方阵每条边是11人。
第四讲方阵问题[同步巩固演练]1、121人排成一个实心方阵,这个方阵每边多少人?2、每边站13人,可以排成一个共有多少人的实心方阵?3、一个正方形花坛,原来放了一些花,组成一个实心方阵,后来又运来21盆花添上去,使每行、每列各增加一排,成了一个大一点的实心方阵,问原来放了多少盆花?4、给一个方形建筑物插彩旗,每边插了7面彩旗,共插了多少面彩旗?5、用棋子排成一个二层空心方阵,里层每边6个棋子,求这个空心方阵的棋子总数。
6、用棋子摆成一个三层空心方阵,中间一层每边棋子数为9个,求一共用了多少个棋子。
[能力拓展平台]1、有若干枚棋子,若排成三层空心方阵,则多出5枚;若中空增加一层,则少11枚。
这堆棋子共有多少枚?2、同学们用小红花排成一个四层空心方阵,最外层每边12朵,共有红花多少朵?3、街心雕塑四周用432盆鲜花摆成了一个六层空心方阵,最内层共有多少盆鲜花?4、64名同学在游行彩车的四周排成了一个二层空心方阵,若外面再增加一层,还需要多少名同学?4、用一堆棋子摆成空心方阵,最外层共有棋子52枚,最内层共有棋子28枚。
这堆棋子共有多少枚?5、用一堆棋子摆成一个五层空心方阵,最内层每边12枚,求这堆棋子的总数。
[全讲综合训练]1、军训的学生进行队列表演,排成了一个7行7列的正方形队伍,如果去掉一行一列,要去掉多少人?还剩下多少人?2、幼儿园小朋友在教师的指导下,把棋子排成3个正方形方阵,如果在这个方阵中去掉横、竖各一排,则这个方阵少了13枚棋子,那么这个方阵共有多少枚棋子?3、在一次活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有84人,其余是女生,问参加组成这个方队的学生共有多少人?4、在一块正方形草地四周种树,四个角上都种一棵,每边种13棵,这块草地四周共种多少棵?5、军训师生进行队伍表演,排成一个正方形队列,如果这个队列横、竖再增加一排,还需要补充15人,问原来参加队列表演的师生有多少人?6、棋子若干枚,恰好可以排成每边9枚的方阵,棋子总数是多少?7、一堆一分硬币排成正方形,多余4枚,若正方形纵横两个方面各增加一层,则缺少9枚,问这堆硬币有多少枚?8、三年级广播操比赛时排成一个正方形方阵,后来因场地原因减少了一行一列共39人。
小学生奥数方阵问题练习题方阵其实就是特殊的矩阵,当矩阵的行数与列数相等的时候,我们可以称它为方阵,这里山草香为大家分享了8篇小学生奥数方阵问题练习题,希望在奥数方阵问题的写作这方面对您有一定的启发与帮助。
小学三年级奥数方阵问题练习题篇一1、同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人?2、一些战士排成一个方阵,横竖各增加一人,就要增加11人。
增加后共有战士多少人?3、由252名学生组成一个三层的中空方阵,求最外层共有多少名学生?4、有72人排成一个三层的实心方阵,求最外层每边有多少人?5、用32棵围棋子在棋盘上组成一个两层中空方阵,如果在方阵外再围3层,还需要多少颗围棋子?6、小明用棋子摆成一个实心方阵,小刚用13颗棋子使这个方阵增加一行一列,求小明摆的实心方阵共用多少颗棋子?7、苗圃正中是块石头,外边的树苗形成一个由520棵树苗组成的10层方阵,若移开石头种树苗,这个苗圃一共有多少棵树苗?8、设计一个团体操表演队形,想排成一个中空方阵,最内层要24人,最外层要48人,这个表演队形一共需要多少人?10、聪聪用棋子摆空心方阵,最外面一层每边摆20个,共摆了三层,一共用了多少个棋子?1、(1)小新把贝壳放在桌上,每5厘米放一颗,到20厘米处,可以放几颗?(2)小新把7颗贝壳放在桌上,每两颗之间距离是5厘米,从第一颗到第七颗的距离是多少厘米?(3)小新在桌上等距离地摆了8颗贝壳,已知第1颗到第8颗的距离为56厘米,求每两颗之间的距离是多少?2、一个鱼塘周围长1800米,沿塘边每隔6米栽一棵杨树,需种几棵杨树?3、一条走廊长21米,从走廊的一端每隔3米放一盆花。
走廊的两边一共需要几盆花?4、学校两座教学楼之间的距离是40米,如果每隔5米种1棵树,共可以种多少棵树?5、在一条长为48米的马路一旁栽树,如果每4米栽一棵,一共可以栽几棵?如果一共要栽9棵,那么每两棵之间应相隔多少米?6、一根木料长20米,把它锯成5米长的一段,如果每锯一次需要3分钟,一共需多少分钟?7、一幢六层楼房,每层楼有14级楼梯,小明从底楼走到六楼,共走了多少级楼梯?8、从1楼走到4楼共要走36级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?9、时钟6点钟敲6下,10秒钟敲完,敲8下需要多少秒?10、科学家进行一项实验,每隔5小时做一次记录,做第12次记录时,挂钟时针指向9、问:第一次记录时,时针指向几?1、有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?(240÷4)-1=59(人)59某59=3481(人)2、学校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?(20-2某3-1)某4=42(个)(20-40某4某4=256(个)3、六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆)1、一个木工锯一个长13米的木条。
精心整理页脚内容教学内容:第十一讲方阵问题在日常生活中,我们经常见到把人或物排成正方形的形状,比如用花盆摆成正方形,同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定力, ④每边人(或物)数和四周人(或物)数的关系四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1⑤中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数精心整理页脚内容观察中空方阵,我们不难发现方阵的基本特点:中空方阵的总人(或物)数=(最外层每边人(或物)数-中空方阵的层数)×中空方阵的层数×4下面我们就利用以上特点进例1参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,(1)(2),×2+1答:如果去掉一行一列,要去掉13名学生,还剩下36名学生。
例2小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少? 分析与解答:如图,最外一层每边摆6枚,根据方阵每行每列个数相等特点,因此一共有6×6=36枚棋子。
...最外一层每边有6枚,如果用6×4=24枚,就认为是最外一层棋子数的答案的话,那就错了。
因为正方形每个顶点上的棋子分属于一行一列,这样棋子在计算总数时就被多数了一次,这样的顶点一共有4个,需要把多数的减去,才能得到正确的结果。
列式是6×4-4=20枚。
说明:这道题还可以这样想:数每边棋子时,可以按上图先划分成4个相等的块,这样每边就有5枚了,因此用5×4=20枚,也可以得到正确答案。
按照划分块的方法不同,至少还有两种方法,请同学们试一试。
例3有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?分析与解答:要想求出方阵中一共有多少士兵,就应先求出方阵的最外层每边有多少人。
第7讲方阵问题一、【知识要点】1、方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题2、方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差83、方阵问题的解题思路是:(1)实心方阵:每边数×每边数=总数(每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数二、【典型题解】例1:四年级同学举行广播操比赛,排成了8行8列。
如果去掉一行一列,要去掉几人?还剩多少人?针对练习11、同学们排队,要排成每行10人,共10行的方阵,共需要多少人?2、同学们排成十行十列的方阵,如果去掉一行一列,要去掉多少人?3、小明用棋子摆了一个实心方阵,后来他又加上15个棋子,使横竖各增加一排,成为一个大的实心方阵,原来的实心方阵每排有几个棋子?例2:菊花展上,园丁李师傅要摆一个正方形空心花坛,已知四边各摆5盆菊花,且四个角上都有一盆,请计算李师傅摆这个花坛共要用多少盆菊花?针对练习21、一个正方形池塘四周栽满了树,已知每边栽了9棵,并且四个角上都有一棵,这个池塘四周一共栽了多少棵树?2、学校的升旗台成正方形,在四周共放了40盆花,每个角放一盆,每边放花多少盆?3、沿一个正方形水池的四周栽树一行,四角都要栽1棵,共载树152棵。
问每边栽多少棵树?例3:某校180名学生,排成一个三层空心方阵,这个方阵外层每边有多少名学生?针对练习31、一个两层空心花盆阵,最外层每边放了10盆,一共用花多少盆?2、由24人组成两层中空方阵,现在外面增加2层,要增加多少人?3、一个三层的中空方阵,最内层共有80人,这个方阵共有多少人?例4:某班抽出一些学生参加节日活动表演,如果排成一个正方形实心方阵多7人,如果每行每列增加1人,就少4人,共抽出学生多少人?三、能力训练题:1、同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人?2、一些战士排成一个方阵,横竖各增加一人,就要增加11人。
方阵问题知识结构一、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲【例 1】小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在30至50人之间,你能告诉他到底有多少人吗?【考点】方阵问题【难度】3星【题型】解答【解析】方阵总人数的特点:它是两个相同自然数的积,而三角形队列总人数的特点是:总数是从1开始若干个连续自然数的和,我们只要在3050~的范围内找出同时满足这两个条件的数就可以得出总人数.由于队伍可以排成方阵,在30至50人的范围内人数可能是66=36⨯人或77=49⨯人,又因为=++++⋯+=++++⋯++,所以总人数是36人.,361234849123494【答案】36人【巩固】在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求原来两个方阵各有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】根据时间多少和学生具体情况可考虑教给学生平方数的概念,并记住一些简单的平方数.10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50100~之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36人.【答案】大方阵有64人,小方阵有36人【例 2】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】带领学生画图求解.一共有几行?列式:4+6+1=11(行)一共有几列?列式:5317+-=(列)一共有多少人?列式:11777⨯=(人)【答案】77人【巩固】一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?【考点】方阵问题【难度】2星【题型】解答【解析】一共有多少行?列式:5+5+1=11(行)一共有多少列?列式:4+4+1=9(列)一共有多少只猴子?11999⨯=(只).【答案】99人【例 3】四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?如果去掉一行一列.还剩多少同学?【考点】方阵问题【难度】2星【题型】解答【解析】可以根据“实心方阵总人数=每边人数×每边人数”得到8行8列的实心方阵人数为:8864⨯=(人),去掉一行一列后,还剩7行7列,也可通过同样的方法得出总人数为:77=49⨯(人).【答案】8行8列的实心方阵人数为64人,去掉一行一列后,还剩49人。
第7讲方阵问题一、【知识要点】1、方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题2、方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差83、方阵问题的解题思路是:(1)实心方阵:每边数×每边数=总数(每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数二、【典型题解】例1:四年级同学举行广播操比赛,排成了8行8列。
如果去掉一行一列,要去掉几人?还剩多少人?针对练习11、同学们排队,要排成每行10人,共10行的方阵,共需要多少人?2、同学们排成十行十列的方阵,如果去掉一行一列,要去掉多少人?3、小明用棋子摆了一个实心方阵,后来他又加上15个棋子,使横竖各增加一排,成为一个大的实心方阵,原来的实心方阵每排有几个棋子?例2:菊花展上,园丁李师傅要摆一个正方形空心花坛,已知四边各摆5盆菊花,且四个角上都有一盆,请计算李师傅摆这个花坛共要用多少盆菊花?针对练习21、一个正方形池塘四周栽满了树,已知每边栽了9棵,并且四个角上都有一棵,这个池塘四周一共栽了多少棵树?2、学校的升旗台成正方形,在四周共放了40盆花,每个角放一盆,每边放花多少盆?3、沿一个正方形水池的四周栽树一行,四角都要栽1棵,共载树152棵。
问每边栽多少棵树?例3:某校180名学生,排成一个三层空心方阵,这个方阵外层每边有多少名学生?针对练习31、一个两层空心花盆阵,最外层每边放了10盆,一共用花多少盆?2、由24人组成两层中空方阵,现在外面增加2层,要增加多少人?3、一个三层的中空方阵,最内层共有80人,这个方阵共有多少人?例4:某班抽出一些学生参加节日活动表演,如果排成一个正方形实心方阵多7人,如果每行每列增加1人,就少4人,共抽出学生多少人?三、能力训练题:1、同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人?2、一些战士排成一个方阵,横竖各增加一人,就要增加11人。
表演方阵(方阵问题)知识图谱表演方阵知识精讲一.方阵问题1.方阵问题就是把人或物按照一定的条件排成正方形,再根据已知条件求出人或物的数量的应用题.2.一般的,方阵里相邻的两层之间每条边上的人数差2,而每层的人数总差8.注意:方阵最里层只有1个人的时候此层不符合要求.空心方阵时此规律仍适用.二.数量关系1.方阵每边人数和四周人数的关系:(1)()14-⨯=每边人数四周人数;(2)41四周人数每边人数.÷+=2.方阵总人数的计算方法:(1)实心方阵:每边人数⨯每边人数=总人数.(2)空心方阵:外边人数⨯外边人数-内边人数⨯内边人数=总人数;若将空心方阵分成4个相等的矩形计算,则:()4-⨯⨯=外边人数层数层数总人数.(3)逐层相加,则:第一层人数+第二层人数+第三层人数+……=总人数.三.三角形阵列1.1个n层实心的三角形阵列,总人数为:1234n++++⋅⋅⋅⋅⋅⋅+.2.类比方阵的计算方法,注意特殊位置.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在数列规律的基础上,学习阵列问题.从生活中常见的阵列问题出发,学习实心方阵、空心方阵,掌握阵列中的相关计算.后续课程还会进一步学习数表规律.课堂引入例题1、一年一度的学校运动会就要来临了,学校要求每个班级都要走一个表演方阵.三年级二班在班长及体育委员的带领下,为全班36人组织了一个变化方阵.刚开始还没有入场时,大家可以先站成一个3列的队伍.然后等到入场我们就变换成一个实心方阵.等经过舞台中央时,部分同学组成一个空心阵,然后让其余同学在中间举起我们的口号就可以了!非常棒!如果这个空心阵不好排的话,我们也可以变成圆的嘛!请问:艾小莎所说的这个实心方阵共有几层呢?最外层每条边上有几个同学呢?例题2、若干名同学站成一个8×8的方阵,那么这个方阵一共有________人.实心方阵问题例题1、(1)若干名同学站成一个13×13的方阵,那么这个方阵最外层一共有多少人?(2)若干名同学站成一个13×13的方阵,那么这个方阵一共有多少层?最里层有多少人?(3)若干名同学站成一个16×16的方阵,那么这个方阵一共有多少层?最里层有多少人?方阵的最外层的人数,不是每边的人乘以4吗?例题2、(1)某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?(2)有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?方阵的总人数怎么求,还记得吗?例题3、(1)一个方阵,最外面一层共有64人,如果让这个方阵增加一行一列,一共需要增加多少人?(2)有100人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?方阵增加一行一列,是增加了两条边,但是还有重复……例题4、用红、绿两种颜色的正方形瓷砖共144块铺满一面正方形的墙,最外层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上共有红色瓷砖多少块?红色瓷砖有多少层?相邻两层差多少呢?随练1、一个方阵,最外面一层共有108人,如果让这个方阵增加一行一列,一共需要增加多少人?随练2、用红、绿两种颜色的正方形瓷砖共100块铺满一面正方形的墙,最外一层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上红色瓷砖比绿色瓷砖多多少块?空心方阵问题例题1、(1)某校少先队员可以排成一个四层空心方阵.如果最外层每边有20个学生,这个空心方阵最里边一层有多少人?这个四层空心方阵共有多少人?(2)一个空心方阵,最外层有56人,最里层有32人,这个方阵有多少层?这个好像跟前面的不一样了,是空心方阵……例题2、(1)共有300人排成一个5层的空心方阵,如果在外部加一层,变成一个六层的空心方阵,那么应该增加多少人?(2)共有156人排成一个3层的空心方阵,如果在内部加一层,变成一个四层的空心方阵,那么应该增加多少人?是不是先要求出来最外层有多少人呢?例题3、共有132人排成一个3层的空心方阵,如果要在内部加人,变成一个实心方阵,那么还需要增加多少人?空心方阵变成实心方阵,先找出最里层每边多少人.随练1、共有300人排成一个3层的空心方阵,如果要在内部加人,变成一个实心方阵,那么还需要增加多少人?随练2、共有132人排成一个3层的空心方阵,那么这个方阵最外层共有多少人?其他方阵问题例题1、高思小学的学生排成了一个每边为10人的三角阵,请问:最外层有多少人?共有多少层?刚刚还是方阵,怎么变成三角阵了,这可怎么办?例题2、三年级的男生们排成一个每边10人的实心三角形阵之后,女生站在外层,所有人排成一个每边15人的三角阵.请问:三年级男生和女生谁的人数多?多多少人?例题3、如图,一块绿地由3块相同的等边三角形草地和一个水池构成,现在要在草地上种花,要求在草地与草地的公共点处种上花(即图中的A、B、C点),且每块草地上的花朵排成一个三角形实心点阵,每块草地上最外层的每条边上有10朵花.请问:整个绿地一共要种多少朵花?草地A B水池草地草地C随练1、四年级1班共45人,那么可以排成一个每边__________人的三角形阵列.随练2、三年级的男生们排成一个每边8人的实心三角形阵列后,女生继续排在男生外面,男女生一起排成了一个每边11人的三角形阵列,那么女生有__________人.易错纠改例题1、 有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?拓展1、 一个实心方阵,最外面一层共有56人,那么这个方阵一共有________人.2、 若干名同学站成一个12×12的方阵,那么这个方阵一共有__________层.3、 一个方阵,最外面一层共有36人,如果让这个方阵增加一行一列,一共需要增加__________人.4、 共有156人排成一个3层的空心方阵,如果在外面加一层,变成一个四层的空心方阵,那么应该增加__________人.5、 共有200人排成一个5层空心方阵,这个方阵最外面一层每边_________人.6、 如图,一块绿地由3块相同的等边三角形草地和一个水池构成.现在要在草地上种花,要求在草地与草地的公共点都种上(即图中的A 、B 、C 点),且每块草地上的花朵排成了一个三角形点阵,每条边上有8朵花.那么,整个绿地一共要种__________朵花.7、 用红、绿两种颜色的正方形瓷砖共144块铺满一面正方形的墙,最外一层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上红色瓷砖比绿色瓷砖多__________块.8、 阳光小学的学生在操场上排成一个方阵,方阵的行距和列距都相等.已知方阵最外面一圈都是男生,往内一圈都是女生,然后是男生……如此下去直到最里面.如果男生总数比女生总数多52人,那么共有学生多少人? 9、 分析并口述题目的做题思路及方法.一批同学站成一个的方阵,请问:最外一层共有多少人?从外向里的第3层有多少人?1010 这个简单,我们求出来最外一层有多少棵树,杨树和柳树隔株相间而种,那就是各自一半.等等,“隔株相间”什么意思?为什么就是杨树和柳树各自一半呢?我还是先思考一下吧.大家快来帮唐小虎解决一下这个问题吧.草地草地草地 水池ABC。
方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数×每边数2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数=(每边数-1)×4二、空心方阵1、外边人数=总人数÷4÷层数+层数2、总数=最外层人数2 - 最内层人数2=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数÷23、内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。
例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。
排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。
排列成每行8人点,共8行,就是有8个8点。
求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。
例2 有一堆棋子,刚好可以排成每边6只的正方形。
问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。
根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。
而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。
解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。
三年级小学奥数方阵问题【五篇】导读:本文三年级小学奥数方阵问题【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇:士兵方阵】习题:有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?答案:(240÷4)-1=59(人)59×59=3481(人) 【第二篇:空心方阵】习题:某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?答案:(20-2×3-1)×4=42(个)(20-40×4×4=256(个) 【第三篇:鲜花方阵】习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?答案:最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆) 【第四篇:体操表演】习题:三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?答案:7×6-6=36(人)7×12-6×2-5=67(人) 【第五篇:松柏方阵】习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?答案:最外层松柏各是:(9-1)×4÷2=16(棵)共有松柏树是:(9×9+1)÷2=41(棵)81-41=40(棵)答:柏树41棵,松树40棵,或松树41棵,柏树40棵。
方阵问题
一群士兵排成了一个单层的空心方阵,每条边上有7个人,那么这个空心方一群士兵排成了一个单层的空心方阵每条边上有个人那么这个空心方阵中一共包含多少名士兵?
数青蛙填空格找规律数青蛙,填空格,找规律
士兵们天天都是在操练单层方阵觉得已经没有意思了于是他们今天排出士兵们天天都是在操练单层方阵,觉得已经没有意思了,于是他们今天排出了一个双层的空心方阵,这个方阵的外层每条边上有10人,那么这个方阵一共有多少人?
共有多少
如果现在有一大群青蛙在跳舞,你知道一共有多少只吗?如果现在有一大群青蛙在跳舞你知道一共有多少只吗?。
第四讲二方阵问题专项练习30 题(有答案)1.全校学生排成 5个方阵做操,每个方阵有 8行,每行有 10 人,5 个方阵一共有多少人?2.四年级共选 49 位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?3.一个实心体操方阵,最外层有72 人.这个体操方阵有多少人?4. 36 名学生在操场上做游戏.大家围成一个正方形,每边人数相等,四个顶点都有人.每边各有几名学生?5.四( 3)班同学排队做操,如果排 6 队,每队 6人,如果排 4 队,每队几人?6.有一队士兵,排成了一个实心方阵,最外层一周共有240 人,这个方阵最外层每边有多少人?7.小强用棋子排成了一个每边 11 枚的中空方阵,共 2 层,求这个方阵共用多少枚棋子?8.活动课上,小华用围棋摆了一个空心方阵,最外层每边有16 枚棋子,最内层每边有 10 枚棋子,这个空心方阵一共有多少枚围棋子?9.做广播体操时,某年级的学生站成一个实心方阵时(正方形队列)还多10人,如果站成一个每边多 1 人的实心方阵,则还缺少 15 人,求原来有多少人?10.“六一”儿童节,同学们在学校门口用花盆摆了一个正方形空心花坛,四个角各一盆,每边各放8盆花,那么请算算,四周放了________ 盆花.11.在正方形的广场四周装彩灯,四个角上都装一盏,每25 盏,问这个广场一共需装彩灯多少盏?边装12.设计一个团体操表演队形,想排成 6 层的中空方阵,已知参加表演的有 360 人,求最外层每边应安排多少人?13.在“情系玉树、赈灾义演”的活动中,春晖小学举行团体操表演.四年级同学排成一个方阵,最外层每边站了 16 名同学,最外层一共有多少名同学?整个方阵一共有多少名同学?14.学校组织一次团体操表演,把男生排列成一个实心方阵,又在这个实心方阵四周站一排女生.女生有72 人参加表演,男生有多少人?15.有 272 个棋子,想摆成 4 层空心方阵,最外层和最内层每边各放多少棋子?16.五( 3)班的同学排成一个方队做操,小明的前、后、左、右都有 7 人.五( 3)班有多少人?17.“六一”儿童节那天,学校举行团体操表演.四年级学生排成一个方阵,最外层每边站了13 个人,最外层一共有多少名学生?整个方阵一共有多少名学生?18.同学们排成方形队做操,无论从前数从后数,还是从左数,从右数,小平都是第4 个,共有多少人做操?19.一个正方形喷水池的边长为 6 米,四周有一条一米宽的小路,在小路靠着水池的一边每隔 1 米插一面红旗,四个顶点都要插;在小路的另一边每隔 1 米插一面黄旗,四个顶点处也要插.一共插多少面小旗?20.有一列方队,不管从前、后、左、右数,小聪都是在第四位,这列方队共有多少人?21.小朋友站成一个每边 10 人的方阵,若去掉一行一列,去掉多少人?还剩多少人?22.用 24 枚棋子围一个一层的正方形空心方阵,每边应放几枚棋子?(画图思考)23.有一队同学排成一个中心空的方阵,最外层是 52 人,最内层是 28 人,这队学生有多少人?24.六一节前夕,光明小学用若干盆鲜花排成了一个方阵花坛.这个花坛的最外层每边有花盆 有多少盆花?整个花坛一共有多少盆花?26.教室里有很多桌子,都整齐地排列着,每列桌子数相等,每排的桌子数相等,小秋的桌从前面数第面数第 4 张,他的左边有 3 张,右边有 1 张,小秋的教室一共有多少张?27.用 1 分的硬币排成一个最大的正方形(每行和每列个数相同) ,结果余下 10 枚硬币;如果每行与每列都增加一枚,那么又缺少 9 枚.1 分硬币有多少枚?28.在学校运动会上,五、六年级的学生站成方阵做集体体操表演.小亮站的位置从左数是第 8 位,从右数是第 13位.这个方阵每排有 _______ 人,整个方阵一共有 ________ 人.29.参加军事训练的学生练习 排下方形方阵,排成一个大方阵余 12 人,若将大方阵纵横各减少一行,则余下的人 可以组成一个 5 行 5 列的方阵,这队学生共有 人.30.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外边每边由 20 个同学抬着这次运动会的会徽,这个方块队共由多少个同学组成?10盆,最外层一共 25.育英小学的全校学生排成一个实心方阵列队,还剩下5 人,如果横竖各增加一排,排成一个稍大的实心方阵,3 张,从后 30人,共有 10 层,中间 5 层的位置参考答案:1. 10×8×5=400(人);答: 5 个方阵一共有 400 人2.因为 7×7=49,所以 49 人组成的方阵的每边人数是 7人, 7×4﹣4=28﹣4=24(人);答:这个方阵的最外层有 24 人3.最外层每边人数:(72+4)÷4=76÷4=19(人);19×19=361(人);答:这个体操方阵有 361 人4.(36+4)÷4=40÷4=10(人);答:每边各有 10 名学生5. 6×6÷4=36÷4=9(人),答:每队 9 人 6.240÷4=60(人),60+1=61(人).答:这个方阵最外层每边有 61 人 7.11×4﹣4=44﹣4=40(枚),(11﹣2)×4﹣4=36﹣4=32(枚),40+32=72(枚),答:这个方阵共有 72 枚棋子 8.最外层一共有 16×4﹣4=60 枚,最内层一共有棋子数: 10×4﹣ 4=36 枚;(60﹣36)÷8=3 个间隔,所以这是一个 4 层的中空方阵,则中间的 2 层的棋子数 36+8=44 个枚; 44+8=52 枚,所以方阵中的棋子总数是: 60+52+44+36=192 (枚).答:这个空心方阵一共有 192 枚围棋子9.扩大的方阵每边上有:(10+15+1)÷2=26÷2=13(人);原来人数: 13×13﹣15=169﹣15=154(人);答:原来有 154 人 10.8×4﹣4=32﹣4=28(盆),答:四周放了 28 盆花 11.25×4﹣4=100﹣4=96(盏);答:这个广场一共需要彩灯96 盏12.设最外层的每边人数是 x 人,则:(x﹣ 6)×6×4=360 ,24x﹣144=360,24x=504 , x=21,答:最外层每边人数是 21 人 13. 16×4﹣4=60 (人), 16×16=256(人),答:最外层人数有 60 人,整个方阵一共有 256 名同学 14.每边点数为: 72÷4+1=18+1=19 (人),总点数为: 19×19=361(人),男生人数为: 361﹣ 72=289(人),答:男生有 289 人15.设最内层每边有 x 个棋子,则从里到外每层依次有 x+2、x+4、x+6 个棋子,可得方程: 4(x﹣1)+4(x+2﹣1) +4(x+4﹣1)+4(x+6﹣1)=272,4x﹣ 4+4x+4+4x+12+4x+20=272 ,16x=240 ,x=15;则最外层棋子有: 15+6=21 (个);答:最外层有 21 个,最内层有 15 个 16.(7+7+1)×(7+7+1)=15×15=225(人);答:五( 3)班有 225 人.17. 13×4﹣4=48 (人), 13×13=169(人),答:最外层人数有 48 人,整个方阵一共有 169 名同学18.解: 4+4﹣ 1=7(人), 7×7=49(人),答:共有 49 人做操19.(1)沿靠水池的一边每边可以插: 6÷1+1=7 (面),所以一共可以插红旗: 7×4﹣4=24(面);(2)靠小路的另一边,每边可以插:(1+6+1 )÷1+1=8+1=9 (面),所以一共可以插黄旗: 9×4﹣4=32(面), 24+32=56 (面),答:一共插 56 面小旗20.4﹣1=3(人),3+3+1=7 (人),7×7=49(人);答:这列方队共有 49 人 21.(1)10+10﹣1=20﹣1=19(人);(2)10×10﹣(10+10﹣1)=100﹣19=81(人);答:若去掉一行一列,去掉 19 人,还剩 81 人24+4)÷4=28÷4=7(枚),答:每边应放 7 枚棋子23.(52+4)÷4=14(人),14×14=196(人)(28+4)÷4=8(人),(8﹣2)×6=36(人),196﹣36=160(人);答:学生有 160 人24.最外层的花盆数为: 10×4﹣4=36 (盆),整个花坛的花盆数为: 10×10=100(盆);答:最外层一共有 36 盆花;整个花坛一共有 100 盆花25.26+5=31(人),(31+1 )÷2=16(人),16×16﹣26=230(人);答:育英小学有学生 230 人26.解:(3+4﹣1)×(3+1+1)=6×5=30(张);答:小秋的教室一共有 30 张桌子 27.解:每行每列都增加一排实际就是增加了:10+9=19(枚),所以原来每行每列有:(19﹣ 1)÷2=9(枚),所以原来的正方形方阵有: 9×9=81(枚),81+10=91 (枚),答:原来一共有 91 枚28.解:每排人数是: 8+13﹣1=20 (人),这个方阵一共有: 20×20=400(人),答:这个方阵每排有 20 人,整个方阵一共有 400 人29.大方阵的每边人数为:(5×5﹣ 12+1)÷2=(25﹣12+1)÷2=14÷2=7(人),总人数为: 7×7+12=49+12=61 (人),答:这队学生共有 61 人2230.( 30﹣5)×5×4+20=500+20=520 (人);或 30 ﹣(30﹣2×5) +20=900 ﹣ 400+20=520 (人);答:这个方块队共由 520 个同学组成.。
优选三年级奥数题及答案:方阵问题同学们学习奥数有益于我们数学思想的提高,查词典数学网为大家分享三年级奥数题及答案方阵问题,我们要多做题,勤加练习才能在成绩上有更大的提高!1.有一队士兵 ,排成了一个方阵,最外层一周共有240 人 ,问这个方阵共有多少人?2.某校少先队员能够排成一个四层空心方阵假如最外层每边有 20 个学生 ,问这个空心方阵最里边一周有多少个学生 ?这个四层空心方阵共有多少个学生 ?3.六一小孩节前夜,在校园雕塑的四周,用 204 盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?4.三年级 (1)班的学生参加体操表演 ,排成队形正好是由每 7 个人为一边的 6 个三角形构成的一个正六边形 ,求正六边形一周共有多少名学生 ?三 (1)班参加体操表演的共有多少人 ?5.最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成 9 行 9 列的方阵 ,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?答案 :(1)(2404)÷-1=59( 人)59 ×59=3481(人)(2)(20-2 3×-1) ×4=42( 个 ) (20-404×4=256( 个)(3)最外层每边人数=总数÷4÷层数 +层数204÷4÷3+3=20( 盆 )(4)7 ×6-6=36( 人 ) 7 ×12-6 ×2-5=67(人 )其 ,任何一学科都离不开死硬背,关是有技巧, “死”以后会“活用”。
不住那些基知 ,怎么会向高次 ?特别是文学科涉的范很广 ,要真实提高学生的写作水平 ,靠剖析文章的写作技巧是不的 ,必从基知抓起 ,每日一点学生“死”名篇佳句、名言警句,以及丰富的、新的资料等。
,就会在有限的、空里学生的海里注入无穷的内容。
日月累 ,少成多 ,进而收到磨铁成针 ,木断的功能。
四年级奥数方阵问题方阵问题是一类非常经典的数学问题,尤其在奥数学习中更为常见。
所谓方阵问题,就是指将一群数按照列或者行的形式排列成一个方阵,然后考察方阵中各数之间的关系以及如何通过已知的数求出其他数的位置。
一、方阵的排列规律我们需要明白方阵是如何排列的。
一个 n x n的方阵是由 n^2个数按照行或列的方式排列而成的。
以 3 x 3的方阵为例,我们可以将其排列如下:1 2 34 5 67 8 9在这个方阵中,每一行都是从 1开始逐渐递增的数字,每一列则是从 1开始逐渐递增的数字。
同时,每一行和每一列都有一个共同的规律,即从第一个数开始,每隔一个数就出现一次。
例如第一行中,第一个数是 1,第二个数是 2,第三个数是 3;第二行中,第一个数是 4,第二个数是 5,第三个数是 6;第三行中,第一个数是 7,第二个数是 8,第三个数是 9。
二、方阵中数的计算方法在方阵中,我们可以很容易地找到一些数的规律。
例如,对于任意一个 n x n的方阵,我们可以发现:1、每一行或每一列的和都是 n(n+1)/2。
2、每一行或每一列的平均值都是 (n+1)/2。
3、对于任意一个数 i,它在每一行中出现的次数都是 n-i+1次(从第 i个数开始)。
4、对于任意一个数 i,它在每一列中出现的次数都是 n-i+1次(从第 i个数开始)。
三、例题解析例1:有一个 5 x 5的方阵,已知第一行的和为 10,第二行的和为 15,第三行的和为 20,第四行的和为 25,那么第五行的和是多少?分析:由于每一行或每一列的和都是 n(n+1)/2,所以第五行的和为:5 x (5+1) / 2 - (10 + 15 + 20 + 25) = 50 - 70 = -20。
例2:有一个 4 x 4的方阵,已知第一列的和为 10,第二列的和为 15,第三列的和为 20,那么第四列的和是多少?分析:由于每一行或每一列的和都是 n(n+1)/2,所以第四列的和为:4 x (4+1) / 2 - (10 + 15 + 20) = 20 - 45 = -25。
教学内容:第十一讲方阵问题在日常生活中,我们经常见到把人或物排成正方形的形状,比如用花盆摆成正方形,同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,在数学上我们通常把研究这样的问题称为方阵问题。
掌握这类问题的解题规律,可以提高我们的解题能力,培养思维的灵活性。
今天我们将共同研究和分析这类问题。
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,恰好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
在摆放的方阵中如果是实心的,我们叫它中实方阵;如果这个方阵是空心的,我们叫它中空方阵。
观察中实方阵,我们不难发现方阵的基本特点:①方阵的每行物体个数与每列物体个数相等。
②去掉横竖各一排时,有且只有1个物体是同时属于被减去的一行和一列。
③如果把最外圈形成的正方形叫第一层,再向里一圈叫第二层的话,会发现相邻的这两个正方形每边个数相差为2,相邻两层相差总个数为8。
④每边人(或物)数和四周人(或物)数的关系四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1⑤中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数观察中空方阵,我们不难发现方阵的基本特点:中空方阵的总人(或物)数=(最外层每边人(或物)数-中空方阵的层数)×中空方阵的层数×4下面我们就利用以上特点进例 1 参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生?分析与解答:如上图表示的是一个4行4列的实心正方形队列,从图中可以看出正方形队列的特点:(1)正方形队列每行、每列的人数相等,因此总人数=每行人数×每列人数。
(2)去掉横竖各一排时,有且只有1人是同时属于被减去的一行和一列的,如图中点A所示。
因此去掉的总人数=原每行人数×2-1,或去掉的总人数=减少后每行人数×2+1。
本题中所求,即去掉的人数=7×2-1=13(人)或去掉的人数=(7-1)×2+1=13(人)还剩的人数=(7-1)×(7-1)=36(人)或还剩的人数=7×7-13=49-13=36(人)答:如果去掉一行一列,要去掉13名学生,还剩下36名学生。
例2 小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少?分析与解答:如图,最外一层每边摆6枚,根据方阵每行每列个数相等特点,因此一共有6×6=36枚棋子。
最外一层每边有6枚,如果用6×4=24枚,就认为是最外一层棋子数的答案的话,那就错了。
因为正方形每个顶点上的棋子分属于一行一列,这样棋子在计算总数时就被多数了一次,这样的顶点一共有4个,需要把多数的减去,才能得到正确的结果。
列式是6×4-4=20枚。
说明:这道题还可以这样想:数每边棋子时,可以按上图先划分成4个相等的块,这样每边就有5枚了,因此用5×4=20枚,也可以得到正确答案。
按照划分块的方法不同,至少还有两种方法,请同学们试一试。
例3 有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?分析与解答:要想求出方阵中一共有多少士兵,就应先求出方阵的最外层每边有多少人。
已知方阵最外一层有100人,用100÷4=25人,每边是不是25人呢?不是的,因为平均分成4份后,还需要再加上1,才正好是每边上的人数,列式应该为100÷4+1=26人。
因此方阵中一共有26×26=676人。
答:一共有676人。
说明:这道题关键是求出每边人数。
在求每边人数时,不要认为和“知道了正方形周长,求边长”一样,还必须要加上1。
例4 若干名同学排成中实方阵则多12人,若要将这个方阵改摆成纵横两个方向各增加1人的方阵则还差9人排满,请问:原有学生多少人?分析与解:由于纵横两个方向各增加1人,因此不但将剩余12人摆上,而且还差9人,说明一横行与一竖行的人数总和是12+9=21人。
又由于纵横两个方向各增加1人,因此只有1人同属于横行与纵行,在数每边上的人数时,总被多数一次,因此可以用21人先加上被重复数过的1人,再除以2,也就得到每边人数。
列式为(21+1)÷2=11人。
求出每边人数,就可求出假设排满后的人数,列式为11×11=121人,用121人减去差的9人就是原来人数,列式为121-9=112人。
也可以根据原来的方阵再加上12,请你试一试。
答:原有学生112人。
前四个例题涉及的都是实心方阵问题。
下面我们来研究中空方阵问题。
例 5 游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵,最外边一层每边12人,请问:彩车周围的少先队员共有多少人?分析与解答1:请同学们自己画一个图,下图是一个三层中空方阵的示意图,不难发现,有如下特点:(1)外层每边点的个数都比相邻内层的每边点的个数多2;(2)每相邻两层之间,点的总数相差8个。
最外层队员的总数:12×4-4=44(人)三层共有队员的总数:44+(44-8)+(44-8×2)=44+36+28=108(人)分析与解答2:如下图可分成相等的四部分,每一部分的人数:(12-3)×3=9×3=27(人)三层共有队员数:27×4=108(人)答:彩车周围的少先队员共有108人。
这个问题还有别的解法,请同学们自己试着做一下。
例6 小明用围棋子摆了一个五层中空方阵,一共用了200枚棋子,请问:最外边一层每边有多少枚棋子?分析与解答1:利用“相邻两层之间,每层的总数相差8”的特点,可知最外层共有棋子数:(200+8+8×2+8×3+8×4)÷5=56(个)最外层每边的棋子数:56÷4+1=15(个)分析与解答2:如例5的图,把棋子分成相等的四部分。
每一部分的棋子数:200÷4=50(个)每一部分每排的棋子数:50÷5=10(个)最外层每边的棋子数:10+5=15(个)综合列式为:200÷4÷5+5=15(个)答:最外边一层每边有15枚棋子。
阅读材料牛顿是英国一位伟大的数学家和科学家,他是个早产儿,从小就体弱多病,不能像同年龄的孩子在外面跑跑跳跳。
只能躲在室内。
不过,聪明的他却有一套玩耍的方法;他制造了一种利用老鼠磨面粉的机械玩具水车,把小麦磨成雪白的面粉,还做了有灯光的风筝吓唬村民。
牛顿最有名的一段小故事,就是因为苹果落下,而发现万有引力,为什么苹果会落下?小朋友你想过这个问题吗?这是因为地心引力,所以有重量,苹果才落下。
喔牛顿很喜欢想问题,也喜欢看书,最后成为伟大的科学家和数学家哩练习题1.实验小学四年级原准备排成一个正方形队列参加广播操表演,由于服装不够,只好横竖各减少一排,这样共需去掉27人,请问:四年级原来准备多少人参加表演?分析与解答:此题刚好是例1的逆向思考问题。
根据正方形队列的特点,可知原每行人数=(去掉一行一列的人数+1)÷2即:原来每行人数:(27+1)÷2=14(人)原来准备参加表演的人数:14×14=196(人)答:四年级原准备196人参加表演。
2.一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?分析与解答1:把去掉4行4列转化为一行一列的去掉,就可用例6的结论:去掉一行一列的总人数=原每行人数×2-1反复利用4次这个公式,只要注意“原每行人数”的变化,即可列式为:去掉4行4列的总人数=20×2-1+(20-1)×2-1+(20-2)×2-1+(20-3)×2-1=40-1=38-1+36-1+34-1=144(人)分析与解答2:我们还可以这样想:原来是一个7行7列的方阵,若去掉4行4列后,仍剩下一个小正方形方阵,因此去掉4行4列的总人数=原正方形方阵每边人数-4,即去掉的总人数=20×20-(20-4)×(20-4)=400-256=144(人)答:去掉4行4列,要减少144人。
3.正方形舞厅四周均匀的装彩灯,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?分析与解1:自己画图可以看出,角上的四盏灯各属于两行,所以彩灯总数应为: 12×4-4=44(盏)分析与解2:还可以把彩灯分成相等的四部分,因此彩灯总数为:(12-1)×4=44(盏)答:这个舞厅四周共装彩灯44盏。
4.“六一”儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵,请你求出最外面一层每边有鲜花多少盆?分析与解答:分析思路参见例6,最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆)答:最外面一层每边有鲜花20盆5.四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求出来了。
解答:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。
6.明明用围棋子摆成一个三层中空方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子?摆这个三层空心方阵共用了多少枚棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个中空方阵的层数,再乘以层数,再乘以4,计算出这个中空方阵共用棋子多少个。
解答:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个) (2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子。
7.若干战士排成一个四层中空方阵,只知道最外一层每边有12人,请你求出总人数。
分析与解:我们可以采用先求出每层人数再求总人数的方法进行解答:由于最外层每边有12人,因此最外层一共有(12-1)×4=44人,又根据方阵相邻两层,外层比内层人数多8的特点,因此第二层有44-8=36人,第三层有36-8=28人,第四层有28-8=20人。