第一讲 金融数学简介
- 格式:pptx
- 大小:1.09 MB
- 文档页数:25
金融数学简介金融数学是应用数学的一个分支,它将数学的理论和方法与金融领域的问题相结合,用于解决金融市场、金融工具、金融风险等方面的计算和分析。
金融数学的发展为金融行业提供了强有力的工具,使得金融机构能够更好地理解和管理金融市场的风险。
金融数学的研究内容包括金融市场模型的建立和分析、金融衍生品的定价与风险管理、投资组合优化、风险评估和风险控制等。
它的研究方法主要包括概率论、随机过程、微分方程、优化理论等。
通过对这些数学方法的运用,金融数学可以帮助金融从业者更准确地预测金融市场的走势,评估金融产品的价值和风险,并制定相应的投资策略和风险管理策略。
金融数学的一个重要应用领域是金融衍生品的定价与风险管理。
金融衍生品是一种派生自金融市场的金融工具,如期权、期货、掉期等。
金融衍生品的定价问题是金融数学中的一个经典问题,通过建立适当的数学模型和运用数学方法,可以对金融衍生品的价格进行准确的计算。
同时,金融数学还可以帮助金融机构对金融衍生品的风险进行评估和控制,从而降低金融机构的风险暴露。
另一个重要的应用领域是投资组合优化。
投资组合是指将资金分配到不同的金融资产中,以实现预期收益最大化或风险最小化的投资策略。
金融数学可以帮助投资者通过数学建模和优化方法,找到最优的投资组合,从而在给定风险下获得最大的收益或在给定收益下承担最小的风险。
风险评估和风险控制是金融数学的另一个重要应用领域。
金融市场的波动性和不确定性使得风险成为金融从业者必须面对的重要问题。
金融数学可以通过建立数学模型和运用数学方法,对金融市场的风险进行量化和评估,从而帮助金融机构制定风险管理策略,降低风险暴露。
金融数学作为应用数学的一个重要分支,为金融行业提供了强有力的工具和方法。
它的发展不仅推动了金融市场的创新和发展,也为金融机构提供了更准确的风险管理手段。
金融数学的研究和应用将不断推动金融行业向更高效、更稳健的方向发展。
金融数学简介金融数学是一门应用数学的分支,它研究的是金融领域中的各种数学模型和方法。
金融数学的出现,为金融领域的决策和风险控制提供了强有力的工具和理论基础。
本文将简要介绍金融数学的基本概念和应用领域。
金融数学的基本概念包括概率论、随机过程、微分方程和优化理论等。
概率论是研究随机现象的数学理论,它在金融领域中被广泛应用于风险评估和投资组合管理等问题。
随机过程是描述随机现象随时间变化的数学模型,它在金融领域中常用于建立股票价格和利率等随机变量的模型。
微分方程是用来描述变量之间关系的数学方程,它在金融领域中常用于衍生品定价和利率模型等问题。
优化理论是研究如何寻找最优解的数学理论,它在金融领域中常用于资产配置和风险管理等方面。
金融数学的应用领域广泛,包括金融工程、风险管理、衍生品定价、投资组合管理等。
金融工程是将数学和计算机科学等方法应用于金融领域的交叉学科,它研究如何设计和实施金融产品和交易策略。
风险管理是金融领域中非常重要的一个领域,它研究如何识别、测量和控制金融风险。
衍生品定价是金融数学中的一个重要问题,它研究如何确定期权、期货等衍生品的合理价格。
投资组合管理是金融领域中的另一个重要问题,它研究如何根据投资者的风险偏好和目标收益,选择最优的资产组合。
金融数学的发展离不开计算机技术的支持。
计算机技术的高速发展,使得金融数学的计算和模拟能力大大提高。
金融数学中涉及的复杂模型和大规模计算问题,都可以通过计算机进行求解和模拟。
因此,金融数学和计算机科学的结合,为金融领域的决策和风险控制提供了更加精确和高效的方法。
金融数学在实际应用中具有重要意义。
通过建立数学模型和应用数学方法,可以对金融市场进行预测和分析,为投资者提供决策依据。
同时,金融数学也可以帮助金融机构进行风险管理,有效地控制和规避风险。
另外,金融数学还可以对金融产品进行定价和评估,确保市场的公平和有效。
金融数学作为应用数学的一个重要分支,为金融领域的决策和风险控制提供了重要的工具和理论基础。
《金融数学》课程简介金融数学 3.0课程英文名称:Financial Mathematical 3---0,预修课程:微积分、线性代数面向对象:全校本科生内容简介:金融数学是一门数学科学与金融学的新兴交叉学科,目前在世界上它发展非常迅速,已成为十分活跃的前沿学科之一。
金融数学就是利用数学工具对金融学中的理论和现象进行研究和分析,建立相应的数学模型,进行理论分析和数值计算等,以求找到金融活动内在的规律并用以指导实践。
通过金融数学的学习,希望培养学生数学、经济、金融等方面的相关基础知识,造就应用数学与金融学交叉科学领域方面的复合型人才。
推荐教材或参考书:(含教材名,主编,出版社,出版年代)《期权定价的数学模型和方法》,姜礼尚,高等教育出版社2003,北京《数理金融:资产定价与金融决策理论》,叶中行林建忠编著,科学出版社,1998,北京。
《数理金融经济学》王一鸣,北京大学出版社,2000,北京Ioannis Karatzas, Steven E. Shreve. Karatzas, Ioannis. 1998Martingale methods in financial modelling / Marek Musiela, Marek Rutkowski. Musiela, Marek, 1950- 1997《金融数学》教学大纲金融数学 3.0课程英文名称:Financial Mathematical 3---0,预修课程:微积分、线性代数面向对象:全校本科生一、教学目的与基本要求:(1)使学生了解金融数学研究的主要对象和经济背景,理解金融数学中的主要概念和理论,掌握主要的建模工具以及重要的数学模型的应用方法,较为熟练地运用一些主要的公式进行计算。
(2)要正确理解以下概念:效用与偏好序,投资组合,套利,风险厌恶,等价概率分布,风险中性定价,状态定价向量,布朗运动与扩散,倍率函数,风险控制函数;股票与债券,证券与衍生证券,期货与期权,未定权益,利率期限结构,公司资本结构等基本概念。
金融数学相关知识(doc 7页)金融数学相关知识(doc 7页)金融数学Quant analysis主要运用随机分析,随机最优控制,倒向随机微分训方程,非线性分析,分形几何等现代数学工具研究:1不完备的金融市场有价证券(例如期货、期权等衍生工具的)资本资产定价模型,套利定价理论,套期保值理论,最优投资和消费理论,2利率的期限结构和利率衍生品的定价理论,3不完备金融市场的风险管理和风险控制理论。
Quant analysis金融数学(Financial Mathematics),又称数理金融学、数学金融学、分析金融学,是利用数学工具研究金融,进行数学建模、理论分析、数值计算等定量分析,以求找到金融动内在规律并用以指导实践。
金融数学也可以理解为现代数学与计算技术在金融领域的应用,因此,金融数学是一门新兴的交叉学科,发展很快,是目前十分活跃的前言学科之一。
金融数学的发展曾两次引发了“华尔街革命”。
上个世纪50年代初期,马科威茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券收益可能最大的投资方法,引发了第一次“华尔街革命”,马科威茨因此获得了1990年诺贝尔经济学奖。
1973年,布莱克和斯克尔斯用数学方法给出了期权定价公式,推动了期权交易的发展,期权交易很快成为世界金融市场的主要内容,成为第二次“华尔街革命”,修斯因此获得了1997年诺贝尔经济学奖。
2003年诺贝尔经济学奖第三次授予以数学为工具分析金融问题的美国经济学家恩格尔和英国经济学家格兰杰以表彰他们分别用“随着时间变化易变性”和“共同趋势”两种新方法分析经济时间数列给经济学研究和经济发展带来巨大影响。
金融数学在我国起步比较晚,但于1997 年正式实施的国家“九五”重大项目《金融数学、金融工程、金融管理》,直接推动了我国金融数学这一交叉学科的兴起和发展。
金融数学,运用随机分析,随机最优控制,倒向随机微分方程,非线性分析,分形几何等现代数学工具研究以下问题:(1)不完备金融市场有价证券(例如期货,期权等衍生工具)的资本资产定价模型,套利定价理论,套期保值理论及最优投资和消费理论。